
Renesas Electronics America Inc - R5F10369ASP#X5 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor RL78

Core Size 16-Bit

Speed 24MHz

Connectivity CSI, I²C, UART/USART

Peripherals LVD, POR, PWM, WDT

Number of I/O 14

Program Memory Size 12KB (12K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 11x8/10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-LSSOP (0.173", 4.40mm Width)

Supplier Device Package 20-LSSOP

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10369asp-x5

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/r5f10369asp-x5-4440216
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

DocID027826 Rev 3 3/39

STM32L475xx Contents

5

2.3.1 QUADSPI_BK1_IO1 is always an input when the command is sent
in dual or quad SPI mode . 22

2.3.2 Hard fault is not generated in case of out-of-range memory-mapped
access . 22

2.3.3 Extra data written in the FIFO at the end of a read transfer 22

2.3.4 First nibble of data is not written after dummy phase 23

2.3.5 Wrong data can be read in memory-mapped after an indirect mode
operation . 23

2.4 ADC peripheral limitations . 24

2.4.1 Injected queue of context is not available in case of JQM=0 24

2.4.2 DMA2 channels 2 and 3 (respectively) cannot be used when the
ADC2 and ADC3 requests are selected on DMA2 channels 4 and 5 . . 24

2.4.3 Wrong ADC conversion results when delay between calibration and
first conversion or between two consecutive conversions is too long . . 24

2.4.4 Burst read or write accesses are not supported by the ADC 25

2.4.5 Unexpected end of transfer on DMA1 when using DMA1 channel 2
for ADC2 while DMA2 channel 4 is also used . 25

2.4.6 Unexpected end of transfer on DMA1 when using DMA1 channel 3
for ADC3 while DMA2 channel 5 is also used . 25

2.5 DFSDM peripheral limitations . 26

2.5.1 RDATACH[2:0] status bits are not implemented 26

2.5.2 New regular channel selection taken into account at the end of
an injected conversion when a regular conversion is pending 26

2.5.3 DFSDM triggers from timers can be missed in specific conditions 26

2.6 I2C peripheral limitations . 26

2.6.1 I2C Fast-mode Plus drive is not available on all SDA/SCL I/Os 26

2.6.2 Wrong behavior related with MCU Stop mode when wakeup from
Stop mode by I2C peripheral is disabled . 27

2.6.3 Wrong data sampling when data set-up time (tSU;DAT) is smaller
than one I2CCLK period . 27

2.6.4 Spurious Bus Error detection in master mode . 28

2.6.5 I2C3 analog filters requires that both PC0/PC1 or both PG7/PG8
are configured as I2C3 alternate function . 28

2.6.6 10-bit master mode: new transfer cannot be launched if first part
of the address has not been acknowledged by the slave 28

2.6.7 START bit is not cleared when the address is not acknowledged
by the slave device . 29

2.7 SDMMC peripheral limitations . 29

2.7.1 Wrong CCRCFAIL status after a response without CRC is received . . . 29

2.7.2 Clock division per 255 is not possible . 29

DocID027826 Rev 3 5/39

STM32L475xx Contents

5

2.16.1 Low power UART1 (LPUART1) outputs cannot be configured in
open-drain . 37

2.17 TSC peripheral limitations . 37

2.17.1 Inhibited acquisition in short transfer phase configuration 37

3 Revision history . 38

DocID027826 Rev 3 7/39

STM32L475xx List of figures

7

List of figures

Figure 1. HSI oscillator trimming characteristics . 14
Figure 2. Minimum Run time definition . 19

DocID027826 Rev 3 9/39

STM32L475xx STM32L475xx silicon limitations

38

2 STM32L475xx silicon limitations

Table 4 gives quick references to all documented limitations.

Legend for Table 4: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ and grayed = fixed.

Table 4. Summary of silicon limitation

Section Limitation Rev 4

Section 2.1: System
limitations

Section 2.1.1: Write operation in the Flash memory while it is not ready (Flash
memory in power-down) is not correctly handled

A

Section 2.1.2: The configuration of the I/Os not available in WLCSP package can be
modified by software

A

Section 2.1.3: SRAM2 read access while the SRAM2 hardware erase is ongoing is
not correctly supported

N

Section 2.1.4: PH0/PH1 is controlled by the GPIOH registers when HSE is enabled P

Section 2.1.5: PWR_CR4 register write access may not be completed if a Low-power
mode is entered just after the write operation

A

Section 2.1.6: HSI user trim is limited on some samples N(1)

Section 2.1.7: Option byte loading can fail if MSI frequency is greater than 8 MHz A

Section 2.1.8: PLL may not lock if VCO is below 96 MHz and temperature is below
0 °C

A

Section 2.1.9: Full JTAG configuration without NJTRST pin cannot be used A

Section 2.1.10: MSIRDY flag issue preventing entry in low power mode A

Section 2.1.11: PCPROP area within a single Flash memory page becomes
unprotected at RDP change from level 1 to level 0

A

Section 2.1.12: Data Cache might be corrupted during Flash Read While Write
operation

A

Section 2.1.13: MSI frequency overshoot upon Stop mode exit A

Section 2.1.14: Internal voltage reference corrupted upon Stop mode entry with
temperature sensing enabled

A

Section 2.1.15: OPAMP output: VDDA overconsumption N

Section 2.1.16: Spurious BOR when entering Stop mode after short Run sequence A

Section 2.2: FMC
peripheral
limitations

Section 2.2.1: Dummy read cycles inserted when reading synchronous memories N

Section 2.2.2: Data corruption during burst read from FMC synchronous memory A

Section 2.2.3: FMC bank switching to asynchronous bank for write A

Section 2.2.4: Read burst access of nine words or more is not supported by FMC P

STM32L475xx silicon limitations STM32L475xx

10/39 DocID027826 Rev 3

Section 2.3:
QUADSPI
peripheral
limitations

Section 2.3.1: QUADSPI_BK1_IO1 is always an input when the command is sent in
dual or quad SPI mode

P

Section 2.3.2: Hard fault is not generated in case of out-of-range memory-mapped
access

N

Section 2.3.3: Extra data written in the FIFO at the end of a read transfer A

Section 2.3.4: First nibble of data is not written after dummy phase A

Section 2.3.5: Wrong data can be read in memory-mapped after an indirect mode
operation

A

Section 2.4: ADC
peripheral
limitations

Section 2.4.1: Injected queue of context is not available in case of JQM=0 N

Section 2.4.2: DMA2 channels 2 and 3 (respectively) cannot be used when the ADC2
and ADC3 requests are selected on DMA2 channels 4 and 5

P

Section 2.4.3: Wrong ADC conversion results when delay between calibration and
first conversion or between two consecutive conversions is too long

N

Section 2.4.4: Burst read or write accesses are not supported by the ADC A

Section 2.4.5: Unexpected end of transfer on DMA1 when using DMA1 channel 2 for
ADC2 while DMA2 channel 4 is also used

A

Section 2.4.6: Unexpected end of transfer on DMA1 when using DMA1 channel 3 for
ADC3 while DMA2 channel 5 is also used

A

Section 2.5: DFSDM
peripheral
limitations

Section 2.5.1: RDATACH[2:0] status bits are not implemented N

Section 2.5.2: New regular channel selection taken into account at the end of an
injected conversion when a regular conversion is pending

N

Section 2.5.3: DFSDM triggers from timers can be missed in specific conditions A

Section 2.6: I2C
peripheral
limitations

Section 2.6.1: I2C Fast-mode Plus drive is not available on all SDA/SCL I/Os N

Section 2.6.2: Wrong behavior related with MCU Stop mode when wakeup from Stop
mode by I2C peripheral is disabled

A

Section 2.6.3: Wrong data sampling when data set-up time (tSU;DAT) is smaller than
one I2CCLK period

P

Section 2.6.4: Spurious Bus Error detection in master mode A

Section 2.6.5: I2C3 analog filters requires that both PC0/PC1 or both PG7/PG8 are
configured as I2C3 alternate function

A

Section 2.6.6: 10-bit master mode: new transfer cannot be launched if first part of the
address has not been acknowledged by the slave

A

Section 2.7:
SDMMC peripheral
limitations

Section 2.7.1: Wrong CCRCFAIL status after a response without CRC is received A

Section 2.7.2: Clock division per 255 is not possible N

Section 2.7.3: Wait for response bits “10” configuration does not work correctly A

Section 2.7.4: MMC stream write of less than 8 bytes does not work correctly A

Section 2.8: bxCAN
peripheral
limitations

Section 2.8.1: bxCAN time-triggered mode is not supported N

Table 4. Summary of silicon limitation (continued)

Section Limitation Rev 4

DocID027826 Rev 3 13/39

STM32L475xx STM32L475xx silicon limitations

38

Workaround

PH0 and PH1 must be configured in analog mode (reset value) when HSE is enabled.

2.1.5 PWR_CR4 register write access may not be completed if a
Low-power mode is entered just after the write operation

Description

PWR_CR4 write access should insert 3 APB1 wait states, but it does not. Consequently, if a
low-power mode is entered just after writing into this register, the PWR_CR4 register may
not be updated before the low-power mode is entered. This can occur in particular when the
APB1 clock is prescaled.

Workaround

PWR_CR4 register must be read after the write operation to ensure that the write is done
before entering the low-power mode.

2.1.6 HSI user trim is limited on some samples

Description

The HSI user trimming step is typically:

• +0.3% of frequency when the trimming code is not a multiple of 64;

• -7% of frequency when the trimming code is a multiple of 64.

As shown in Figure 1, the HSI user trimming allows to add or to subtract up to 16 steps
compared to the factory trim value.

If the HSI factory trim value is close to a multiple of 64, with only 16 steps for positive or for
negative correction, it is not possible to compensate the 7% drop when the code is a
multiple of 64.

Consequently, the user trim correction must not jump over the codes multiple of 64, which
can limit the user correction either in positive or in negative direction.

STM32L475xx silicon limitations STM32L475xx

24/39 DocID027826 Rev 3

2.4 ADC peripheral limitations

2.4.1 Injected queue of context is not available in case of JQM=0

Description

The queue mechanism is not functional when JQM = 0. The effective queue length is equal
to one stage: a new context written before the previous context's consumption will lead to a
queue overflow and will be ignored. Consequently, the ADC must be stopped before
programming the JSQR register.

Workaround

None.

2.4.2 DMA2 channels 2 and 3 (respectively) cannot be used when the
ADC2 and ADC3 requests are selected on DMA2 channels 4 and 5

Description

When the DMA2 channel 4 is used for the ADC2 requests (C4S=0000 in the DMA2_CSELR
register) it is also needed to select request 0 for DMA2 channel 2 (C2S=0000 in the
DMA2_CSELR register). The consequence is that the DMA2 channel 2 cannot be used by
another peripheral.

When the DMA2 channel 5 is used for the ADC3 requests (C5S=0000 in the DMA2_CSELR
register) it is also needed to select request 0 for DMA2 channel 3 (C3S=0000 in the
DMA2_CSELR register). The consequence is that the DMA2 channel 3 cannot be used by
another peripheral.

Workaround

Select the DMA1 channel 2 for the ADC2 DMA requests or use other available mapping for
the peripherals mapped on DMA2 channel 2.

Select the DMA1 channel 3 for the ADC3 DMA requests or use other available mapping for
the peripherals mapped on DMA2 channel 3.

2.4.3 Wrong ADC conversion results when delay between calibration and
first conversion or between two consecutive conversions is too long

Description

When the delay between two consecutive ADC conversions is higher than 1 ms the result of
the second conversion might be incorrect. The same issue occurs when the delay between
the calibration and the first conversion is higher than 1 ms.

Workaround

When the delay between two ADC conversions is higher than the above limit, perform two
ADC consecutive conversions in single, scan or continuous mode: the first is a dummy
conversion of any ADC channel. This conversion should not be taken into account by the
application.

DocID027826 Rev 3 25/39

STM32L475xx STM32L475xx silicon limitations

38

2.4.4 Burst read or write accesses are not supported by the ADC

Description

The ADC does not support LDM, STM, LDRD and STRD instructions for successive
multiple-data read and write accesses to a contiguous address block.

Workaround

Prevent compilers from generating LDM, STM, LDRD and STRD instructions. In general,
this can be achieved organizing the source code to avoid consecutive read or write
accesses to neighboring addresses in lower-to-higher order. In cases where consecutive
read or write accesses to neighboring addresses cannot be avoided, order the source code
so that it accesses higher address first.

2.4.5 Unexpected end of transfer on DMA1 when using DMA1 channel 2
for ADC2 while DMA2 channel 4 is also used

Description

When the DMA1 channel 2 is used for the ADC2 requests and the DMA2 channel 4 is used
by another peripheral (for instance the SPI1_TX requests), the end of transfer and
acknowledge signals from the DMA2 can be received by the ADC2 while it should only be
received by the peripheral using this DMA2 channel 4 (for instance the SPI1_TX). The
consequence is that the DMA1 transfer will be interrupted earlier than expected. This issue
only occurs when the DMA2 channel 2 is configured for the request 0 (reset configuration).

Workaround

When this limitation is observed, the DMA2 channel 2 should not stay configured for request
0 (reset value), but should be configured for any other request (1 to 7) even if it is useless
for the application. This is done by configuring DMA2_CSELR register bits [7:4] to a value
different from 0000. Note that there is no need to enable the DMA2 Channel 2.

2.4.6 Unexpected end of transfer on DMA1 when using DMA1 channel 3
for ADC3 while DMA2 channel 5 is also used

Description

When the DMA1 channel 3 is used for the ADC3 requests and the DMA2 channel 5 is used
by another peripheral (for instance the UART4_RX requests), the end of transfer and
acknowledge signals from the DMA2 can be received by the ADC3 while it should only be
received by the peripheral using this DMA2 channel 5 (for instance the UART4). The
consequence is that the DMA1 transfer will be interrupted earlier than expected. This issue
only occurs when the DMA2 channel 3 is configured for the request 0 (reset configuration).

Workaround

When this limitation is observed, the DMA2 channel 3 should not stay configured for request
0 (reset value), but should be configured for any other request (1 to 7) even if it is useless
for the application. This is done by configuring DMA2_CSELR register bits [11:8] to a value
different from 0000. Note that there is no need to enable the DMA2 Channel 3. If the ADC1
was using the DMA2 Channel 3, it is necessary to remap the ADC1 DMA transfers to the
DMA1 Channel 1.

STM32L475xx silicon limitations STM32L475xx

26/39 DocID027826 Rev 3

2.5 DFSDM peripheral limitations

2.5.1 RDATACH[2:0] status bits are not implemented

Description

RDATACH[2:0] “Regular channel most recently converted” status bits are not implemented
in the DFSDM data register for the regular channel (DFSDMx_RDATAR).

Workaround

None. These bits will be implemented in next silicon release.

2.5.2 New regular channel selection taken into account at the end of
an injected conversion when a regular conversion is pending

Description

When a regular channel conversion is on going and is interrupted by an injected channel
conversion: if the regular channel is changed on the fly during the injected channel
conversion, the new regular channel selection is taken into account at the end of the
injected conversion.

Workaround

None: do not change the regular channel selection on the fly when regular continuous
conversions are requested.

2.5.3 DFSDM triggers from timers can be missed in specific conditions

Description

Triggers from timers to DFSDM can be missed when all the conditions listed below occur:

• the DFSDM clock is the APB2 clock PCLK2 (DFSDMSEL=0 in the RCC_CCIPR
register)

• the DFSDM is triggered by TIM3_TRGO, TIM4_TRGO, TIM6_TRGO or TIM7_TRGO

• the APB2 frequency is smaller than the APB1 frequency

Workaround

Select the System clock as DFSDM clock (DFSDMSEL=1 in the RCC_CCIPR register).

2.6 I2C peripheral limitations

2.6.1 I2C Fast-mode Plus drive is not available on all SDA/SCL I/Os

Description

Only PB6,7,8,9,13,14, PC0,1 and PG7,8 a can effectively be configured in I2C Fm+ driving
mode. Setting I2C1_FMP, I2C2_FMP and I2C3_FMP in the SYSCFG_CFGR1 register has
no effect on PB10, PB11, PF0, PF1, PG13, PG14.

STM32L475xx silicon limitations STM32L475xx

28/39 DocID027826 Rev 3

2.6.4 Spurious Bus Error detection in master mode

Description

In master mode, a bus error can be detected by mistake, so the BERR flag can be wrongly
raised in the status register. This will generate a spurious Bus Error interrupt if the interrupt
is enabled. A bus error detection has no effect on the transfer in master mode, therefore the
I2C transfer can continue normally.

Workaround

If a bus error interrupt is generated in master mode, the BERR flag must be cleared by
software. No other action is required and the on-going transfer can be handled normally.

2.6.5 I2C3 analog filters requires that both PC0/PC1 or both PG7/PG8
are configured as I2C3 alternate function

Description

I2C3 analog filters can be enabled for PC0 and/or PC1 only if both IOs are configured in
I2C3 Alternate Function mode. For example if you use PC0 for clock and PB4 for data , PC0
filter can be enabled only if PC1 is configured in I2C3 Alternate Function mode too.

I2C3 filter can be enabled for PG7 and/or PG8 only if both IOs are configured in I2C3
Alternate Function mode. For example if you use PG7 for clock and PC1 for data , PG7 filter
can be enabled only if PG8 is configured in I2C3 Alternate Function mode too.

Workaround

Use both PC0/PC1 as I2C3 alternate functions or use both PG7/PG8 as I2C3 alternate
functions if the analog filter is needed.

2.6.6 10-bit master mode: new transfer cannot be launched if first part
of the address has not been acknowledged by the slave

Description

In master mode, the master automatically sends a STOP bit when the slave has not
acknowledged a byte during the address transmission.

In 10-bit addressing mode, if the first part of the 10-bit address (c5-bit header + 2 MSBs of
the address + direction bit) has not been acknowledged by the slave, the STOP bit is sent
but the START bit is not cleared and the master cannot launch a new transfer.

Workaround

When the I2C is configured in 10-bit addressing master mode and the NACKF status flag is
set in the I2C_ISR register while the START bit is still set in I2C_CR2 register, proceed as
follows:

1. wait for the STOP condition detection (STOPF = 1 in I2C_ISR register)

2. disable the I2C peripheral

3. wait for a minimum of three APB cycles

4. enable the I2C peripheral again

DocID027826 Rev 3 29/39

STM32L475xx STM32L475xx silicon limitations

38

2.6.7 START bit is not cleared when the address is not acknowledged
by the slave device

Description

In the following conditions

• The I2C is used as master

• 10-bit addressing mode is used

• The Slave device doesn’t acknowledge:

– Either the 10-bit address header in case of write.

– Or the 8 LSBs of the address in case of read.

the START bit will never be cleared by hardware, and the I2C master will not be able to start
a new transfer:

Workaround:

Go through the following sequence:

• Wait until STOP condition detection (i.e. STOPF = 1)

• Disable the I2C peripheral

• Wait at least three APB clock cycles

• Re-enable the I2C peripheral.

2.7 SDMMC peripheral limitations

2.7.1 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.
As a consequence, after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the
CCRCFAIL bit of the SDMMC_STA register is set.

Workaround

The CCRCFAIL bit in the SDMMC_STA register shall be ignored by the software.
CCRCFAIL must be cleared by setting CCRCFAILC bit of the SDMMC_ICR register after
reception of the response to the CMD5 command.

2.7.2 Clock division per 255 is not possible

Description

When CLKDIV divide factor in SDMMC_CLKCR register is equal to 255, the SDMMC_CK
clock output is not provided.

Workaround

Do not use CLKDIV value equals to 255: use clock divider factors from 0 to 254.

STM32L475xx silicon limitations STM32L475xx

30/39 DocID027826 Rev 3

2.7.3 Wait for response bits “10” configuration does not work correctly

Description

The Wait for response bits configuration “10” (WAITRESP in the SDMMC_CMD register)
does not work correctly. When WAITRESP bits are programmed to ’10’ Command Path
State Machine (CPSM) waits for a non-existing response.

Workaround

Do not use WAITRESP value equal to “10” when sending a command without a response.

Use WAITRESP value equal to “00” to indicate to SDMMC CPSM that no response is
expected.

2.7.4 MMC stream write of less than 8 bytes does not work correctly

When SDMMC host starts a stream write (WRITE_DAT_UNTIL_STOP CMD20), the
number of bytes to transfer is not known by the card.

The card will write data from the host until a STOP_TRANSMISSION (CMD12) command is
received.

The WAITPEND bit 9 of SDMMC_CMD register is set to synchronize the sending of the
STOP_TRANSMISSION (CMD12) command with the data flow.

When WAITPEND is set, the transmission of this command stays pending until 50 data bits
including STOP bit remain to transmit.

For a stream write of less than 8 bytes, the STOP_TRANSMISSION (CMD12) command
should be started before the data transfer starts. Instead of this, the data write and the
command sending are started simultaneously.

It implies that when less than 8 bytes have to be transmitted, (8 - DATALENGTH) bytes are
programmed to 0xFF in the card after the last byte programmed (where DATALENGTH is
the number of data bytes to be transferred).

Workaround

Do not use stream write WRITE_DAT_UNTIL_STOP (CMD20) with a DATALENGTH less
then 8 bytes.

Use set block length (SET_BLOCKLEN: CMD16) followed by single block write command
(WRITE_BLOCK: CMD24) instead of stream write (CMD20) with desired block length.

2.8 bxCAN peripheral limitations

2.8.1 bxCAN time-triggered mode is not supported

Description

The time-triggered communication mode described in the reference manual is not
supported, and so time-stamp values are not available. TTCM bit must be kept cleared in
the CAN_MCR register (time-triggered communication mode disabled).

DocID027826 Rev 3 31/39

STM32L475xx STM32L475xx silicon limitations

38

Workaround

None.

2.9 OTG_FS peripheral limitations

2.9.1 Suspend mode robustness marginality after receiving corrupted
packet from Host

Description

Once the early suspend interrupt is set after 3 ms of USB idleness, the corrupted packet
with missing EOP unexpectedly sent by the Host stops the suspend timer and when the bus
becomes idle again, suspend/early suspend interrupts are no more generated. No error flag
is set and it is not possible to issue remote wake-up to the Host. Device restarts operate
normally only upon reception of next EOP from Host.

Workaround

If such scenario is believed possible, implement a timeout check started once early suspend
interrupt is detected. If within next 4 ms there is no suspend, resume, early suspend or SOF
detected, it means that the suspend timer is blocked and need to be recovered by
reinitializing the USB peripheral by a soft reset (CSRST bit in OTG_FS_GRSTCTL). After
that, when the USB system is eventually woken up from the Suspend mode (either by Host
or by Device generated remote wake-up), it is necessary to generate a soft disconnect & re-
connect, as the enumeration status is lost by the soft reset.

2.9.2 Bits OTG_FS_GLPMCFG[6:2] are not write-protected in Device mode

Description

Bits OTG_FS_GLPMCFG[6:2] are not write-protected in Device mode as expected, but
could be modified by application software. In Device mode, the core updates the fields with
the values received in the LPM Token. When some read-modify-write access is performed
to OTG_FS_GLPMCFG register during the time of LPM token exchange, the application
software could over-write the values written by OTG_FS core with the old value.

Workaround

Program the LPMACK bit in OTG_FS_GLPMCFG register to NYET response before
updating OTG_FS_GLPMCFG register while USB transfers are in progress. Set the
LPMACK bit back to ACK response when updating is finished.

2.9.3 L1 exit with simultaneous Device initiated and Host initiated
Resume results in minimum Device wake-up time of 3 ms

Description

When the device application initiates the remote wakeup by setting the RWUSIG bit in
OTG_FS_DCTL register while the host is initiating resume at the same time, further LPM
tokens sent by the Host within next 3 ms are ignored (the device does not enter L1 on any
LPM token acknowledgment). If the host has sent an LPM token during these 3 ms and is

DocID027826 Rev 3 33/39

STM32L475xx STM32L475xx silicon limitations

38

2.11 SWPMI peripheral limitations

2.11.1 SUSPENDED mode entry delayed

Description

When activating the SWPMI by setting the SWPEN bit in SWPMI_CR register, the SWPMI
will rise the SWPMI_IO to 1.8V, send a short transition sequence and 14 idle bits before
switching to SUSPENDED mode. As a consequence, the SRF flag is set and the SUSP flag
is cleared in SWPMI_ISR register.

Workaround

None.

2.11.2 SUSPENDED mode never entered

Description

When activating the SWPMI by setting the SWPEN bit in SWPMI_CR register, the SWPMI
will generate the following sequence in loop: rise the SWPIO, send a short transition
sequence and 14 idle bits. As a consequence, SWP stays in ACTIVATED state, and never
switch to SUSPENDED state.

Workaround

Keep SWPMI1SEL bit cleared in RCC_CCIPR register to select PCLK1 as SWPMI clock
source, and configure the PCLK1 prescaler to feed the SWPMI with a clock frequency below
or equal to 8 MHz.

2.11.3 SRF flag not set

Description

If the SWPMI1SEL bit is set in RCC_CCIPR register to select HSI as SWPMI clock source,
when receiving a resume by slave, the SRF flag may not be set. Nevertheless, the SWPMI
is switching correctly from SUSPENDED to ACTIVATED when receiving a RESUME by
slave. Therefore frame reception is not impacted.

Workaround

None.

2.11.4 SWP SUSPENDED mode not supported when STM32L4 is in
Stop 0 or Stop 1 mode

Description

STM32L4 cannot enter Stop 0 or Stop 1 mode if SWPMI is activated and is in SUSPENDED
state.

STM32L475xx silicon limitations STM32L475xx

34/39 DocID027826 Rev 3

Workaround

Deactivate the SWP bus before requesting entry in Stop 0 or Stop 1 mode. Refer to the
SWPMI section in the product reference manual for the deactivation procedure.

2.11.5 SWPMI_IO transceiver bypass mode is not functional

Description

When the internal SWPMI transceiver is bypassed by setting the SWP_TBYP bit in the
SWPMI_OR register, SWPMI1_RX mapped on PB14 is forced in output mode instead of
input mode.

Workaround

None. The internal transceiver must be used.

2.12 RTC peripheral limitations

2.12.1 Spurious tamper detection when disabling the tamper channel

Description

If the tamper detection is configured for detection on falling edge event (TAMPFLT=00 and
TAMPxTRG=1) and if the tamper event detection is disabled when the tamper pin is at high
level, a false tamper event is detected.

Workaround

The false tamper event detection cannot be avoided, but the backup registers erase can be
avoided by setting TAMPxNOERASE bit before clearing TAMPxE bit. The two bits must be
written in two separate RTC_TAMPCR write accesses.

2.13 USART limitations

2.13.1 Start bit detected too soon when sampling for NACK signal from
the smartcard

Description

In the ISO7816, when a character parity error is incorrect, the Smartcard receiver should
transmit a NACK error signal at (10.5 +/- 0.2) etu after the character START bit falling edge.
In this case, the USART transmitter should be able to detect correctly the NACK signal by
sampling at (11.0 +/-0.2) etu after the character START bit falling edge.

The USART peripheral used in Smartcard mode doesn't respect the (11 +/-0.2) etu timing,
and when the NACK falling edge arrives at 10.68 etu or later, the USART might misinterpret
this transition as a START bit even if the NACK is correctly detected.

Workaround

None.

DocID027826 Rev 3 35/39

STM32L475xx STM32L475xx silicon limitations

38

2.13.2 Break request can prevent the Transmission Complete flag (TC)
from being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be
set in the following conditions:

• CTS hardware flow control is enabled;

• D1 is being transmitted;

• abreak transfer is requested before the end of D1 transfer;

• nCTS is de-asserted before the end of transfer of D1.

Workaround

If the application needs to detect the end of transfer of the data, the break request should be
done after making sure that the TC flag is set.

2.13.3 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as the RTSE bit is set and even if the USART is
disabled (UE = 0) or if the receiver is disabled (RE=0) i.e. not ready to receive data.

Workaround

Configure the I/O used for nRTS as an alternate function after setting the UE and RE bits.

2.14 COMP peripheral limitations

2.14.1 Comparators propagation delay is longer than expected for input steps
higher than 200 mV

Description

Table 6 summarizes the comparators propagation delay values. The propagation delay for
steps higher than 200 mV is out of targeted specification.

