E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-FQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl25z32vlk4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Terminology and guidelines

Field	Description	Values
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MKL25Z64VLK4

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.1.1 Example

This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

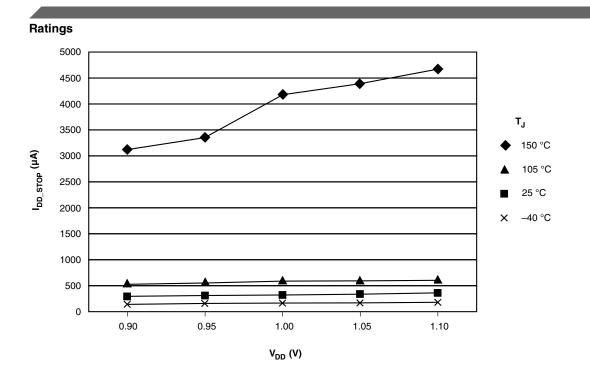
This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example


This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

3.9 Typical Value Conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٦°
V _{DD}	3.3 V supply voltage	3.3	V

4 Ratings

4.1 Thermal handling ratings


Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assumes:

- 1. output pins
 - have C_L =30pF loads,
 - are slew rate disabled, and
 - are normal drive strength

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
V _{DD} – V _{DDA}	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$		$0.3 \times V_{DD}$	V	

Table continues on the next page...

Table 3.	Voltage and	current operating	behaviors	(continued)
----------	-------------	-------------------	-----------	-------------

Symbol	Description	Min.	Max.	Unit	Notes
R _{PU}	Internal pullup resistors	20	50	kΩ	3
R _{PD}	Internal pulldown resistors	20	50	kΩ	4

^{1.} PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at $V_{DD} = 3.6 V$

- 3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.		_	300	μs	
	• VLLS0 \rightarrow RUN	_	95	115	μs	
	• VLLS1 → RUN	_	93	115	μs	
	VLLS3 → RUN	_	42	53	μs	
	• LLS → RUN		4	4.6	μs	
	 VLPS → RUN 	_	4	4.4	μs	
	• STOP \rightarrow RUN	_	4	4.4	μs	

 Table 4. Power mode transition operating behaviors

5.2.5 Power consumption operating behaviors

 Table 5.
 Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
IDD_RUNCO_ CM	Run mode current in compute operation - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4MHz internal reference clock, CoreMark® benchmark code executing from flash • at 3.0 V	_	6.4	_	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash		4.1	5.2	mA	3
	• at 3.0 V			0.2		
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code of while(1) loop executing from flash		5.1	6.3	mA	3
	• at 3.0 V		5.1	0.3	ma	
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks enabled, code of while(1) loop executing from flash					3, 4,
	• at 3.0 V					
	• at 25 °C	_	6.4	7.8	mA	
	• at 125 °C	_	6.8	8.3	mA	
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V	_	3.7	5.0	mA	3
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V		2.9	4.2	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus • at 3.0 V	_	2.5	3.7	mA	3
I _{DD_VLPRCO}	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code of while(1) loop executing from flash • at 3.0 V		188	570	μΑ	5
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code of while(1) loop executing from flash • at 3.0 V	_	224	613	μA	5

Table continues on the next page...

Table 5.	Power	consumption	operating	behaviors	(continued)
----------	-------	-------------	-----------	-----------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code of while(1) loop executing from flash • at 3.0 V	_	300	745	μA	5, 4
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V		135	496	μΑ	5
I _{DD_STOP}	Stop mode current at 3.0 V					
	at 25 °C	—	345	490		
	at 50 °C	—	357	827	μA	
	at 70 °C	—	392	869		
	at 85 °C	_	438	927		
	at 105 °C	_	551	1065		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	at 25 °C	—	4.4	16		
	at 50 °C	—	10	35	μA	
	at 70 °C	_	20	50		
	at 85 °C	_	37	112		
	at 105 °C	_	81	201		
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					
	at 25 °C	_	1.9	3.7	μA	
	at 50 °C	_	3.6	39		
	at 70 °C	_	6.5	43		
	at 85 °C	_	13	49		
	at 105 °C	_	30	69		
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	at 25 °C	—	1.4	3.2	μA	
	at 50 °C	—	2.5	19		
	at 70 °C	_	5.1	21		
	at 85 °C	_	9.2	26		
	at 105 °C	_	21	38		
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0V					
	at 25°C	_	0.7	1.4		
	at 50°C	_	1.3	13	μA	
	at 70°C	_	2.3	14		
	at 85°C	_	5.1	17		
	at 105°C	_	13	25		

Table continues on the next page...

General

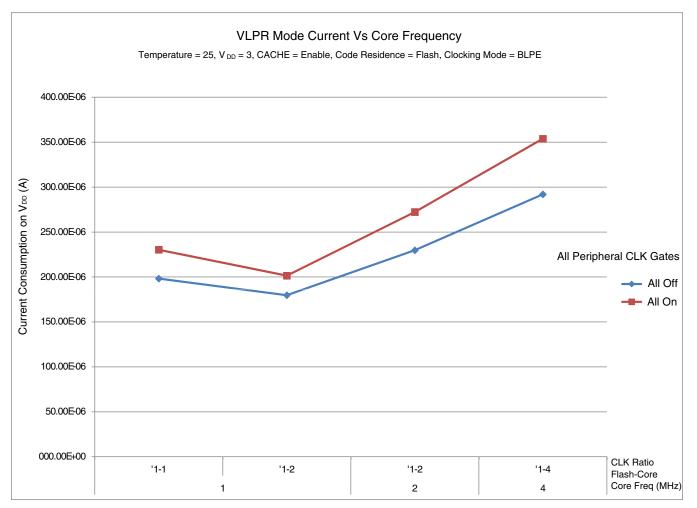


Figure 3. VLPR mode current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors for 64-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	13	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	15	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	12	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	7	dBµV	
V_{RE_IEC}	IEC level	0.15–1000	М	—	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

General

Symbol	Description	Min.	Max.	Unit	Notes
f _{lptmr_ercl}	LPTMR external reference clock	_	16	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	—	16	MHz	
f _{TPM}	TPM asynchronous clock		8	MHz	
f _{UART0}	UART0 asynchronous clock		8	MHz	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General Switching Specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
	GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
	Port rise and fall time				3
		—	36	ns	

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 9. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — nominal V _{DD} and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference trimmed	frequency (slow clock) — user	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$		ned average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}		rimmed average DCO output tage and temperature		+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}		rimmed average DCO output ed voltage and temperature	_	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}		frequency (fast clock) — nominal V _{DD} and 25 °C	—	4	—	MHz	
$\Delta f_{intf_{ft}}$	(fast clock) over te	on of internal reference clock mperature and voltage nominal V _{DD} and 25 °C	_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user Il V _{DD} and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
		FI	L				
f _{fll_ref}	FLL reference freq	uency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) 1280 × f _{fll_ref}	40	41.94	48	MHz	

Table 12. MCG specifications

Table continues on the next page...

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications Table 13. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance		_			2, 3
Cy	XTAL load capacitance	_	—	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)		_		MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)		1		MΩ	

Table continues on the next page ...

KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—			kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		—	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	

Table 13. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications Table 14. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

 Table 14. Oscillator frequency specifications (continued)

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

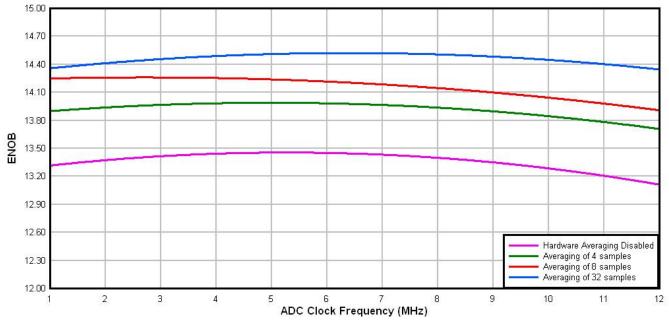
Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversall}	Erase All high-voltage time	—	52	452	ms	1

Table 15. NVM program/erase timing specifications

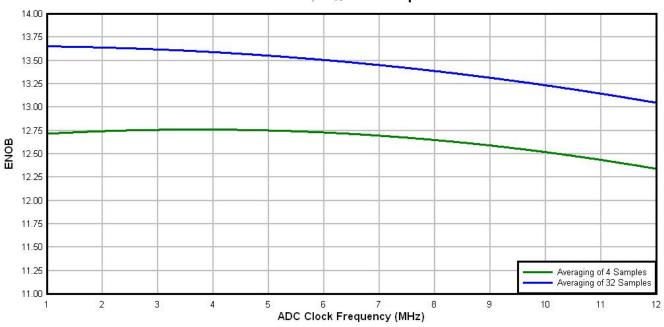
1. Maximum time based on expectations at cycling end-of-life.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes	
	ADC	 ADLPC = 1, ADHSC = 0 	1.2	2.4	3.9	MHz	t _{ADACK} = 1/	
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}	
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz		
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz		
	Sample Time	See Reference Manual chapter	for sample t	imes	1 1		I	
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5	
	error	• <12-bit modes	—	±1.4	±2.1			
DNL	Differential non-	12-bit modes	—	±0.7	-1.1 to +1.9	LSB ⁴	5	
	linearity				-0.3 to 0.5			
		 <12-bit modes 	—	±0.2				
INL	Integral non-	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5	
	linearity				-0.7 to +0.5			
		 <12-bit modes 	—	±0.5				
E_{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =	
		<12-bit modes	—	-1.4	-1.8		V _{DDA}	
Eq	Quantization	16-bit modes		-1 to 0		LSB ⁴	5	
ŭ	error	• ≤13-bit modes	_	_	±0.5			
ENOB	Effective number	16-bit differential mode					6	
	of bits	• Avg = 32	12.8	14.5		bits		
		• Avg = 4	11.9	13.8		bits		
		16-bit single-ended mode						
		• Avg = 32	12.2	13.9	_	bits		
		• Avg = 4	11.4	13.1	_	bits		
SINAD	Signal-to-noise	See ENOB		2 × ENOB +	1 76	dB		
	plus distortion		0.02		1.70	uВ		
THD	Total harmonic distortion	16-bit differential mode					7	
		• Avg = 32	—	-94	-	dB		
		16-bit single-ended mode		-85		dB		
		• Avg = 32	—	-00		uВ		
SFDR	Spurious free	16-bit differential mode					7	
	dynamic range	• Avg = 32	82	95	-	dB		
		16-bit single-ended mode	70	00		dB		
		• Avg = 32	78	90		uВ		

Table 20. 16-bit ADC characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA}) (continued	Table 20.	16-bit ADC characteristics	$(V_{\text{REFH}} = V_{\text{DDA}})$	$V_{\text{REFL}} = V_{SSA}$) (continued)
--	-----------	----------------------------	--------------------------------------	-----------------------------	---------------


Table continues on the next page ...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
E _{IL}	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	_	1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	_	719	—	mV	


Table 20. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

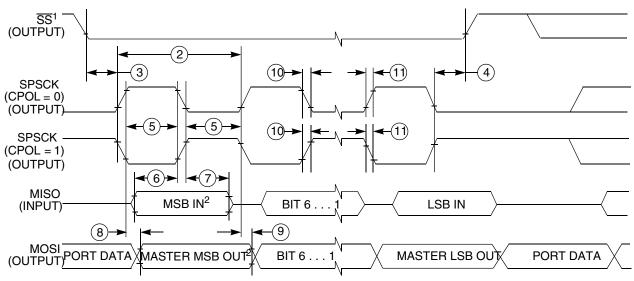
- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.6.2 CMP and 6-bit DAC electrical specifications Table 21. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, high-speed mode (EN = 1, PMODE = 1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN = 1, PMODE = 0)		_	20	μA
V _{AIN}	Analog input voltage	V _{SS}	_	V _{DD}	V
V _{AIO}	Analog input offset voltage		_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5		mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low		_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns


Table continues on the next page ...

Peripheral operating requirements and behaviors

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI master mode timing (CPHA = 0)

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 1)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	—
4	t _{Lag}	Enable lag time	1	_	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30		ns	—

Table continues on the next page...

Num.	Symbol	Description	Min.	Max.	Unit	Note
6	t _{SU}	Data setup time (inputs)	2	—	ns	—
7	t _{HI}	Data hold time (inputs)	7	—	ns	—
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	22	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 27. SPI slave mode timing on slew rate disabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Table 28. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	
4	t _{Lag}	Enable lag time	1	_	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	
6	t _{SU}	Data setup time (inputs)	2	—	ns	—
7	t _{HI}	Data hold time (inputs)	7	_	ns	
8	t _a	Slave access time		t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	
11	t _{HO}	Data hold time (outputs)	0	—	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output		36	ns	
	t _{FO}	Fall time output]			

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Pinout

8.1 KL25 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	-	1	PTE0	DISABLED		PTE0		UART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	
2	2	-	-	PTE1	DISABLED		PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	
3	-	-	_	PTE2	DISABLED		PTE2	SPI1_SCK					
4	-	-	-	PTE3	DISABLED		PTE3	SPI1_MISO			SPI1_MOSI		
5	_	-	-	PTE4	DISABLED		PTE4	SPI1_PCS0					
6	_	-	_	PTE5	DISABLED		PTE5						
7	3	1	_	VDD	VDD	VDD							
8	4	2	2	VSS	VSS	VSS							
9	5	3	3	USB0_DP	USB0_DP	USB0_DP							
10	6	4	4	USB0_DM	USB0_DM	USB0_DM							
11	7	5	5	VOUT33	VOUT33	VOUT33							
12	8	6	6	VREGIN	VREGIN	VREGIN							
13	9	7	-	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	UART0_TX			
14	10	8	-	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	UART0_RX			
15	11	-	-	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX			
16	12	-	-	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX			
17	13	9	7	VDDA	VDDA	VDDA							
18	14	10	_	VREFH	VREFH	VREFH							
19	15	11	_	VREFL	VREFL	VREFL							
20	16	12	8	VSSA	VSSA	VSSA							
21	17	13	-	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
22	18	14	9	PTE30	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	PTE30		TPM0_CH3	TPM_CLKIN1			
23	19	-	_	PTE31	DISABLED		PTE31		TPM0_CH4				
24	20	15	_	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
25	21	16	_	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
26	22	17	10	PTA0	SWD_CLK	TSI0_CH1	PTA0		TPM0_CH5				SWD_CLK
27	23	18	11	PTA1	DISABLED	TSI0_CH2	PTA1	UART0_RX	TPM2_CH0				
28	24	19	12	PTA2	DISABLED	TSI0_CH3	PTA2	UART0_TX	TPM2_CH1				
29	25	20	13	PTA3	SWD_DIO	TSI0_CH4	PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
30	26	21	14	PTA4	NMI_b	TSI0_CH5	PTA4	I2C1_SDA	TPM0_CH1				NMI_b
31	27	-	-	PTA5	DISABLED		PTA5	USB_CLKIN	TPM0_CH2				

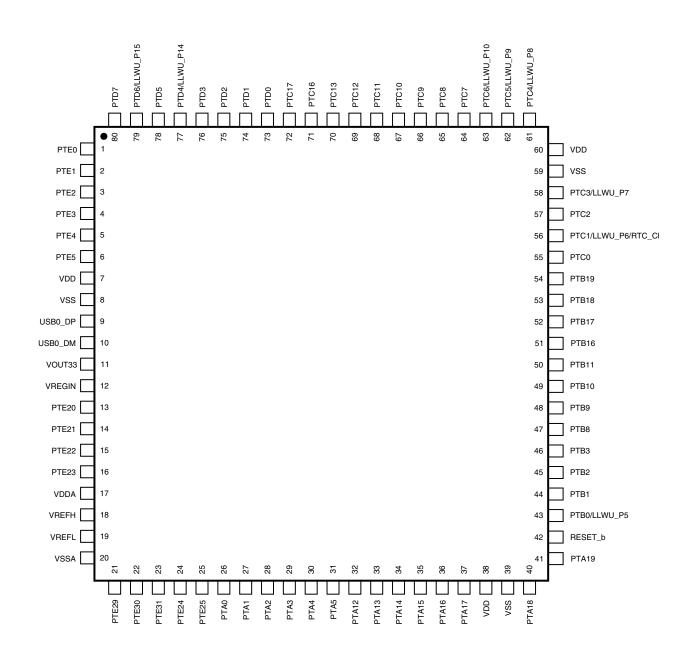


Figure 17. KL25 80-pin LQFP pinout diagram