

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 47x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf67k40-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes:

- Doze mode
- Sleep mode
- Idle mode

6.1 Doze Mode

Doze mode allows for power saving by reducing CPU operation and program memory (PFM) access, without affecting peripheral operation. Doze mode differs from Sleep mode because the bandgap and system oscillators continue to operate, while only the CPU and PFM are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 001, the instruction cycle ratio is 1:4. The CPU and memory execute for one instruction cycle and then lay idle for three instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

6.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 6-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the PFM fetches for the next instruction cycle. The Q-clocks to the peripherals continue throughout.

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F6XK40 DEVICES (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
DF9h	T5CKIPPS	-	-			T5CKIF	PPS<5:0>			011001
DF8h	T3GPPS	_	_			T3GP	PS<5:0>			000101
DF7h	T3CKIPPS	_	_			T3CKI	PPS<5:0>			001101
DF6h	T1GPPS	_	_			T1GP	PS<5:0>			001101
DF5h	T1CKIPPS	_	_		T1CKIPPS<5:0>				010000	
DF4h	TOCKIPPS	_	_		T0CKIPPS<5:0>				000100	
DF3h	INT3PPS	_			INT3PPS<5:0>				000100	
DF2h	INT2PPS	_	_			INT2P	PS<5:0>			001010
DF1h	INT1PPS	_	_			INT1P	PS<5:0>			001001
DF0h	INT0PPS	_	_		INT0PPS<5:0>				001000	
DE0h	PPSLOCK	_	_	—	—	—	—	—	PPSLOCKED	0
DD0h to E7Eh	—	Unimplemented					_			

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

14.4 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable and priority bits.

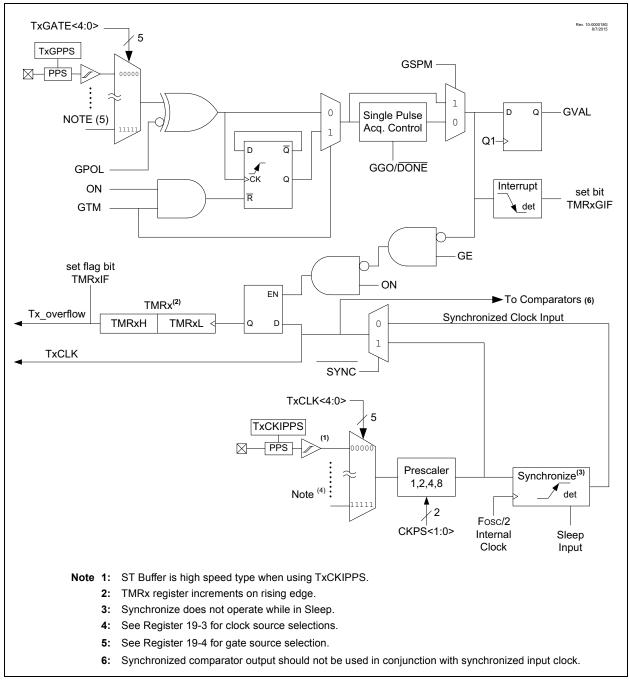
14.5 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are 10 Peripheral Interrupt Request Flag registers (PIR0, PIR1, PIR2, PIR3, PIR4, PIR5, PIR6, PIR7, PIR8, and PIR9).

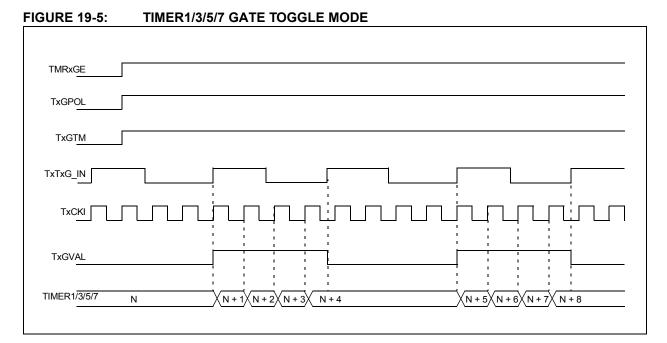
14.6 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are 10 Peripheral Interrupt Enable registers (PIE0, PIE1, PIE2, PIE3, PIE4, PIE5, PIE6, PIE7, PIE8 and PIE9). When IPEN = 0, the PEIE/GIEL bit must be set to enable any of these peripheral interrupts.

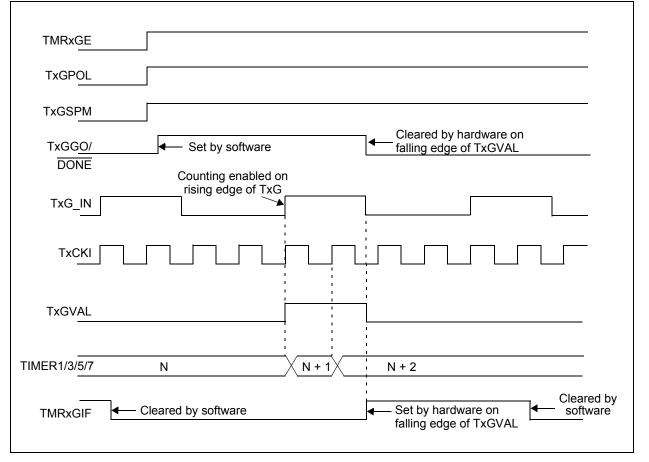
14.7 IPR Registers


The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are 10 Peripheral Interrupt Priority registers (IPR0, IPR1, IPR2, IPR3, IPR4 and IPR5, IPR6, IPR7, IPR8 and IPR9). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

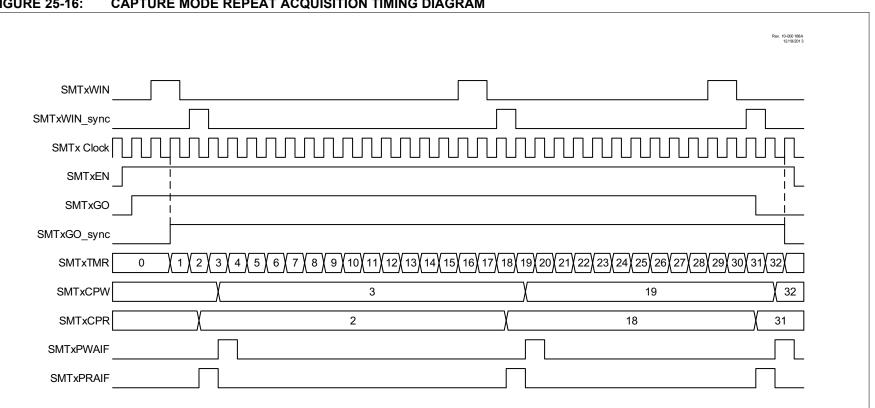
U-0 U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	TMR0IE ⁽¹⁾	IOCIE ⁽¹⁾	INT3IE ⁽¹⁾	INT2IE ⁽¹⁾	INT1IE ⁽¹⁾	INT0IE ⁽¹⁾
bit 7			•			bit
Legend: IE						
R = Readable bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6 Unimplemen	ted: Read as 'd)'				
bit 5 TMR0IE: Tim	er0 Interrupt Er	nable bit ⁽¹⁾				
1 = Enabled						
0 = Disabled						
	upt-on-Change	Enable bit ⁽¹⁾				
1 = Enabled 0 = Disabled	1 = Enabled					
	rnal Interrupt 3	Enable bit(1)				
1 = Enabled	nai interrupt s					
0 = Disabled						
bit 2 INT2IE: Exter	rnal Interrupt 2	Enable bit ⁽¹⁾				
1 = Enabled						
0 = Disabled						
bit 1 INT1IE: Exter	rnal Interrupt 1	Enable bit ⁽¹⁾				
1 = Enabled						
0 = Disabled						
	rnal Interrupt 0	Enable bit ⁽¹⁾				
1 = Enabled 0 = Disabled Note 1: PIR0 interrupts ar		by the PEIE I	hit in the INTCO	ON register an	e not disabled b	w the F


REGISTER 14-12: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

Note 1: PIR0 interrupts are not disabled by the PEIE bit in the INTCON register. are not disabled by the PEIE bit in the INTCON register.



PIC18(L)F67K40


FIGURE 19-6: TIMER1/3/5/7 GATE SINGLE-PULSE MODE

© 2016-2017 Microchip Technology Inc.

25.7.6 GATED WINDOW MEASURE MODE

This mode measures the duty cycle of the SMTx_signal input over a known input window. It does so by incrementing the timer on each pulse of the clock signal while the SMTx_signal input is high, updating the SMTxCPR register and resetting the timer on every rising edge of the SMTWINx input after the first. See Figure 25-12 and Figure 25-13.

FIGURE 25-16: CAPTURE MODE REPEAT ACQUISITION TIMING DIAGRAM

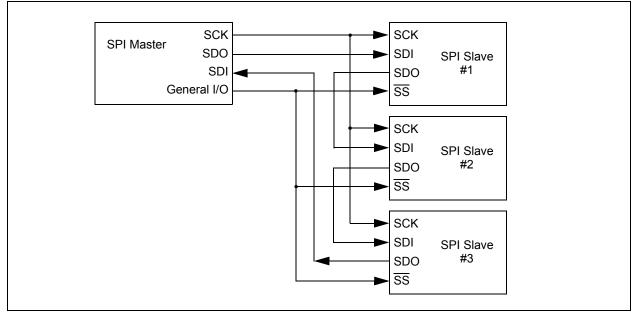
PIC18(L)F67K40

27.5.4 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPxCON1<3:0> = 0100).


FIGURE 27-5: SPI DAISY-CHAIN CONNECTION

When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.

When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: When the SPI is used in Slave mode with CKE set; the user must enable SS pin control.
 - While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

1										
R/W-0	R/W/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable b	bit	HC = Bit is cle	eared by hardw	/are				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	WCOL · Write	e Collision Detec	t hit							
	In Master Tra									
	1 = A write	to the SSPxBU	0			nditions were	not valid for a			
	transmis 0 = No collis	sion to be starte	d (must be cl	eared in softwar	re)					
	In Slave Tran									
		PxBUF register is	s written while	e it is still transm	nitting the previ	ious word (mus	t be cleared in			
	software	,								
	0 = No collis		Slavo modoc)							
	This is a "dor	ode (Master or S n't care" bit.		<u>-</u>						
bit 6	SSPOV: Rec	eive Overflow In	dicator bit							
		In Receive mode:								
	•	1 = A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared in								
	software 0 = No overf	,								
	In Transmit m									
		n't care" bit in Tra								
bit 5		ter Synchronous								
		the serial port ar serial port and c				ne serial port pi	ns			
bit 4		Release Control								
Dit 4	In Slave mod		bit							
	1 = Releases									
		ck low (clock str	etch), used to	ensure data se	etup time					
	In Master mo Unused in thi									
bit 3-0		Master Synchro	nous Serial F	Port Mode Selec	t hits(2)					
511 5-0		Blave mode: 10-k				enabled				
	$1110 = I^2 C S$	lave mode: 7-bi	t address with	Start and Stop	bit interrupts e					
		irmware Control								
	$1000 = I^2 C N$	laster mode: Clo Slave mode: 10-b)0CK = FOSC/(4 0it address(3,4	* (SSPxADD +)	1))					
		Slave mode: 7-bi								
Note 1:	When enabled, th	ne SDAv and SC	1 v nine muet	be configured (ae innute					
	Bit combinations		•	•	•	ed in SPI mode	a only			

REGISTER 27-7: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C MASTER MODE)

2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

32.3 **ADC Acquisition Requirements**

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 32-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 32-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be completed before the conversion can be started. To calculate the minimum acquisition time, Equation 32-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 32-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$
The value for TC can be approximated with the following equations:

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$Tc = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)
= 1.37\mus

Therefore:

$$TACQ = 2\mu s + 892ns + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
-		ADCALC<2:0>		ADSOI		ADTMD<2:0>	
bit 7							bit 0
Legend:							

J. J		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as '0'

bit 6-4 ADCALC<2:0>: ADC Error Calculation Mode Select bits

	Action During		
ADCALC	ADDSEN = 0 Single-Sample Mode	ADDSEN = 1 CVD Double-Sample Mode ⁽¹⁾	Application
111	Reserved	Reserved	Reserved
110	Reserved	Reserved	Reserved
101	ADLFTR-ADSTPT	ADFLTR-ADSTPT	Average/filtered value vs. setpoint
100	ADPREV-ADFLTR	ADPREV-ADFLTR	First derivative of filtered value ⁽³⁾ (negative)
011	Reserved	Reserved	Reserved
010	ADRES-ADFLTR	(ADRES-ADPREV)-ADFLTR	Actual result vs. averaged/filtered value
001	ADRES-ADSTPT	(ADRES-ADPREV)-ADSTPT	Actual result vs.setpoint
000	ADRES-ADPREV	ADRES-ADPREV	First derivative of single measurement ⁽²⁾
			Actual CVD result in CVD mode ⁽²⁾

bit 3 ADSOI: ADC Stop-on-Interrupt bit

If ADCONT = 1:

- 1 = ADGO is cleared when the threshold conditions are met, otherwise the conversion is retriggered
- 0 = ADGO is not cleared by hardware, must be cleared by software to stop retriggers

bit 2-0 ADTMD<2:0>: Threshold Interrupt Mode Select bits

- 111 = Interrupt regardless of threshold test results
- 110 = Interrupt if ADERR>ADUTH
- 101 = Interrupt if ADERR≤ADUTH
- 100 = Interrupt if ADERR<ADLTH or ADERR>ADUTH
- 011 = Interrupt if ADERR>ADLTH and ADERR<ADUTH
- 010 = Interrupt if ADERR≥ADLTH
- 001 = Interrupt if ADERR<ADLTH
- 000 = Never interrupt
- Note 1: When ADPSIS = 0, the value of ADRES-ADPREV) is the value of (S2-S1) from Table 32-3.
 - **2:** When ADPSIS = 0
 - 3: When ADPSIS = 1.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			ADPR	RE<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is se	t	'0' = Bit is clea	ared						
bit 7-0	ADPRE<7:0	>: Precharge Ti	me Select bits	3					
		 Precharge time 							
	11111110 =	 Precharge time 	e is 254 clocks	s of the selected	ADC clock				
	•								

REGISTER 32-9: ADPRE: ADC PRECHARGE TIME CONTROL REGISTER

00000001 = Precharge time is 1 clock of the selected ADC clock 00000000 = Precharge time is not included in the data conversion cycle

REGISTER 32-10: ADACQ: ADC ACQUISITION TIME CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	ADACQ<7:0>						
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ADACQ<7:0> : Acquisition (charge share time) Select bits 11111111 = Acquisition time is 255 clocks of the selected ADC clock 11111110 = Acquisition time is 254 clocks of the selected ADC clock
	•
	00000001 = Acquisition time is 1 clock of the selected ADC clock 00000000 = Acquisition time is not included in the data conversion cycle
Notor	If ADDRE is not equal to (a) then ADACO = b'0000000 means Acquisition time is 256 elements

Note: If ADPRE is not equal to '0', then ADACQ = b'00000000 means Acquisition time is 256 clocks of the selected ADC clock.

REGISTER 32-21: ADPREVL: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADPF	REV<7:0>			
bit 7							bit (
Legend:							
R = Readable b	oit	W = Writable bi	it	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							

bit 7-0	ADPREV<7:0>: Previous ADC Results bits
	If ADPSIS = 1:
	Lower byte of ADFLTR at the start of current ADC conversion
	If $ADPSIS = 0$:
	Lower bits of ADRES at the start of current ADC conversion ⁽¹⁾

'0' = Bit is cleared

'1' = Bit is set

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the ADFM bit.

REGISTER 32-22: ADACCH: ADC ACCUMULATOR REGISTER HIGH

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
ADACC<15:8>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADACC<15:8>: ADC Accumulator MSB. Upper eight bits of accumulator value. See Table 32-2 for more details.

REGISTER 32-23: ADACCL: ADC ACCUMULATOR REGISTER LOW

	-						
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADACO	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknow	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 **ADACC<7:0>**: ADC Accumulator LSB. Lower eight bits of accumulator value. See Table 32-2 for more details.

© 2016-2017 Microchip Technology Inc.

PIC18(L)F67K40

MULLW	Multiply	Multiply literal with W							
Syntax:	MULLW	MULLW k							
Operands:	$0 \le k \le 255$	$0 \leq k \leq 255$							
Operation:	(W) x k \rightarrow	PRODH:PRO	DL						
Status Affected:	None								
Encoding:	0000	1101 kk	kk kkkk						
Description:	out betwee 8-bit literal placed in th pair. PROE W is uncha None of the Note that r possible in	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected.							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL						
Example: Before Instruc W PRODH PRODL After Instructic W PRODH PRODH	= E2 = ? = ? m = E2	2h Dh							

MULWF	Multiply	W with f							
Syntax:	MULWF	MULWF f {,a}							
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5							
Operation:	(W) x (f) –	> PRODH:PR	ODL						
Status Affected:	None								
Encoding:	0000	001a ff	ff ffff						
Description:	out betwee register file result is st register pa high byte. unchange None of th Note that is possible in result is po If 'a' is '0', selected. I to select th If 'a' is '0' a set is enal operates i Addressin $f \le 95$ (5FF 36.2.3 "By	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 36.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL						
Example:	MULWF	REG, 1							
Before Instruc	tion								
W	• • • • • • • • • • • • • • • • • • • •								

B5h ? ?

C4h

B5h 8Ah 94h

= = =

=

= = =

REG PRODH

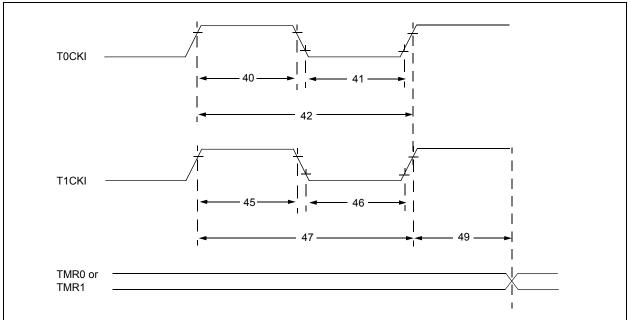
PRODL After Instruction W

REG PRODH PRODL

© 2016-2017 Microchip Technology Inc.

TBL	RD	Table Rea	d					
Synta	ax:	TBLRD (*; *	*+; *-;	+*)				
Oper	ands:	None						
Oper		if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;						
Statu	s Affected:	None						
Enco	ding:	0000	000	00	0000	0 10nn nn=0 * =1 *+ =2 *- =3 +*		
		program me Pointer (TBI The TBLPT each byte in has a 2-Mby TBLPT TBLPT TBLPT The TBLRD of TBLPTR • no chang • post-incre • post-decr	mory, _PTR) R (a 2 the pr /te add R[0] = R[0] = as foll e ement ement	a po is u 1-bit rogra dres: 0: 1: 2: 2: 2:	binter ca sed. pointer am merr s range. Least S of Prog Word Most S of Prog Word can mo) points to 10ry. TBLPTR		
		pre-increment						
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity	:						
	Q1	Q2			Q3	Q4		
	Decode	No operatio	'n	000	No	No		
	No operation	No operation (Read Prog Memory	tion gram		eration No eration	operation No operation (Write TABLAT)		

TBLRD Table Read (Continued)


Example1:	TBLRD	*+	;	
Before Instruction	on			
TABLAT TBLPTR MEMORY	(00A356h	1)	= = =	55h 00A356h 34h
After Instructior TABLAT TBLPTR	1		= =	34h 00A357h
Example2:	TBLRD	+*	;	
Before Instruction	on			
TABLAT TBLPTR MEMORY MEMORY			= = =	AAh 01A357h 12h 34h
After Instruction	ı.	,		
TABLAT TBLPTR			= =	34h 01A358h

38.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:
Operating Voltage: VDDMIN ≤ VDD ≤ VDDMAX
Operating Temperature: TA_MIN ≤ TA ≤ TA_MAX
VDD — Operating Supply Voltage ⁽¹⁾
PIC18LF67K40
VDDMIN (Fosc \leq 16 MHz) +1.8V
VDDMIN (Fosc \leq 32 MHz) +2.5V
VDDMIN (Fosc \leq 64 MHz)
VDDMAX
PIC18F67K40
VDDMIN (Fosc \leq 16 MHz)
VDDMIN (Fosc \leq 32 MHz)
VDDMIN (Fosc \leq 64 MHz)
VDDMAX
TA — Operating Ambient Temperature Range
Industrial Temperature
Ta_min
Ta_max
Extended Temperature
Ta_min
Note 1: See Parameter Supply Voltage, DS Characteristics: Supply Voltage.

PIC18(L)F67K40

TABLE 38-19: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	rd Operating (ng Temperatur		inless otherwis ≤ +125°C	e stated)	-				-
Param No.	Sym.		Characteristic	c	Min.	Typ†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	_		ns	
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	_		ns	
42*	TT0P	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	_	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	_	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous	_	60	_	_	ns	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	ge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Standard	Standard Operating Conditions (unless otherwise stated)									
Param No.	Symbol Characteristic		Min.	Тур†	Max.	Units	Conditions			
SP70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	2.25*Tcy	—	—	ns				
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20	_	_	ns				
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	—	_	ns				
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns				
SP74*	TscH2dlL, TscL2dlL	Hold time of SDI data input to SCK edge	100	—	—	ns				
SP75*	TDOR	SDO data output rise time	_	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$			
			_	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$			
SP76*	TDOF	SDO data output fall time	_	10	25	ns				
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	10	_	50	ns				
SP78*	TscR	SCK output rise time	_	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$			
		(Master mode)	_	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$			
SP79*	TscF	SCK output fall time (Master mode)	_	10	25	ns				
SP80*	TscH2doV,	SDO data output valid after SCK edge	_		50	ns	$3.0V \le V\text{DD} \le 5.5V$			
	TscL2DoV		_		145	ns	$1.8V \leq V\text{DD} \leq 5.5V$			
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	—	—	ns				
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	_	_	50	ns				
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns				

TABLE 38-23: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	64		
Pitch	е	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.50
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2