

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 47x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf67k40-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
XINST	—	DEBUG	STVREN	PPS1WAY	ZCD	BORV	<1:0>
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '1'							
-n = Value for b	plank device	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7	XINST: Extended 1 = Extended 0 = Extended	ed Instruction I Instruction Se I Instruction Se	Set Enable bi et and Indexe et and Indexe	it d Addressing n d Addressing n	node disabled node enabled	(Legacy mode)	
bit 6	Unimplemente	ed: Read as '1	,				
bit 5	DEBUG : Debu 1 = Backgrou 0 = Backgrou	gger Enable b und debugger und debugger	it disabled enabled				
bit 4	STVREN: Stac 1 = Stack Ov 0 = Stack Ov	k Overflow/Un erflow or Unde erflow or Unde	derflow Rese erflow will cau erflow will not	t Enable bit se a Reset cause a Reset			
bit 3	PPS1WAY: PP 1 = The PPS PPSLOC 0 = The PPS executed	SLOCKED bit LOCKED bit K is set, all fut LOCKED bit c	One-Way Se can only be s ure changes an be set an	t Enable bit set once after to PPS register d cleared as n	an unlocking s rs are prevente eeded (provide	sequence is exe ed ed an unlocking	ecuted; once sequence is
bit 2	ZCD : ZCD Disa 1 = ZCD disa 0 = ZCD alwa	able bit Ibled. ZCD car ays enabled, Z	n be enabled CDMD bit is i	by setting the Z gnored	CDSEN bit of	ZCDCON	
bit 1-0	BORV<1:0>: E PIC18F6xK40 11 = Brow 10 = Brow 01 = Brow 00 = Brow	Brown-out Res device: vn-out Reset V vn-out Reset V vn-out Reset V vn-out Reset V	et Voltage Se ′oltage (VBOR ′oltage (VBOR ′oltage (VBOR ′oltage (VBOR	lection bit ⁽¹⁾) set to 2.45V) set to 2.45V) set to 2.7V) set to 2.85V			
	PIC18LF6xK40 11 = Brow 10 = Brow 01 = Brow 00 = Brow) device: vn-out Reset V vn-out Reset V vn-out Reset V vn-out Reset V	′oltage (VBOR ′oltage (VBOR ′oltage (VBOR ′oltage (VBOR) set to 1.90V) set to 2.45V) set to 2.7V) set to 2.85V			

REGISTER 3-4: Configuration Word 2H (30 0003h): Supervisor

Note 1: The higher voltage setting is recommended for operation at or above 16 MHz.

FIGURE 10-5: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			HADR<	15:8> ^(1, 2)			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 13-16: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

bit 7-0 HADR<15:8>: Scan End Address bits^(1, 2)

Most Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-17: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			HADR<	:7:0> ^(1, 2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 HADR<7:0>: Scan End Address bits^(1, 2)

Least Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	INT3EDG	INT2EDG	INT1EDG	INT0EDG	173
PIE0	_	-	TMR0IE	IOCIE	INT3IE	INT2IE	INT1IE	INTOIE	185
PIE1	OSCFIE	CSWIE	_	_	_	_	ADTIE	ADIE	186
PIE2	HLVDIE	ZCDIE	_	_	_	C3IE	C2IE	C1IE	187
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	188
PIE4	_	-	RC5IE	TX5IE	RC4IE	TX4IE	RC3IE	TX3IE	189
PIE5	TMR8IE	TMR7IE	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	190
PIE6	_	_	_	_	TMR7GIE	TMR5GIE	TMR3GIE	TMR1GIE	191
PIE7	_	_	_	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	192
PIE8	SCANIE	CRCIE	NVMIE	_	—	—	_	CWG1IE	193
PIE9	_	_	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	194
PIR0	_	—	TMR0IF	IOCIF	INT3IF	INT2IF	INT1IF	INT0IF	174
PIR1	OSCFIF	CSWIF	_	_	—	—	ADTIF	ADIF	175
PIR2	HLVDIF	ZCDIF	_	_	—	C3IF	C2IF	C1IF	176
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	177
PIR4	—	_	RC5IF	TX5IF	RC4IF	TX4IF	RC3IF	TX3IF	178
PIR5	TMR8IF	TMR7IF	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	179
PIR6	_	_	_	_	TMR7GIF	TMR5GIF	TMR3GIF	TMR1GIF	180
PIR7	_	_	_	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	181
PIR8	SCANIF	CRCIF	NVMIF	_	—	—	_	CWG1IF	183
PIR9	_	_	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	184
IPR0	_	_	TMR0IP	IOCIP	INT3IP	INT2IP	INT1IP	INT0IP	195
IPR1	OSCFIP	CSWIP	_	_	—	—	ADTIP	ADIP	196
IPR2	HLVDIP	ZCDIP		_		C3IP	C2IP	C1IP	197
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	198
IPR4	—	_	RC5IP	TX5IP	RC4IP	TX4IP	RC3IP	TX3IP	199
IPR5	TMR8IP	TMR7IP	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	200
IPR6	_	_	_	_	TMR7GIP	TMR5GIP	TMR3GIP	TMR1GIP	201
IPR7	—	—		CCP5IP	CCP4IP	CCP3IP	CCP2IP	CCP1IP	202
IPR8	SCANIP	CRCIP	NVMIP	—	—	—	—	CWG1IP	203
IPR9	_	—	SMT2PWAIP	SMT2PRAIP	SMT2IP	SMT1PWAIP	SMT1PRAIP	SMT1IP	204

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Interrupts.

18.8 Register Definitions: Timer0 Control

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
TOEN	—	TOOUT	T016BIT	T0OUTPS<3:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, reac	1 as '0'			
u = Bit is uncha	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	T0EN: TMR0 I 1 = The mod 0 = The mod	Enable bit ule is enabled ule is disabled	and operating and in the lov	l vest power mo	de				
bit 6	Unimplemen	ted: Read as '	0'						
bit 5	T0OUT:TMR0 TMR0 output) Output bit (re bit	ad-only)						
bit 4	T016BIT: TMF 1 = TMR0 is 0 = TMR0 is	R0 Operating a a 16-bit timer an 8-bit timer	as 16-Bit Time	r Select bit					
bit 3-0	T0OUTPS<3: 1111 = 1:16 F 1110 = 1:15 F 1101 = 1:14 F 1000 = 1:13 F 1011 = 1:12 F 1010 = 1:11 F 1001 = 1:10 F 1000 = 1:9 P 0111 = 1:8 P 0100 = 1:7 P 0101 = 1:6 P 0100 = 1:5 P 0011 = 1:4 P 0010 = 1:3 P 0001 = 1:2 P 0000 = 1:1 P	0>: TMR0 Out Postscaler Postscaler Postscaler Postscaler Postscaler Postscaler Postscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler	put Postscale	r (Divider) Sele	ect bits				

REGISTER 18-1: T0CON0: TIMER0 CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	INT3EDG	INT2EDG	INT1EDG	INT0EDG	173	
PIE7	_	_	_	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	192	
PIR7	_	_	_	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	181	
IPR7	_	_	_	CCP5IP	CCP4IP	CCP3IP	CCP2IP	CCP1IP	202	
PMD4	_	PWM7MD	PWM6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	70	
CCPxCON	EN	_	OUT	FMT		MODI	E<3:0>		279	
CCPxCAP	—	—	—	—	—	—	CTS	<1:0>	283	
CCPRxL					CCPRx<7:0>				283	
CCPRxH					CCPRx<15:8>				284	
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	281	
CCPTMRS1	—	_	P7TSE	L<1:0>	P6TSE	L<1:0>	C5TSE	L<1:0>	282	
CCPxPPS	—	_			CCP	xPPS<5:0>			225	
RxyPPS	—	—			Rxy	'PPS<5:0>			228	
T1CON	—	—	T1CKP	S<1:0>	—	T1SYNC	T1RD16	TMR10N	240	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GO/DONE	T1GVAL	—	—	241	
T1CLK	—	—	—	—		CS<	:3:0>		242	
T1GATE	—	—	—	—		GSS	<3:0>		243	
TMR1L	TMR1L7	TMR1L6	TMR1L5	TMR1L4	TMR1L3	TMR1L2	TMR1L1	TMR1L0	244	
TMR1H	TMR1H7	TMR1H6	TMR1H5	TMR1H4	TMR1H3	TMR1H2	TMR1H1	TMR1H0	244	
TMR2					TMR2<7:0>				255*	
T2PR					PR2<7:0>				255*	
T2CON	ON		CKPS<2:0>			OUTPS<3:0>				
T2HLT	PSYNC	CPOL	CSYNC			MODE<4:0>				
T2CLKCON	_	_	_	_		CS<	:3:0>		275	
T2RST	—	—	_	—		RSEL	<3:0>		276	

TABLE 21-5:	SUMMARY OF REGISTERS ASSOCIATED WITH CCPx
-------------	---

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

Not a physical register.

22.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR4 register. See Note 1 below.
 - Select the timer clock source to be as Fosc/4 using the TxCLKCON register. This is required for correct operation of the PWM module.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the T2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR4 register is set. See note below.
- Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the desired pin PPS control bits.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

22.1.10 SETUP FOR PWM OPERATION TO OTHER DEVICE PERIPHERALS

The following steps should be taken when configuring the module for PWM operation to be used by other device peripherals:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR4 register. See Note 1 below.
 - Select the timer clock source to be as Fosc/4 using the TxCLKCON register. This is required for correct operation of the PWM module.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the T2ON bit of the T2CON register.
- 6. Enable PWM output pin:
 - Wait until Timer2 overflows, TMR2IF bit of the PIR4 register is set. See Note 1 below.
- 7. Configure the PWM module by loading the PWMxCON register with the appropriate values.

Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

23.6 Handling VPEAK Variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 23-5. The compensating pull-up for this series resistance can be determined with Equation 23-4 because the pull-up value is independent from the peak voltage.

EQUATION 23-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

23.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

23.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-on-Reset (POR). When the \overline{ZCD} Configuration bit is cleared, the ZCD circuit will be active at POR. When the \overline{ZCD} Configuration bit is set, the ZCDSEN bit of the ZCDCON register must be set to enable the ZCD module.

23.9 Disabling the ZCD Module

The ZCD module can be disabled in two ways:

- Configuration Word 2H has the ZCD bit which disables the ZCD module when set, but it can be enabled using the ZCDSEN bit of the ZCDCON register (Register 23-1). If the ZCD bit is clear, the ZCD is always enabled.
- 2. The ZCD can also be disabled using the ZCDMD bit of the PMD3 register (Register 7-4). This is subject to the status of the ZCD bit.

PIC18(L)F67K40

© 2016-2017 Microchip Technology Inc.

Preliminary

Nome	Bit 7	Bit C	DHE	Dit 4	Dit 2	DH 0	Bit 4	DH 0	Register on		
Name	BIL /	DILO	ΒΙΕΘ	DIL 4	BILS	Bit 2	DIU	BILU	Page		
PIE9	—	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	189		
PIR9	_	_	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	176		
IPR9	_	—	SMT2PWAIP	SMT2PRAIP	SMT2IP	SMT1PWAIP	SMT1PRAIP	SMT1IP	201		
SMT1CLK		_	CSEL<2:0>								
SMT1CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT1P	S<1:0>	337		
SMT1CON1	SMT1GO	REPEAT	—	—		MODE	<3:0>		338		
SMT1CPRH				SMT1CP	R<15:8>				344		
SMT1CPRL				SMT1CF	PR<7:0>				344		
SMT1CPRU				SMT1CPI	R<23:16>				344		
SMT1CPWH				SMT1CP	W<15:8>				345		
SMT1CPWL				SMT1CF	PW<7:0>				345		
SMT1CPWU				SMT1CPV	V<23:16>				345		
SMT1PRH				SMT1PF	R<15:8>				346		
SMT1PRL				SMT1P	R<7:0>				346		
SMT1PRU				SMT1PF	<23:16>				346		
SMT1SIG	_	—	—			SSEL<4:0>	-		342		
SMT1STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	339		
SMT1TMRH	SMT1TMR<15:8>										
SMT1TMRL				SMT1TN	/IR<7:0>				343		
SMT1TMRU		-		SMT1TM	R<23:16>				343		
SMT1WIN	_	—	—			WSEL<4:0>			341		
SMT2CLK	_	—	—	_	_		CSEL<2:0>		340		
SMT2CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT2P	S<1:0>	337		
SMT2CON1	SMT2GO	REPEAT	—	—		MODE	<3:0>		338		
SMT2CPRH				SMT2CP	R<15:8>				344		
SMT2CPRL				SMT2CF	PR<7:0>				344		
SMT2CPRU				SMT2CPI	R<23:16>				344		
SMT2CPWH				SMT2CP	W<15:8>				345		
SMT2CPWL				SMT2CF	PW<7:0>				345		
SMT2CPWU				SMT2CPV	N<23:16>				345		
SMT2PRH				SMT2PF	R<15:8>				346		
SMT2PRL				SMT2P	R<7:0>				346		
SMT2PRU		-		SMT2PF	<23:16>				346		
SMT2SIG	_	_	—			SSEL<4:0>			342		
SMT2STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	339		
SMT2TMRH				SMT2TM	R<15:8>				343		
SMT2TMRL				SMT2TN	/IR<7:0>				343		
SMT2TMRU				SMT2TM	R<23:16>				343		
SMT2WIN	—	_	_			WSEL<4:0>			340		

TABLE 25-2: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for SMTx module.

25.7.3 PERIOD AND DUTY-CYCLE MODE

In Duty-Cycle mode, either the duty cycle or period (depending on polarity) of the SMTx_signal can be acquired relative to the SMT clock. The CPW register is updated on a falling edge of the signal, and the CPR register is updated on a rising edge of the signal, along with the SMTxTMR resetting to 0x0001. In addition, the SMTxGO bit is reset on a rising edge when the SMT is in Single Acquisition mode. See Figure 25-6 and Figure 25-7.

FIGURE 25-11: WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F67K40

26.1 Register Definitions: Modulation Control

Long bit name prefixes for the Modulation peripheral is shown in Table 26-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 26-1:

Peripheral	Bit Name Prefix
MD	MD

REGISTER 26-1: MDCON0: MODULATION CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT	OPOL	—	—	—	BIT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Modulator Module Enable bit
	 1 = Modulator module is enabled and mixing input signals 0 = Modulator module is disabled and has no output
bit 6	Unimplemented: Read as '0'
bit 5	OUT: Modulator Output bit
	Displays the current output value of the Modulator module. ⁽¹⁾
bit 4	OPOL: Modulator Output Polarity Select bit
	 1 = Modulator output signal is inverted; idle high output 0 = Modulator output signal is not inverted; idle low output
bit 3-1	Unimplemented: Read as '0'
bit 0	BIT: Allows software to manually set modulation source input to module ⁽²⁾
Note 1:	The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.
2:	MDBIT must be selected as the modulation source in the MDSRC register for this operation.

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	, R/W-0	R/W-0	
WCOL	_ SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽⁴⁾	SSPM2 ⁽⁴⁾	SSPM1 ⁽⁴⁾	SSPM0 ⁽⁴⁾	
bit 7							bit 0	
Legend:								
R = Read	lable bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'		
-n = Value	e at POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkr	nown	
hit 7	WCOL · Writ	e Collision Detect	hit					
	1 = The SSI	PxBUF register is	written while	e it is still transn	nitting the prev	ious word (mus	t be cleared in	
	software	e)			intenig the prof			
	0 = No collis	sion						
bit 6	SSPOV: Red	ceive Overflow Inc	dicator bit ⁽¹⁾					
	<u>SPI Slave m</u>	ode:						
	1 = A new b overflow the SSF software 0 = No over	byte is received w v, the data in SSP PxBUF, even if o e). flow	vhile the SSF xSR is lost. (only transmit	PxBUF register Overflow can or ting data, to a	is still holding hly occur in Sla avoid setting c	the previous dance mode. The unive mode. The univerflow (must	ata. In case of user must read be cleared in	
bit 5	SSPEN: Ma	ster Svnchronous	Serial Port	Enable bit ⁽²⁾				
	1 = Enables 0 = Disables	serial port and co serial port and co	onfigures SCI onfigures the	<pre>Kx, SDOx, SDIx se pins as I/O p</pre>	c and \overline{SSx} as s	erial port pins		
bit 4	CKP: Clock	Polarity Select bit	t					
	 1 = Idle state for the clock is a high level 0 = Idle state for the clock is a low level 							
bit 3-0	SSPM<3:0>	: Master Synchro	nous Serial F	Port Mode Seled	ct bits ⁽⁴⁾			
	1010 = SPI Master mode: Clock = FOSC/(4 * (SSPxADD + 1)) ⁽³⁾ 0101 = SPI Slave mode: Clock = SCKx pin; <u>SSx</u> pin control is disabled; <u>SSx</u> can be used as I/O pi 0100 = SPI Slave mode: Clock = SCKx pin; <u>SSx</u> pin control is enabled 0011 = SPI Master mode: Clock = TMR2 output/2 0010 = SPI Master mode: Clock = Fosc/64 0001 = SPI Master mode: Clock = Fosc/16 0000 = SPI Master mode: Clock = Fosc/4							
Note 1:	In Master mode, writing to the SS	the overflow bit i PxBUF register.	s not set sind	e each new rec	ception (and tra	ansmission) is i	nitiated by	
2:	When enabled, t	hese pins must b	e properly co	onfigured as inp	uts or outputs.			
3:	3: SSPxADD = 0 is not supported.							

REGISTER 27-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

4: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clear	ed				

REGISTER 27-11: SSPxADD: MSSP ADDRESS REGISTER (I²C MASTER MODE)

Master mode: |²C mode

bit 7-0	Baud Rate Clock Divider bits ⁽¹⁾
	SCK/SCL pin clock period = ((SSPxADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a don't care. Bit pattern sent by master is fixed by I²C specification and must be equal to, '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<9:8>: Two Most Significant bits of 10-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a don't care.

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit Address

7-Bit Slave mode:

bit 7-1	7-bit Slave Addres
DIL 7 - I	7-bit Slave Addres

bit 0 Not used: Unused in this mode. Bit state is a don't care.

Note 1: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

REGISTER 27-12: SSPxMSK: MSSPx ADDRESS MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			MSK<7:1>				MSK0
bit 7							bit 0
l egend.							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1	MSK<7:1>: Mask bits
	 1 = The received address bit n is compared to SSPxADDn to detect I²C address match 0 = The received address bit n is not used to detect I²C address match
bit 0	MSK0: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPxADD0 to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode, 7-bit address, the bit is ignored.

27.10.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 27-30).

27.10.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

27.10.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 27-31).

27.10.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 27-30: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 27-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

27.10.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 27-33).
- b) SCL is sampled low before SDA is asserted low (Figure 27-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- · the Start condition is aborted,
- the BCLxIF flag is set and
- the MSSP module is reset to its Idle state (Figure 27-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 27-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

32.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADREF register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 1.024V
- FVR 2.048V
- FVR 4.096V

The ADNREF bit of the ADREF register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See Section 29.0 "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

32.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCLK register and the ADCS bits of the ADCON0 register. There are 66 possible clock options:

- Fosc/2
- Fosc/4
- Fosc/6
- Fosc/8
- Fosc/10
 - •
 - •
 - •
- Fosc/128
- FRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 32-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 38-14 for more information. Table 32-1 gives examples of appropriate ADC clock selections.

Note 1:	Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.
2:	The internal control logic of the ADC runs off of the clock selected by the ADCS bit of ADCON0. What this can mean is when the ADCS bit of ADCON0 is set to '1' (ADC runs on FRC), there may be unexpected delays in operation when setting ADC control bits.

FIGURE 32-9: DIFFERENTIAL CVD WITH GUARD RING OUTPUT WAVEFORM

Precharge Time 1-255 TINST	Acquisition/ Sharing Time 1-255 TINST	1 			(Tradit	Co tional	nversi Timing	on Tim of AD	ne)C Co	nversi	on)		
(TPRE)	(TACQ)	TCY - TAI	D TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	Tad9	TAD10	TAD11
External and Internal Channels are charged/discharged	External and Internal Channels share charge	♦ b9 b8 b7 b6 b5 b4 b3 b2 b1 Conversion starts Holding capacitor CHOLD is disconnected from analog input (typically 100 ns)					b0 ns)						
If ADPRE ≠ 0 et GO/DONE bit	If ADACQ ≠ 0	If ADPRE = 0 If ADACQ = 0 (Traditional Operation Start)				On the following cycle: AADRES0H:AADRES0L is loaded, ADI <u>F bit is</u> set, GO/DONE bit is cleared							

32.4.5 ADDITIONAL SAMPLE AND HOLD CAPACITANCE

Additional capacitance can be added in parallel with the internal sample and hold capacitor (CHOLD) by using the ADCAP register. This register selects a digitally programmable capacitance which is added to the ADC conversion bus, increasing the effective internal capacitance of the sample and hold capacitor in the ADC module. This is used to improve the match between internal and external capacitance for a better sensing performance. The additional capacitance does not affect analog performance of the ADC because it is not connected during conversion. See Figure 32-11.

33.2 Register Definitions: Comparator Control

Long bit name prefixes for the Comparators are shown in Table 33-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 33-1:

Peripheral	Bit Name Prefix
C1	C1
C2	C2
C3	C3

REGISTER 33-1: CMxCON0: COMPARATOR x CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-1	R/W-0/0	R/W-0/0
EN	OUT	—	POL	—	—	HYS	SYNC
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EN: Comparator Enable bit					
	1 = Comparator is enabled					
	0 = Comparator is disabled and consumes no active power					
bit 6	OUT: Comparator Output bit					
	If POL = 0 (non-inverted polarity):					
	1 = CxVP > CxVN					
	0 = CxVP < CxVN					
	$\frac{\text{If POL} = 1 \text{ (inverted polarity)}}{2}$					
	1 = CxVP < CxVN					
	0 = CXVP > CXVN					
bit 5	Unimplemented: Read as '0'					
bit 4	POL: Comparator Output Polarity Select bit					
	1 = Comparator output is inverted					
	 Comparator output is not inverted 					
bit 3	Unimplemented: Read as '0'					
bit 2	Unimplemented: Read as '1'					
bit 1	HYS: Comparator Hysteresis Enable bit					
	1 = Comparator hysteresis enabled					
	0 = Comparator hysteresis disabled					
bit 0	SYNC: Comparator Output Synchronous Mode bit					
	1 = Comparator output to Timer1/3/5/7 and I/O pin is synchronous to changes on Timer1 clock source.					
	0 = Comparator output to Timer1/3/5/7 and I/O pin is asynchronous					
	Output updated on the falling edge of Timer1/3/5/7 clock source.					