

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 47x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k40-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

FIGURE 4-9: FSCM BLOCK DIAGRAM

4.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 4-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

4.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the COSC bits to select HFINTOSC (3'b110). The frequency of HFINTOSC would be determined by the previous state of the HFFRQ bits and the NDIV/CDIV bits. The bit flag OSCFIF of the PIR1 register is set. Setting this flag will generate an interrupt if the OSCFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

4.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSCFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSCFIF flag will again become set by hardware.

REGIOTER			COUNCEAT				
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<7:0>			
bit 7							bi

REGISTER 13-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

bit 7		bit 0
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ACC<7:0>: CRC Accumulator Register bits Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

REGISTER 13-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIFT	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<15:8>: CRC Shifter Register bits Reading from this register reads the CRC Shifter.

REGISTER 13-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIF	Γ<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<7:0>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CRCACCH				ACC	<15:8>				155
CRCACCL				ACC	<7:0>				156
CRCCON0	EN	EN GO BUSY ACCM — — SHIFTM FULL						154	
CRCCON1		DLEN<3:0> PLEN<3:0>							154
CRCDATH				DATA	<15:8>				155
CRCDATL				DATA	\<7:0>				155
CRCSHIFTH				SHIFT	<15:8>				156
CRCSHIFTL				SHIF	T<7:0>				156
CRCXORH				X<1	15:8>				157
CRCXORL				X<7:1>				_	157
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	66
SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	—	MODE	E<1:0>	158
SCANHADRU	—	_			HADF	R<21:16>			160
SCANHADRH				HADF	<15:8>				161
SCANHADRL				HAD	R<7:0>				161
SCANLADRU	—	—			LADF	21:16>			159
SCANLADRH	LADR<15:8>						159		
SCANLADRL				LADF	R<7:0>				160
SCANTRIG	—	_	— — TSEL<3:0>						162
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	INT3EDG	INT2EDG	INT1EDG	INT0EDG	173
PIR8	SCANIF	CRCIF	NVMIF	_		_	_	CWG1IF	183
PIE8	SCANIE	CRCIE	NVMIE	_		_	_	CWG1IE	193
IPR8	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	203

TABLE 13-5: SUMMARY OF REGISTERS ASSOCIATED WITH CR

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

U-0	U-0	$P/M_{-1/1}$				D A A A A	
		10/00-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
_	_	RC5IP	TX5IP	RC4IP	TX4IP	RC3IP	TX3IP
bit 7			•				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	RC5IP: EUSA	ART5 Receive	nterrupt Prior	ity bit			
	1 = High prio	rity	·	-			
	0 = Low prior	rity					
bit 4	TX5IP: EUSA	RT5 Transmit	Interrupt Prior	ity bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 3	RC4IP: EUSA	ART4 Receive	nterrupt Prior	ity bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 2	TX4IP: EUSA	RT4 Transmit	Interrupt Prior	ity bit			
	1 = High priority						
	0 = Low prior	rity					
bit 1	RC3IP: EUSART3 Receive Interrupt Priority bit						
	1 = High priority						
1.1.0							
bit 0	TX3IP: EUSA	RI3 Transmit	Interrupt Prior	ity bit			
	1 = High prio	rity					
		iity					

REGISTER 14-26: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4

REGISTER 17-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

bit 5-0

RxyPPS<5:0>: Pin Rxy Output Source Selection bits

RxyPPS<5:0>	Pin Rxy Output Source		Output can be redirected to PORTx						
0x21	ADGRDB	_	_	С	_		_	_	Н
0x20	ADGRDA	_	_	С	—		_		Н
0x1F	DSM1	_		С		_		_	Н
0x1E	CLKR	_	_	С	_	_	_	_	Н
0x1D	TMR0	_	В	С	—	_	_	_	—
0x1C	MSSP2 (SDO/SDA)	—	В	-	D	_	—		—
0x1B	MSSP2 (SCK/SCL)	_	В	-	D	_	—		—
0x1A	MSSP1 (SDO/SDA)	_	В	С	—		—		—
0x19	MSSP1 (SCK/SCL)	—	В	С	—		_		—
0x18	CMP3	_	—		—		F	G	—
0x17	CMP2	_	—		—		F	G	—
0x16	CMP1	—	_		—		F	G	—
0x15	EUSART5 (DT)	_	—		—	Е	—	G	—
0x14	EUSART5 (TX/CK)	_	_		_	Е	_	G	—
0x13	EUSART4 (DT)	—	В	С	—		_		—
0x12	EUSART4 (TX/CK)	_	В	С	—		_		—
0x11	EUSART3 (DT)	_	В		_	Е	_		—
0x10	EUSART3 (TX/CK)	—	В		—	Е	_		—
0xF	EUSART2 (DT)	_	_		D		_	G	—
0xE	EUSART2 (TX/CK)	_	_		D		_	G	—
0xD	EUSART1 (DT)	—	_	С	D		_		—
0xC	EUSART1 (TX/CK)	_	_	С	D		_		—
0xB	PWM7	_	_	С	_	Е	_		—
0xA	PWM6	—	—	С	—	Е	—		—
0x9	CCP5	_	_		_	Е	_	G	—
0x8	CCP4	—	—		—	Е	_	G	—
0x7	CCP3	—	—	С	—	Е	—	_	—
0x6	CCP2	—	—	С	—	Е	_		—
0x5	CCP1	—	—	С	—	Е	_		—
0x4	CWG1D					Е		G	
0x3	CWG1C			С		Е		_	—
0x2	CWG1B					Е		G	—
0x1	CWG1A			С		Е			
0x0	LATxy	А	В	С	D	Е	F	G	Н

20.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE5 register. Interrupt timing is illustrated in Figure 20-3.

FIGURE 20-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rev. 10.00005A 47/2016
CKPS	0b010
PRx	1
OUTPS	0b0001
TMRx_clk	
TMRx	
TMRx_postscaled	
TMRxIF	(1) (1)
Note 1: 2:	Setting the interrupt flag is synchronized with the instruction clock. Synchronization may take as many as 2 instruction cycles Cleared by software.

R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSEL	<1:0>
bit 7		•				•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn
bit 7-6	C4TSEL<1:0>	>: CCP4 Timer	Selection bits	6			
	11 = CCP4 is	s based off Tim	er7 in Captur	e/Compare mo	de and Timer8	in PWM mode	
	10 = CCP4 is	s based off Tim	er5 in Captur	e/Compare mo	de and Timer6	in PWM mode	
	01 = CCP4 Is	s based off Tim	er3 in Captur	e/Compare mo	de and Timer4	IN PWM mode	
bit 5-4			Selection hits				
bit 5-4	11 = CCP3 is	s based off Tim	er7 in Cantur	, e/Compare mo	de and Timer8	in PWM mode	
	10 = CCP3 is	s based off Tim	er5 in Captur	e/Compare mo	de and Timer6	in PWM mode	
	01 = CCP3 is	s based off Tim	er3 in Captur	e/Compare mo	de and Timer4	in PWM mode	
	00 = CCP3 is	s based off Tim	er1 in Captur	e/Compare mo	de and Timer2	in PWM mode	
bit 3-2	C2TSEL<1:0>	CCP2 Timer	Selection bits	6			
	11 = CCP2 is	s based off Tim	er7 in Captur	e/Compare mo	de and Timer8	in PWM mode	
	10 = CCP2 is	s based off Tim	er5 in Captur	e/Compare mo	de and Timer6	in PWM mode	
	01 = CCP2 is	s based off Tim	er3 in Captur	e/Compare mo e/Compare mo	de and Timer4	in PWW mode	
bit 1-0	C1TSEL <1:02	CCP1 Timer	Selection hits				
bit 1-0	11 = CCP1	s based off Tim	er7 in Cantur	, e/Compare mo	de and Timer8	in PWM mode	
	10 = CCP1 is	s based off Tim	er5 in Captur	e/Compare mo	de and Timer6	in PWM mode	
	01 = CCP1 is	s based off Tim	er3 in Captur	e/Compare mo	de and Timer4	in PWM mode	
	00 = CCP1 is	s based off Tim	er1 in Captur	e/Compare mo	de and Timer2	in PWM mode	

REGISTER 21-2: CCPTMRS0: CCP TIMERS CONTROL REGISTER 0

21.5.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the FMT bit of the CCPxCON register (see Figure 21-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 21-2 is used to calculate the PWM pulse width.

Equation 21-3 is used to calculate the PWM duty cycle ratio.

FIGURE 21-5: PWM 10-BIT ALIGNMENT

EQUATION 21-2: PULSE WIDTH

Pulse Width = (CCPRxH	H:CCPRxL register pair) •
Tosc	• (TMR2 Prescale Value)

EQUATION 21-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 21-4).

21.5.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 21-4.

EQUATION 21-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

© 2016-2017 Microchip Technology Inc.

Preliminary

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
		CHPOL	CHSYNC	—		CLPOL	CLSYNC
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'	
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5	CHPOL: Mod	dulator High Ca	rrier Polarity S	elect bit			
	1 = Selected	l high carrier sig	gnal is inverted				
	0 = Selected	l high carrier sig	gnal is not inve	rted			
bit 4	CHSYNC: M	odulator High C	arrier Synchro	nization Enabl	le bit		
	1 = Modulate low time	or waits for a fa e carrier	alling edge on t	he high time o	carrier signal be	efore allowing a	a switch to the
	0 = Modulate	or output is not	synchronized t	o the high time	e carrier signal ⁽	1)	
bit 3-2	Unimplemer	nted: Read as '	0'				
bit 1	CLPOL: Mod	dulator Low Car	rier Polarity Se	lect bit			
	1 = Selected	l low carrier sig	nal is inverted				
	0 = Selected	l low carrier sig	nal is not inver	ted			
bit 0	CLSYNC: M	odulator Low C	arrier Synchror	nization Enable	e bit		
	1 = Modulate time ca	or waits for a fal rrier	ling edge on th	e low time carr	ier signal before	e allowing a sw	itch to the high
	0 = Modulate	or output is not	synchronized t	o the low time	carrier signal ⁽¹)	

REGISTER 26-2: MDCON1: MODULATION CONTROL REGISTER 1

Note 1:Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

28.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

28.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

28.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TXx/CKx pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

28.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

28.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx pin. The RXx/DTx and TXx/CKx pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

28.5.1.4 Synchronous Master Transmission Setup:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 28.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- If interrupts are desired, set the TXxIE bit of the PIE3/4 registers and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	451
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	INT3EDG	INT2EDG	INT1EDG	INT0EDG	173
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	188
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	177
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	198
PIE4	_	_	RC5IE	TX5IE	RC4IE	TX4IE	RC3IE	TX3IE	189
PIR4	_	_	RC5IF	TX5IF	RC4IF	TX4IF	RC3IF	TX3IF	178
IPR4		_	RC5IP	TX5IP	RC4IP	TX4IP	RC3IP	TX3IP	199
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	450
RxyPPS		_			RxyPP	S<5:0>			228
TXxPPS		_		TXPPS<5:0>					
TXxREG			EUSA	RTx Transm	it Data Regis	ter			452*
TXxSTA	CSRC	TX9	TXEN	TXEN SYNC SENDB BRGH TRMT TX9D					

SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE **TABLE 28-9**: TRANSMISSION

- = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission. Legend:

Page provides register information.

REGISTER 32-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
ADPPOL	ADIPEN	ADGPOL	-	-	-	-	ADDSEN
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 ADDPOL: Precharge Polarity bit If ADPRE>0x00:

	Action During 1st Precharge Stage							
ADFFUL	External (selected analog I/O pin)	Internal (AD sampling capacitor)						
1	Shorted to AVDD	C _{HOLD} shorted to Vss						
0	Shorted to Vss	C _{HOLD} shorted to AVDD						

Otherwise:

The bit is ignored

bit 6 ADIPEN: A/D Inverted Precharge Enable bit

If ADDSEN = 1

- 1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
- 0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL

Otherwise:

The bit is ignored

bit 5 ADGPOL: Guard Ring Polarity Selection bit

- 1 = ADC guard Ring outputs start as digital high during Precharge stage
- 0 = ADC guard Ring outputs start as digital low during Precharge stage

bit 4-1 Unimplemented: Read as '0'

bit 0 ADDSEN: Double-sample enable bit

- 1 = Two conversions are performed on each trigger. Data from the first conversion appears in ADPREV
- 0 = One conversion is performed for each trigger

34.2 HLVD Setup

To set up the HLVD module:

- Select the desired HLVD trip point by writing the value to the HLVDSEL<3:0> bits of the HLVDCON1 register.
- Depending on the application to detect high-voltage peaks or low-voltage drops or both, set the HLVDINTH or HLVDINTL bit appropriately.
- 3. Enable the HLVD module by setting the HLVDEN bit.
- Clear the HLVD interrupt flag (PIR2 register), which may have been set from a previous interrupt.
- 5. If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE in the PIE2 register and GIE bits.

An interrupt will not be generated until the HLVDRDY bit is set.

Note: Before changing any module settings (HLVDINTH, HLVDINTL, HLVDSEL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

34.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter **D206** (Table 38-3Table 38-3).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

34.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification (Table 38-17), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TFVRST, is an interval that is independent of device clock speed. It is specified in electrical specification (Table 38-17).

The HLVD interrupt flag is not enabled until TFVRST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 34-2 or Figure 34-3).

Branch if Not Negative

BNC	;	Branch if	Not Carry		BNN	ı	Brar	
Synt	ax:	BNC n			Synta	ax:	BNN	
Oper	ands:	-128 ≤ n ≤ 1	127		Oper	ands:	-128	
Oper	ration:	if CARRY b (PC) + 2 + 2	it is '0' 2n → PC		Oper	ation:	if NE (PC)	
Statu	is Affected:	None			Statu	Status Affected:		
Enco	oding:	1110	0011 nnr	nn nnnn	Enco	oding:	11	
Description:		If the CARR will branch. The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst	Y bit is '0', the nplement num e PC. Since th d to fetch the r the new addre n. This instruct ruction.	Desc	ription:	If the progr The 2 adde increa instru PC + 2-cyc		
Word	ds:	1			Word	ls:	1	
Cycle	es:	1(2)			Cycle	es:	1(2)	
Q C If Ju	ycle Activity:				Q C If Ju	ycle Activity: Imp:		
	Q1	Q2	Q3	Q4		Q1	Q	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read I 'n	
	No operation	No operation	No operation	No operation		No operation	No opera	
If No	o Jump:				lf No	o Jump:		
	Q1	Q2	Q3	Q4		Q1	Q	
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read I 'n	
<u>Exar</u>	nple:	HERE	BNC Jump		Exan	nple:	HERE	
	Before Instruc	tion				Before Instruc	ction	
	PC	= ad	dress (HERE)		PC	=	
	After Instructio	on V – O				After Instructi	on TN/E –	
	IT CARR' PC	r = 0; = ade	dress (Jump)				IIVE =	
	If CARR' PC	Y = 1; = ad		If NEGA PC	TIVE =			

Synta	IX:	BNN n						
Opera	ands:	-128 ≤ n ≤ [°]	$-128 \le n \le 127$					
Opera	ation:	if NEGATI∖ (PC) + 2 +	if NEGATIVE bit is '0' (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1110	0111	nnnn	nnnn			
Desc	ription:	If the NEG/ program wi The 2's cor added to th incremente instruction, PC + 2 + 2/ 2-cycle inst	ATIVE bit Il branch nplemen e PC. Sir d to fetch the new n. This in rruction.	is '0', the t number ' nce the PC n the next address v struction i	n the '2n' is C will have vill be is then a			
Vord	S:	1						
Cycle	s:	1(2)						
Q Cy If Ju	/cle Activity: mp:							
г	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proce Dat	ess Wr a	rite to PC			
	No	No	No)	No			
	operation	operation	opera	tion o	peration			
If No	Jump:							
r	Q1	Q2	Q3		Q4			
	Decode	Read literal	Proce	ess	No			
		'n	Dat	a o	peration			
Exam	iple:	HERE	BNN	Jump				
Before Instruction PC = address (HERE) After Instruction If NEGATIVE = 0; PC = address (Jump)								

1; address (HERE + 2)

GO	го	Uncondi	tional Br	anch		INCF		Incremen	tf			
Synt	ax:	GOTO k				Synta	ix:	INCF f{,d	l {,a}}			
Ореі	ands:	$0 \le k \le 104$	18575			Operation	ands:	$0 \leq f \leq 255$				
Oper	ration:	$k \rightarrow PC < 20:1 >$						d ∈ [0,1] a ∈ [0,1]				
Statu	is Affected:	fected: None			Oner	ation.	$a \in [0, 1]$					
Enco 1st w	oding: vord (k<7:0>)	1110	1111	k_kkk	k kkkko	Statu	s Affected:	(I) I I → UC C, DC, N, (OV, Z			
2nd v	word(k<19:8>)	1111	k ₁₉ kkk	kkkk	kkkk ₈	Enco	ding:	0010	10da	ffff	ffff	
Description: Words: Cycles: Q Cycle Activity: Q1		GOTO allo anywhere 2-Mbyte m value 'k' is GOTO is al instruction 2 2 Q2 Q2	ws an unc within enti emory rar loaded in lways a 2-	onditiona re age. The to PC<2r cycle	20-bit 20-bit 0:1>. Q4	Desc	ription:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Sec- tion 36.2.3 "Byte-Oriented and Bit-				
	Decode	'k'<7:0>,	operat	ion 'l W	k'<19:8>, /rite to PC			Oriented Instructions in Indexed Lit- eral Offset Mode" for details.				
	No	No	No		No	Word	s:	1				
	operation	operation	operat	ion d	operation	Cycle	S:	1				
						QC	cle Activity:					
Exar	nple:	GOTO THE	RE				Q1	Q2	Q3		Q4	
After Instructio PC =		n Address (1	HERE)				Decode	Read register 'f'	Proces Data	is d	Write to lestination	
						Exam	iple:	INCF	CNT, 1	, 0		

Before Instruction CNT Z DC FFh 0 ? ? = = After Instruction CNT Z C DC = 00h 1 1 1 = =

MUL	_LW	Multiply	Multiply literal with W						
Synta	ax:	MULLW	k						
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$						
Oper	ation:	(W) x k \rightarrow	PRODH:	PRODL					
Statu	is Affected:	None							
Enco	oding:	0000	1101	kkkk	kkkk				
Desc	ription:	An unsign out betwe 8-bit litera placed in 1 pair. PRO W is unch None of th Note that possible ir is possible	ed multipl en the cor I 'k'. The ' the PROD DH contai anged. ne Status f neither ov n this oper e but not c	lication is ntents of V 16-bit resu DH:PROD ns the hig flags are a reflow no ration. A z letected.	carried N and the ult is L register gh byte. affected. r carry is zero result				
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Data	ess a r F	Write egisters PRODH: PRODL				
<u>Exan</u>	nple: Before Instruc	MULLW	0C4h						
	W	= E	2h						
	PRODH PRODL After Instructio	= ? = ?							
	W PRODH PRODL	= E = A = 0	2h Dh 8h						

MUL	WF	Multiply	Multiply W with f					
Synta	ax:	MULWF	f {,a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Oper	ation:	(W) x (f) –	(W) x (f) \rightarrow PRODH:PRODL					
Statu	s Affected:	None	None					
Enco	oding:	0000	001a ff	ff ffff				
Desc	ription:	An unsign out betwee register fill result is st register pa high byte. unchange None of th Note that possible in result is po If 'a' is '0', selected. I to select ti If 'a' is '0' a set is enal operates i Addressin $f \le 95$ (5FI 36.2.3 ''By ented Inst Offset Mo	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 36.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal					
Words:		1	1					
Cycle	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL				
<u>Exar</u>	<u>nple</u> : Before Instruc	MULWF	REG, 1					
	W	= C4	1h					

B5h ? ?

C4h

B5h 8Ah 94h

= = =

=

= = =

REG PRODH

PRODL After Instruction W

REG PRODH PRODL

© 2016-2017 Microchip Technology Inc.

тят	FSZ	Test f, skip if 0						
Syntax:		TSTFSZ f {,a}						
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Oper	ation:	skip if f = 0	skip if f = 0					
Statu	s Affected:	None	None					
Enco	ding:	0110	0110 011a ffff ffff					
Desc	ription:	If 'f' = 0, the during the c is discarded making this If 'a' is '0', th If 'a' is '1', th GPR bank. If 'a' is '0' al set is enabl in Indexed I mode when tion 36.2.3 Oriented In eral Offset	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 36.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- aral Offset Mode" for dotails					
Word	s:	1	1					
Cycles:		1(2) Note: 3 cy by a	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
QC	ycle Activity:	·						
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
		register 'f'	Data	operation				
IT SK	ip: 01	02	02	04				
	QT	Q2	Q3	Q4				
	operation	operation	operation	operation				
lf sk	ip and followed	d by 2-word in:	struction:					
	Q1	Q2	Q3	Q4				
	No No		No	No				
	operation	operation	operation	operation				
No		No	No	No				
	operation	operation	operation	operation				
Example: HERE TSTFSZ CNT, 1 NZERO : ZERO :								
Before Instruction								
	PC	= Ad	dress (HERE)				
Atter Instruction								
	PC	= 00 = Ad	= Address (ZERO)					
	If CNT PC	≠ 00 = Ad	 ≠ 00h, = Address (NZERO) 					

XOR	RLW	Exclusiv	Exclusive OR literal with W					
Synta	ax:	XORLW	XORLW k					
Operands:		$0 \le k \le 25$	$0 \le k \le 255$					
Operation:		(W) .XOR	(W) .XOR. $k \rightarrow W$					
Status Affected:		N, Z	N, Z					
Enco	ding:	0000	1010	kkkk	kkkk			
Desc	ription:	The conte the 8-bit li in W.	The contents of W are XORed with the 8-bit literal 'k'. The result is placed in W.					
Words:		1	1					
Cycles:		1	1					
Q Cycle Activity:								
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	ss W a	rite to W			
Example:		XORLW	0AFh					

Before Instruction W = B5h After Instruction

W = 1Ah

FIGURE 38-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 38-20: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteri	stic	Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns	
			With Prescaler	20	_		ns	
CC02*	ТссН	CCPx Input High Time	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	20	-		ns	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.