

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 47x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k40t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F6xK40 Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	Data EEPROM (bytes)	I/O Pins	16-bit Timers	Comparators	10-bit ADC ² with Computation (ch)	5-bit DAC	Zero-Cross Detect	CCP/10-bit PWM	CWG	Signal Measurement Timer (SMT)	8-bit TMR with HLT	Windowed Watchdog Timer	CRC with Memory Scan	EUSART	I ² C/SPI	Sdd	Peripheral Module Disable	Temperature Indicator	Debug ⁽¹⁾
PIC18(L)F65K40	(1)	32k	2048	1024	60	5	3	47	1	1	5/2	1	2	4	Y	Y	5	2	Υ	Y	Y	Ι
PIC18(L)F66K40	(1)	64k	3568	1024	60	5	3	47	1	1	5/2	1	2	4	Y	Υ	5	2	Υ	Υ	Υ	I
PIC18(L)F67K40	(2)	128k	3568	1024	60	5	3	47	1	1	5/2	1	2	4	Y	Υ	5	2	Υ	Υ	Y	Ι

Note 1: Debugging Methods: (I) – Integrated on Chip.

2.

Data Sheet Index: (Unshaded devices are described in this document.)

1. DS40001842 PIC18(L)F65/66K40 Data Sheet, 64-Pin, 8-bit Flash Microcontrollers

DS40001841 PIC18(L)F67K40 Data Sheet, 64-Pin, 8-bit Flash Microcontrollers

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

4.3 Clock Source Types

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

A 4x PLL is provided that can be used in conjunction with the external clock. See **Section 4.3.1.4 "4x PLL"** for more details.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce 1, 2, 4, 8, 12, 16, 32, 48 and 64 MHz clock. The frequency can be controlled through the OSCFRQ register (Register 4-5). The Low-Frequency Internal Oscillator (LFINTOSC) generates a fixed 31 kHz frequency.

The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 4.4 "Clock Switching"** for additional information. The system clock can be made available on the OSC2/CLKOUT pin for any of the modes that do not use the OSC2 pin. The clock out functionality is governed by the CLKOUTEN bit in the CONFIG1H register (Register 3-2). If enabled, the clock out signal is always at a frequency of Fosc/4.

4.3.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> and FEXTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> and NDIV<3:0> bits in the OSCCON1 register to switch the system clock source.

See **Section 4.4 "Clock Switching"** for more information.

4.3.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 4-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, above 8 MHz
- ECM Medium power, 100 kHz-8 MHz
- ECL Low power, below 100 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 4-2: EXTERNAL CLOCK (EC) MODE OPERATION

4.3.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification (above 100 kHz - 8 MHz).

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting (above 8 MHz).

Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FFFh	TOSU	—	—	—		Top of Stac	k Upper byte (1	TOS<20:16>)		xxxxx
FFEh	TOSH			Тс	op of Stack High	byte (TOS<15	i:8>)			xxxxxxx
FFDh	TOSL			Т	op of Stack Low	v byte (TOS<7:	0>)			xxxxxxxx
FFCh	STKPTR	—	—	—			STKPTR<4:0>			000000
FFBh	PCLATU	—	—	—		Holding	Register for P	C<20:16>		00000
FFAh	PCLATH			1	Holding Regist	er for PC<15:8	>			00000000
FF9h	PCL				PC Low by	te (PC<7:0>)				00000000
FF8h	TBLPTRU	—	—		Program	Memory Table	Pointer (TBLPT	R<21:16>)		000000
FF7h	TBLPTRH			Program	Memory Table	Pointer (TBLP	TR<15:8>)			00000000
FF6h	TBLPTRL			Program	n Memory Table	Pointer (TBLF	PTR<7:0>)			00000000
FF5h	TABLAT				TAE	BLAT				00000000
FF4h	PRODH				Product Reg	ister High byte				xxxxxxxx
FF3h	PRODL				Product Reg	ister Low byte				xxxxxxxx
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	INT3EDG	INT2EDG	INT1EDG	INT0EDG	000-1111
FF1h	—		Unimplemented							—
FF0h	—				Unimpl	emented				—
FEFh	INDF0	Uses	contents of FS	R0 to address	data memory –	value of FSR0	not changed (n	ot a physical re	egister)	
FEEh	POSTINC0	Uses co	Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)							
FEDh	POSTDEC0	Uses co	ntents of FSR0) to address dat	ta memory – va	lue of FSR0 po	st-decremented	l (not a physica	l register)	
FECh	PREINC0	Uses co	ontents of FSR	0 to address da	ata memory – va	alue of FSR0 p	re-incremented	(not a physical	register)	
FEBh	PLUSW0	Uses conten	ts of FSR0 to a	address data m	emory – value c FSR0 of	of FSR0 pre-inc fset by W	remented (not a	a physical regis	ter) – value of	
FEAh	FSR0H	—	—	-	-	Indired	t Data Memory	Address Pointe	er 0 High	xxxx
FE9h	FSR0L			Indired	ct Data Memory	Address Point	er 0 Low			xxxxxxx
FE8h	WREG				Working	Register				xxxxxxxx
FE7h	INDF1	Uses	contents of FS	R0 to address	data memory –	value of FSR1	not changed (n	ot a physical re	egister)	
FE6h	POSTINC1	Uses co	ntents of FSR) to address da	ta memory – va	lue of FSR1 po	ost-incremented	(not a physica	l register)	
FE5h	POSTDEC1	Uses co	Uses contents of FSR0 to address data memory – value of FSR1 post-decremented (not a physical register)							
FE4h	PREINC1	Uses co	ontents of FSR	0 to address da	ata memory – va	alue of FSR1 p	re-incremented	(not a physical	register)	
FE3h	PLUSW1	Uses conten	ts of FSR0 to a	address data m	emory – value o FSR0 of	of FSR1 pre-inc	remented (not a	a physical regis	ter) – value of	

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F6XK40 DEVICES

 $\textbf{Legend:} \qquad x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition$

Note 1: Not available on LF devices.

10.5 Register Definitions: Status

REGISTER 1	0-2: STATL	JS: STATUS	REGISTER				
U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	TO	PD	N	OV	Z	DC	С
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as	ʻ0'				
bit 6	TO: Time-Out	t bit					
	1 = Set at po	wer-up or by e	execution of CI	LRWDT OF SLEE	₽ instruction		
h:+ r	$\overline{0} = A V D I U$	ime-out occurr	ea				
DIT 5	1 = Set at no	own dit wer-up or by e	vecution of CI		on		
	0 = Set by e	xecution of the	SLEEP instrue	ction	011		
bit 4	N: Negative b	oit used for sig	ned arithmetic	(2's compleme	ent); indicates if	the result is ne	egative,
	(ALU MSb = 1	1).					
	1 = The resu	It is negative					
1.1.0	0 = 1 he resu	It is positive					
DIT 3	OV: Overflow	DIT USED FOR SI	gned arithmet	ic (2's complen 7) to change st	ient); indicates	an overflow of	the 7-bit
	1 = Overflow	occurred for c	current signed	arithmetic oper	ration		
	0 = No overfl	low occurred	J				
bit 2	Z: Zero bit						
	1 = The resu	It of an arithm	etic or logic op	eration is zero			
	0 = The resu	lt of an arithm	etic or logic op	eration is not z	ero	1)	
bit 1	DC: Digit Car	ry/Borrow bit (ADDWF, ADDLV Now order bit	V, SUBLW, SUBW	F instructions)	.')	
	1 = A carry-0 0 = No carry-0	-out from the 4	th low-order bit	it of the result	curreu		
bit 0	C: Carry/Borr	ow bit (ADDWE	ADDLW. SUBL	W. SUBWF instr	uctions) ^(1,2)		
	1 = A carry-c	out from the Mo	ost Significant	bit of the result	occurred		
	0 = No carry-	-out from the N	lost Significar	nt bit of the resu	It occurred		
Note 1: For B	orrow, the pola	arity is reversed	d. A subtractio	n is executed b	y adding the tw	vo's complemer	nt of the
secor	nd operand.	E) instructions	this hit is loor	hed with either	the high or low	order bit of the	Source

2: For Rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the Source register.

EXAMPLE 11-3: ERASING A PROGRAM FLASH MEMORY BLOCK

; This sample row erase routine assumes the following:

; 1. A valid address within the erase row is loaded in variables TBLPTR register

; 2. ADDRH and ADDRL are located in common RAM (locations $0 \, x70$ - $0 \, x7F)$

	MOVLW MOVWF MOVLW MOVLW MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	; load TBLPTR with the base ; address of the memory block
ERASE_BLOC	K		
	BCF	NVMCON1, NVMREG0	; point to Program Flash Memory
	BSF	NVMCON1, NVMREG1	; access Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BSF	NVMCON1, FREE	; enable block Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	55h	
Sequence	MOVWF	NVMCON2	; write 55h
	MOVLW	AAh	
	MOVWF	NVMCON2	; write AAh
	BSF	NVMCON1, WR	; start erase (CPU stalls)
	BSF	INTCON, GIE	; re-enable interrupts

R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1
OSCFIP	CSWIP	—				ADTIP	ADIP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority b	it			
	1 = High prior	rity					
	0 = Low prior	ity					
bit 6	CSWIP: Clock	k-Switch Interru	pt Priority bit				
	1 = High prior	rity					
	0 = Low prior	ity					
bit 5-2	Unimplement	ted: Read as 'd)'				
bit 1	ADTIP: ADC	Threshold Inter	rupt Priority b	oit			
	1 = High prior	rity					
	0 = Low prior	ity					
bit 0	ADIP: ADC In	nterrupt Priority	bit				
	1 = High prior	rity					
	0 = Low prior	ity					

REGISTER 14-23: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

15.3 Register Definitions: Port Control

REGISTER 1	5-1: PORT	x: PORTx RE	EGISTER ⁽¹⁾							
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0			
bit 7			-				bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
'1' = Bit is set '0' = Bit is cleared				x = Bit is unknown						
-n/n = Value a	t POR and BO	R/Value at all o	ther Resets							

bit 7-0 $\label{eq:result} \begin{array}{l} \mbox{Rx<7:0>: Rx7:Rx0 Port I/O Value bits} \\ 1 = \mbox{Port pin is} \geq \mbox{VIH} \\ 0 = \mbox{Port pin is} \leq \mbox{VIL} \end{array}$

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

TABLE 15-1:	PORT REGISTERS
-------------	----------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
PORTB	RB7 ⁽¹⁾	RB6 ⁽¹⁾	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0
PORTG	RG7	RG6	RG5 ⁽²⁾	RG4	RG3	RG2	RG1	RG0
PORTH	_	_		_	RH3	RH2	RH1	RH0

Note 1: Bits RB6 and RB7 read '1' while in Debug mode.

2: Bit PORTG5 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled).

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	T0CS<2:0>		T0ASYNC		TOCKF	PS<3:0>	
bit 7							bit 0
Logondu							
R = Readable	hit	W = Writable	hit	II = I Inimpler	mented hit read	1 as 'N'	
u = Rit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set	langea	0' = Bit is clear	ared				
1 Bit lo oot							
bit 7-5	TOCS<2:0>: 111 = Reservent 110 = Reservent 101 = SOSC 100 = LFINT 011 = HFINT 010 = Fosc/4 001 = Pin sec 000 = Pin sec	Timer0 Clock So ved OSC OSC 4 lected by T0CK lected by T0CK	Durce Select b IPPS (Inverte IPPS (Non-inv	its d) verted)			
bit 4	TOASYNC: T 1 = The inpu 0 = The inpu	MR0 Input Asy ut to the TMR0 o ut to the TMR0 o	nchronization counter is not counter is syn	Enable bit synchronized t chronized to F	to system clock osc/4	S	
bit 3-0	TOCKPS<3:0 1111 = 1:327 1110 = 1:163 1101 = 1:819 1001 = 1:819 1010 = 1:409 1011 = 1:202 1010 = 1:102 1001 = 1:512 1000 = 1:256 0111 = 1:128 0100 = 1:4 0011 = 1:2 0000 = 1:1)>: Prescaler Ra 768 384 92 96 48 24 2 3	ate Select bit				

TIMEDA CONTROL DECISTER A CICTED 40 2 ~~~

Mada	MODE	<4:0>	Output	Oneration		Timer Control				
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop			
		000		Software gate (Figure 20-4)	ON = 1		ON = 0			
		001	Period Pulse	Hardware gate, active-high (Figure 20-5)	ON = 1 and TMRx_ers = 1	—	ON = 0 or TMRx_ers = 0			
		010		Hardware gate, active-low ON = 1 an TMRx_ers =		—	ON = 0 or TMRx_ers = 1			
Free	0.0	011		Rising or falling edge Reset		TMRx_ers				
Period	00	100	Period Rising edge Reset (Figure 20-6)			TMRx_ers ↑	ON = 0			
		101	Pulse	Falling edge Reset		TMRx_ers ↓				
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0			
		111	Resel	High level Reset (Figure 20-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1			
		000	One-shot	Software start (Figure 20-8)	ON = 1	—				
		001	Edge	Rising edge start (Figure 20-9)	ON = 1 and TMRx_ers ↑	—				
01	010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	—					
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or			
One-shot	One-shot 01	100	Edge	Rising edge start and Rising edge Reset (Figure 20-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx			
		101	triggered start	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)			
		110	hardware Reset	Rising edge start and Low level Reset (Figure 20-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0				
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1				
		000		Rese	rved	•				
		001	Edae	Rising edge start (Figure 20-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or			
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	—	Next clock after			
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)			
Reserved	10	100		Rese	rved					
Reserved		101		Rese	rved					
		110	Level triggered	High level start and Low level Reset (Figure 20-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or			
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0 TMRx_ers =		Held in Reset (Note 2)			
Reserved	11	xxx		Rese	rved					

TABLE 20-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

REGISTER 20-4:	TxRST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	_	—	_	RSEL<3:0>				
bit 7			•				bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RSEL<3:0>: Timer2 External Reset Signal Source Selection bits

	TMR2	TMR4	TMR6	TMR8
RSEL<3:0>	Reset Source	Reset Source	Reset Source	Reset Source
1111	ZCD_OUT	ZCD_OUT	ZCD_OUT	ZCD_OUT
1110	CMP3OUT	CMP3OUT	CMP3OUT	CMP3OUT
1101	CMP2OUT	CMP2OUT	CMP2OUT	CMP2OUT
1100	CMP1OUT	CMP1OUT	CMP1OUT	CMP1OUT
1011	PWM7OUT	PWM7OUT	PWM7OUT	PWM7OUT
1010	PWM6OUT	PWM6OUT	PWM6OUT	PWM6OUT
1001	CCP5OUT	CCP5OUT	CCP5OUT	CCP5OUT
1000	CCP4OUT	CCP4OUT	CCP4OUT	CCP4OUT
0111	CCP3OUT	CCP3OUT	CCP3OUT	CCP3OUT
0110	CCP2OUT	CCP2OUT	CCP2OUT	CCP2OUT
0101	CCP1OUT	CCP1OUT	CCP1OUT	CCP1OUT
0100	TMR8 post-scaled	TMR8 post-scaled	TMR8 post-scaled	Reserved
0011	TMR6 post-scaled	TMR6 post-scaled	Reserved	TMR6 post-scaled
0010	TMR4 post-scaled	Reserved	TMR4 post-scaled	TMR4 post-scaled
0001	Reserved	TMR2 post-scaled	TMR2 post-scaled	TMR2 post-scaled
0000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS	Pin selected by T8INPPS

FIGURE 24-6: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE MODES)

24.2.4.2 Asynchronous Steering Mode

In Asynchronous mode (MODE<2:0> bits = 000, Register 24-1), steering takes effect at the end of the instruction cycle that writes to STR. In Asynchronous Steering mode, the output signal may be an incomplete waveform (Figure 24-10). This operation may be useful when the user firmware needs to immediately remove a signal from the output pin.

FIGURE 24-10: EXAMPLE OF ASYNCHRONOUS STEERING (MODE<2:0>= 000)

24.2.4.3 Start-up Considerations

The application hardware must use the proper external pull-up and/or pull-down resistors on the CWG output pins. This is required because all I/O pins are forced to high-impedance at Reset.

The POLy bits (Register 24-2) allow the user to choose whether the output signals are active-high or active-low.

© 2016-2017 Microchip Technology Inc.

24.12 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

24.13 Configuring the CWG

- Ensure that the TRIS control bits corresponding to CWG outputs are set so that all are configured as inputs, ensuring that the outputs are inactive during setup. External hardware should ensure that pin levels are held to safe levels.
- 2. Clear the EN bit, if not already cleared.
- Configure the MODE<2:0> bits of the CWG1CON0 register to set the output operating mode.
- 4. Configure the POLy bits of the CWG1CON1 register to set the output polarities.
- 5. Configure the ISM<3:0> bits of the CWG1ISM register to select the data input source.
- 6. If a steering mode is selected, configure the STRx bits to select the desired output on the CWG outputs.
- Configure the LSBD<1:0> and LSAC<1:0> bits of the CWG1ASD0 register to select the autoshutdown output override states (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
- 8. If auto-restart is desired, set the REN bit of CWG1AS0.
- If auto-shutdown is desired, configure the ASxE bits of the CWG1AS1 register to select the shutdown source.
- 10. Set the desired rising and falling dead-band times with the CWG1DBR and CWG1DBF registers.
- 11. Select the clock source in the CWG1CLKCON register.
- 12. Set the EN bit to enable the module.
- 13. Clear the TRIS bits that correspond to the CWG outputs to set them as outputs.

If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit in software to start the CWG.

27.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1)MODULE

27.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The PIC18(L)F6xK40 devices have two MSSP modules that can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Master mode
- · Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- Daisy-chain connection of slave devices

The I^2C interface supports the following modes and features:

- Master mode
- Slave mode
- · Byte NACKing (Slave mode)
- · Limited multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- Bus collision detection
- General call address matching
- · Address masking
- Address Hold and Data Hold modes
- Selectable SDA hold times

27.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- · Serial Data In (SDI)
- Slave Select (SS)

Figure 27-1 shows the block diagram of the MSSP module when operating in SPI mode.

32.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADREF register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 1.024V
- FVR 2.048V
- FVR 4.096V

The ADNREF bit of the ADREF register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See Section 29.0 "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

32.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCLK register and the ADCS bits of the ADCON0 register. There are 66 possible clock options:

- Fosc/2
- Fosc/4
- Fosc/6
- Fosc/8
- Fosc/10
 - •
 - •
 - •
- Fosc/128
- FRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 32-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 38-14 for more information. Table 32-1 gives examples of appropriate ADC clock selections.

Note 1:	Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.
2:	The internal control logic of the ADC runs off of the clock selected by the ADCS bit of ADCON0. What this can mean is when the ADCS bit of ADCON0 is set to '1' (ADC runs on FRC), there may be unexpected delays in operation when setting ADC control bits.

R/W-0/0	U-0	R-x	R-x	U-0	U-0	R/W-0/0	R/W-0/0
EN	_	OUT	RDY	-	—	INTH	INTL
bit 7					·		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7	EN: High/Low	-voltage Detec	t Power Enab	le bit			
	1 = Enables	HLVD, powers	up HLVD cire	cuit and suppo	rting reference	circuitry	
	0 = Disables	B HLVD, powers	s down HLVD	and supportin	g circuitry		
bit 6	Unimplemen	ted: Read as '	כי				
bit 5	OUT: HLVD C	comparator Out	put bit				
	1 = Voltage	\leq selected dete	ection limit (HI	_VDL<3:0>)			
	0 = Voltage	≥ selected dete	ection limit (HI	_VDL<3:0>)			
bit 4	RDY: Band G	ap Reference V	Voltages Stab	le Status Flag	bit		
	1 = Indicates	s HLVD Module	e is ready and	output is stab	le		
			e is not ready				
DIT 3-2	Unimplemen	ted: Read as t	J.				
bit 1	INTH: HLVD F	Positive going (High Voltage) Interrupt Enal	ble		
	1 = HLVDIF	will be set whe	en voltage \geq se	elected detecti	on limit (HLVDS	EL<3:0>)	
bit 0	INIL: HLVD P	Negative going	(Low Voltage) Interrupt Ena	ble		
		will be set whe	en voltage \leq s	elected detect	ion limit (HLVDS	SEL<3:0>)	
		win not be set					

REGISTER 34-2: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
HLVDCON0	EN	_	OUT	RDY	-	-	INTH	INTL	538
HLVDCON1	-	-	-	-	SEL<3:0>				537
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	INT3EDG	INT2EDG	INT1EDG	INT0EDG	173
PIR2	HLVDIF	ZCDIF	-	-	I	C3IF	C2IF	C1IF	176
PIE2	HLVDIE	ZCDIE	-	-	-	C3IE	C2IE	C1IE	187
IPR2	HLVDIP	ZCDIP	-	-	-	C3IP	C2IP	C1IP	197
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	66

Note 1: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

ANDWF	AND W with f		вс		Branch if	Carry			
Syntax:	ANDWF f {,d {,a}}		Synta	IX:	BC n				
Operands:	$0 \leq f \leq 255$		Opera	ands:	-128 ≤ n ≤ ′	127			
	d ∈ [0,1] a ∈ [0,1]		Opera	ation:	if CARRY b (PC) + 2 + 3	it is '1' 2n → PC			
Operation:	(W) .AND. (f) \rightarrow dest		Status	s Affected:	None				
Status Affected:	N, Z		Enco	dina:	1110	0010 nn	nn nnnn		
Encoding:	0001 01da fff:	f ffff	Desc	ription:	If the CARF	Y bit is '1', the	en the program		
Description:	The contents of W are ANI register 'f'. If 'd' is '0', the result is in W. If 'd' is '1', the result is in register 'f' (default). If 'a' is '0', the Access Banl If 'a' is '1', the BSR is used GPR bank. If 'a' is '0' and the extended set is enabled, this instruct in Indexed Literal Offset Ac mode whenever $f \le 95$ (5F tion 36.2.3 "Byte-Oriente Oriented Instructions in I eral Offset Mode" for defa	the contents of W are AND'ed with agister 'f'. If 'd' is '0', the result is stored W. If 'd' is '1', the result is stored back register 'f' (default). 'a' is '0', the Access Bank is selected. 'a' is '1', the BSR is used to select the PR bank. 'a' is '0' and the extended instruction et is enabled, this instruction operates Indexed Literal Offset Addressing node whenever $f \le 95$ (5Fh). See Sec- on 36.2.3 "Byte-Oriented and Bit- briented Instructions in Indexed Lit-		s: s: vcle Activity: mp: Q1	 will branch. The 2's complement number '2n' is added to the PC. Since the PC will h incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is ther 2-cycle instruction. 1 1(2) Q2 Q3 Q4 				
Words:	1			Decode	Read literal	Process Data	Write to PC		
Cycles:	1			No	No	No	No		
Q Cycle Activity	/:			operation	operation	operation	operation		
Q1	Q2 Q3	Q4	lf No	Jump:					
Decode	Read Process	Write to	Г	Q1	Q2	Q3	Q4		
	register 'f' Data	destination		Decode	'n'	Data	operation		
Example:	ANDWF REG, 0, 0		Exam	iple:	HERE	BC 5			
W REG After Instru W REG	= 17h = C2h ction = 02h = C2h		,	Before Instruct PC After Instruction If CARR PC If CARR PC	ction = ad on Y = 1; Y = ad Y = 0; = ad	dress (HERE dress (HERE dress (HERE) + 12) + 2)		

MO\	/LW	Move lite	Move literal to W					
Synta	ax:	MOVLW	k					
Oper	ands:	$0 \le k \le 25$	5					
Oper	ation:	$k \to W$						
Statu	s Affected:	None						
Enco	oding:	0000	1110	kkk	k	kkkk		
Desc	ription:	The 8-bit I	The 8-bit literal 'k' is loaded into W.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	Q3		Q4		
	Decode	Read literal 'k'	Proce Dat	Process Data		rite to W		
Example:		MOVLW	5Ah					
After Instruction								
	W	= 5Ah						

MOVWF	Move W	Move W to f					
Syntax:	MOVWF	f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	i					
Operation:	$(W) \to f$						
Status Affected:	None						
Encoding:	0110	111a	ffff	ffff			
Description:	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 36.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proce Data	ss a re	Write gister 'f'			
Example: Before Instruc	MOVWF	REG, O					
W REG After Instructio	= 4Fh = FFh on						
W REG	= 4Fh = 4Fh						

NEGF	Negate f					
Syntax:	NEGF f {,a}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Operation:	$(\overline{f}) + 1 \rightarrow f$					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0110 110a ffff ffff					
	Location T is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec- tion 36.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1					
Cycles:	1					

NOP No Operation									
Synta	ax:	NOP	NOP						
Oper	Operands: None								
Oper	ation:	No operati	on						
Statu	s Affected:	None							
Encoding:		0000 1111	0000 xxxx	000 xxx	00 xx	0000 xxxx			
Desc	ription:	No operation.							
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	No operation	No operation		No operation				

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: NEGF REG, 1

> Before Instruction REG = 0011 1010 [3Ah] After Instruction REG = 1100 0110 [C6h]