

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	60
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 47x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf67k40t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F67K40

REGISTER 4-5: OSCFRQ: HFINTOSC FREQUENCY SELECTION REGISTER U-0 R/W-q/q R/W-q/q R/W-q/q U-0 U-0 U-0 R/W-q/q ____ ____ HFFRQ<3:0> ____ ____ bit 7 bit 0

Legend:

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Reset value is determined by hardware

bit 7-4 Unimplemented: Read as '0'

bit 3-0 HFFRQ<3:0>: HFINTOSC Frequency Selection bits

HFFRQ<3:0>	Nominal Freq (MHz)						
1001							
1010							
1111							
1110	Reserved						
1101	Reserved						
1100							
1011							
1000 ⁽³⁾	64						
0111	48						
0110	32						
0101 ⁽⁴⁾	16						
0100	12						
0011	8						
0010 (1,2)	4						
0001	2						
0000	1						

Note 1: Refer to Table 4-1 for more information.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	—	—		CLK<2:0>	
bit 7							bit C
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is clea	ared				
bit 7-3	Unimplemen	nted: Read as '	כי				
bit 2-0	CLK<2:0>: C	LKR Clock Sel	ection bits				
	111 = Unimp	lemented					
	110 = Unimp	lemented					
	101 = Unimp	lemented					
	100 = SOSC						
	011 = MFINT	OSC (500 kHz)				
	010 = LFINT	OSC (31 kHz)					
	001 = HFINT	OSC					
	000 = FOSC						

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CLKRCON	EN	_	_	DC<	:1:0>		54			
CLKRCLK	—	_	_	_	_	CLK<2:0>			55	
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	66	
RxyPPS	—	—		RxyPPS<5:0>						

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

6.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Windowed Watchdog Timer (WWDT)
- External interrupt pin/Interrupt-On-Change pins
- Peripherals that run off external secondary clock source

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC18LF6xK40 devices do not have a
	configurable Low-Power Sleep mode.
	PIC18LF6xK40 devices are unregulated
	and are always in the lowest power state
	when in Sleep, with no wake-up time
	penalty. These devices have a lower max-
	imum VDD and I/O voltage than the
	PIC18F6xK40 devices. See Section
	38.0 "Electrical Specifications" for
	more information.

6.2.4 IDLE MODE

When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into Idle mode. In Idle mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to Doze mode, except that in IDLE both the CPU and PFM are shut off.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0, Configuration Word 1H), the output will continue operating while in Idle.

6.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can reenter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

6.2.4.2 Idle and WWDT

When in Idle, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of Idle, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

6.3 Peripheral Operation in Power Saving Modes

All selected clock sources and the peripherals running off them are active in both IDLE and DOZE mode. Only in Sleep mode, both the Fosc and Fosc/4 clocks are unavailable. All the other clock sources are active, if enabled manually or through peripheral clock selection before the part enters Sleep.

7.5 Register Definitions: Peripheral Module Disable

REGISTER	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7							(
Legend:	- h:t		L :4			l (0)	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other							
u = Bit is und	•	x = Bit is unkr					ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	q = value dep	ends on condi	lion	
bit 7	See descript 1 = System	isable Periphera ion in Section 7 clock network d clock network e	7.4 "System C isabled (Fosc)	lock Disable".			
bit 6	1 = FVR mo	able Fixed Volta dule disabled dule enabled	ige Reference	bit			
bit 5	1 = HLVD n	isable Low-Volta nodule disabled nodule enabled	age Detect bit				
bit 4	1 = CRC mo	able CRC Engir odule disabled odule enabled	ne bit				
bit 3	1 = NVM M	isable NVM Me emory Scan mo emory Scan mo	dule disabled	bit ⁽²⁾			
bit 2	1 = All Mem	/M Module Disal ory reading and odule enabled		bled; NVMCON	registers canr	not be written	
bit 1	1 = CLKR m	isable Clock Re nodule disabled nodule enabled	ference bit				
bit 0	1 = IOC mo	able Interrupt-on dule(s) disabled dule(s) enabled	-Change bit, A	All Ports			
	learing the SYS y Fosc/4 are no	SCMD bit disable of affected.	es the system	clock (Fosc) to	peripherals, h	owever periphe	rals clocked

REGISTER 7-1: PMD0: PMD CONTROL REGISTER 0

- 2: Subject to SCANE bit in CONFIG4H.
- **3:** When enabling NVM, a delay of up to 1 µs may be required before accessing data.

EXAMPLE 11-4: WRITING TO PROGRAM FLASH MEMORY (CONTINUED)

WRITE_BYTE	TO_HREGS		
	MOVF	POSTINC0, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until holding registers are full
	BRA	WRITE_WORD_TO_HREGS	
PROGRAM_MEN	MORY		
	BCF	NVMCON1, NVMREG0	; point to Program Flash Memory
	BSF	NVMCON1, NVMREG1	; point to Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BCF	NVMCON1, FREE	; enable write to memory
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	NVMCON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	NVMCON2	; write OAAh
	BSF	NVMCON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE_BYTE_TO_HREGS	
	BSF	INTCON, GIE	; re-enable interrupts
	BCF	NVMCON1, WREN	; disable write to memory

13.9 Program Memory Scan Configuration

If desired, the program memory scan module may be used in conjunction with the CRC module to perform a CRC calculation over a range of program memory addresses. In order to set up the scanner to work with the CRC you need to perform the following steps:

- 1. Set the Enable bit in both the CRCCON0 and SCANCON0 registers. If they get disabled, all internal states of the scanner and the CRC are reset (registers are unaffected).
- Choose which memory access mode is to be used (see Section 13.11 "Scanning Modes") and set the MODE bits of the SCANCON0 register appropriately.
- 3. Based on the memory access mode, set the INTM bits of the SCANCON0 register to the appropriate interrupt mode (see Section 13.11.5 "Interrupt Interaction")
- 4. Set the SCANLADRL/H/U and SCANHADRL/H/ U registers with the beginning and ending locations in memory that are to be scanned.
- 5. The CRCGO bit must be set before setting the SCANGO bit. Setting the SCANGO bit starts the scan. Both CRCEN and CRCGO bits must be enabled to use the scanner. When either of these bits are disabled, the scan aborts and the INVALID bit SCANCON0 is set. The scanner will wait for the signal from the CRC that it is ready for the first Flash memory location, then begin loading data into the CRC. It will continue to do so until it either hits the configured end address or an address that is unimplemented on the device, at which point the SCANGO bit will clear, Scanner functions will cease, and the SCANIF interrupt will be triggered. Alternately, the SCANGO bit can be cleared in software if desired.

13.10 Scanner Interrupt

The scanner will trigger an interrupt when the SCANGO bit transitions from '1' to '0'. The SCANIF interrupt flag of PIR7 is set when the last memory location is reached and the data is entered into the CRCDATA registers. The SCANIF bit can only be cleared in software. The SCAN interrupt enable is the SCANIE bit of the PIE7 register.

13.11 Scanning Modes

The memory scanner can scan in four modes: Burst, Peek, Concurrent, and Triggered. These modes are controlled by the MODE bits of the SCANCON0 register. The four modes are summarized in Table 13-2.

13.11.1 BURST MODE

When MODE = 01, the scanner is in Burst mode. In Burst mode, CPU operation is stalled beginning with the operation after the one that sets the SCANGO bit, and the scan begins, using the instruction clock to execute. The CPU is held in its current state until the scan stops. Note that because the CPU is not executing instructions, the SCANGO bit cannot be cleared in software, so the CPU will remain stalled until one of the hardware endconditions occurs. Burst mode has the highest throughput for the scanner, but has the cost of stalling other execution while it occurs.

13.11.2 CONCURRENT MODE

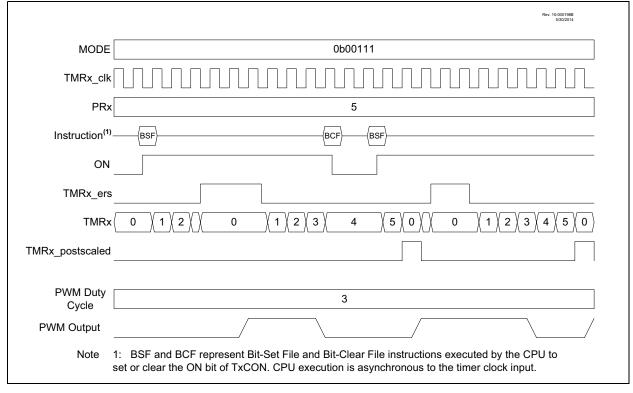
When MODE = 00, the scanner is in Concurrent mode. Concurrent mode, like Burst mode, stalls the CPU while performing accesses of memory. However, while Burst mode stalls until all accesses are complete, Concurrent mode allows the CPU to execute in between access cycles.

13.11.3 TRIGGERED MODE

When MODE = 11, the scanner is in Triggered mode. Triggered mode behaves identically to Concurrent mode, except instead of beginning the scan immediately upon the SCANGO bit being set, it waits for a rising edge from a separate trigger clock, the source of which is determined by the SCANTRIG register.

13.11.4 PEEK MODE

When MODE = 10, the scanner is in Peek mode. Peek mode waits for an instruction cycle in which the CPU does not need to access the NVM (such as a branch instruction) and uses that cycle to do its own NVM access. This results in the lowest throughput for the NVM access (and can take a much longer time to complete a scan than the other modes), but does so without any impact on execution times, unlike the other modes.

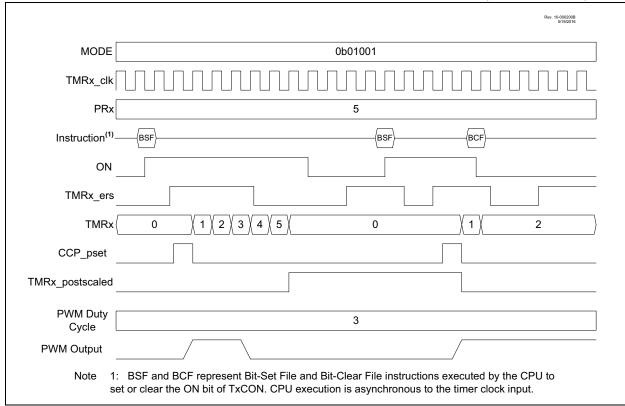

20.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 20-7. Selecting MODE<4:0> = 0.0110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 0.0111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

20.5.6 EDGE-TRIGGERED ONE-SHOT MODE


The Edge-Triggered One-Shot modes start the timer on an edge from the external signal input, after the ON bit is set, and clear the ON bit when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 01001)
- Falling edge (MODE<4:0> = 01010)
- Rising or Falling edge (MODE<4:0> = 01011)

If the timer is halted by clearing the ON bit then another TMRx_ers edge is required after the ON bit is set to resume counting. Figure 20-9 illustrates operation in the rising edge One-Shot mode.

When Edge-Triggered One-Shot mode is used in conjunction with the CCP then the edge-trigger will activate the PWM drive and the PWM drive will deactivate when the timer matches the CCPRx pulse width value and stay deactivated when the timer halts at the PRx period count match.

FIGURE 20-9: EDGE-TRIGGERED ONE-SHOT MODE TIMING DIAGRAM (MODE = 01001)

20.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge start and Reset (MODE<4:0> = 01100)
- Falling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the PRx period value. External signal edges will have no effect until after software sets the ON bit. Figure 20-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse-width value and stay deactivated until the timer halts at the PRx period match unless an external signal edge resets the timer before the match occurs.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	INT3EDG	INT2EDG	INT1EDG	INT0EDG	173	
PIE7	_	_	_	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	192	
PIR7	_	_	_	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	181	
IPR7	_	_	_	CCP5IP	CCP4IP	CCP3IP	CCP2IP	CCP1IP	202	
PMD4	_	PWM7MD	PWM6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	70	
CCPxCON	EN	_	OUT	FMT		MOD	E<3:0>		279	
CCPxCAP		_		—	—	—	CTS<	<1:0>	283	
CCPRxL					CCPRx<7:0>				283	
CCPRxH					CCPRx<15:8>				284	
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	C2TSEL<1:0> C1TSEL<1:0>				
CCPTMRS1	_	_	P7TSE	L<1:0>	P6TSE	L<1:0>	C5TSE	L<1:0>	282	
CCPxPPS	_	_			CCP	xPPS<5:0>			225	
RxyPPS	_	_			Rxy	PPS<5:0>			228	
T1CON	_	_	T1CKP	S<1:0>	_	T1SYNC	T1RD16	TMR10N	240	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GO/DONE	T1GVAL	_		241	
T1CLK	_	_	_	_		CS<	<3:0>		242	
T1GATE	_	_	_	_		GSS	<3:0>		243	
TMR1L	TMR1L7	TMR1L6	TMR1L5	TMR1L4	TMR1L3	TMR1L2	TMR1L1	TMR1L0	244	
TMR1H	TMR1H7	TMR1H6	TMR1H5	TMR1H4	TMR1H3	TMR1H2	TMR1H1	TMR1H0	244	
TMR2					TMR2<7:0>				255*	
T2PR					PR2<7:0>				255*	
T2CON	ON		CKPS<2:0> OUTPS<3:0>					273		
T2HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			274	
T2CLKCON	_	—	_	—		CS<	<3:0>		275	
T2RST	_	_	_	_		RSEL	_<3:0>		276	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

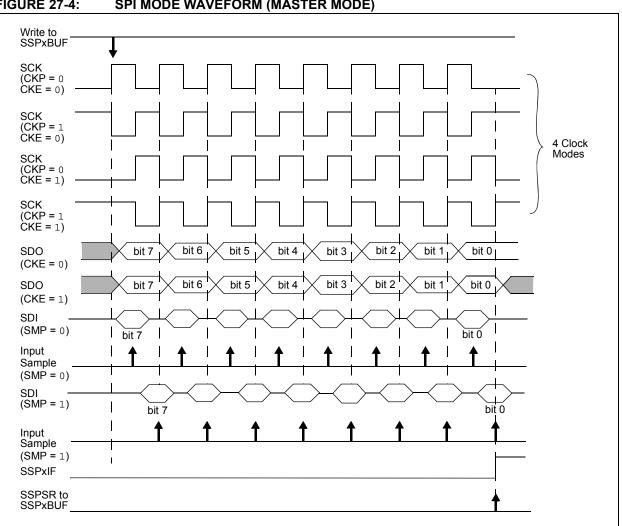
Not a physical register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CON0	EN	LD	—	—	—		MODE<2:0>	•	327
CWG1CON1	_	_	IN	—	POLD	POLC	POLB	POLA	328
CWG1CLKCON	_	_	_	_	_	_	_	CS	329
CWG1ISM	—	_	—	—		ISM<3:0>			
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	330
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	LSAC<1:0> — —		—	331
CWG1AS1	AS7E	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	332
CWG1DBR		_			DBR<	<5:0>			333
CWG1DBF	_	_			DBF<	:5:0>			333
PIE8	SCANIE	CRCIE	NVMIE	_	_	_	_	CWG1IE	193
PIR8	SCANIF	CRCIF	NVMIF	—	—	_	_	CWG1IF	183
IPR8	SCANIP	CRCIP	NVMIP	—	_	_	_	CWG1IP	203
PMD2	—	_	CWGMD	—	DSMMD	SMT2MD	SMT1MD	TMR8MD	68

TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
MDCON0	EN	_	OUT	OPOL	—	—	—	BIT	381	
MDCON1	_		CHPOL	CHSYNC	—	_	CLPOL	CLSYNC	382	
MDCARH	_	—	_	— — CHS<3:0>						
MDCARL			_	— — CLS<3:0>						
MDSRC	—	_	_	— SRCS<4:0>						
MDCARLPPS		—		CARLPPS<5:0>						
MDCARHPPS	_	_			CARHP	PS<5:0>			225	
MDSRCPPS	_	—		SRCPPS<5:0>						
RxyPPS	—			RxyPPS<5:0>						
PMD2	_		CWGMD		DSMMD	SMT2MD	SMT1MD	TMR8MD	68	


TABLE 26-4: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

27.4 Register Definitions: MSSP Control

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0					
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF					
bit 7							bit					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7	SMP: Samp											
	<u>SPI Master</u>		the end of de									
		ita is sampled at			<u>e</u>							
	0 = Input data is sampled at the middle of data output time SPI Slave mode:											
	SMP must be cleared when SPI is used in Slave mode.											
bit 6	CKE: SPI Clock Select bit ⁽¹⁾											
	1 = Transmit occurs on the transition from active to Idle clock state											
	0 = Transmit occurs on the transition from Idle to active clock state											
bit 5	D/A: Data/Address bit											
	Used in I ² C mode only.											
bit 4	P: Stop bit											
	Used in I ² C	mode only. This	bit is cleared	when the MSSF	Px module is d	lisabled; SSPEN	l is cleared.					
bit 3	S: Start bit											
	Used in I ² C	mode only.										
bit 2	R/W: Read/Write Information bit											
	Used in I ² C mode only.											
bit 1	UA: Update Address bit											
	Used in I ² C mode only.											
bit 0	BF: Buffer F	Full Status bit (Re	eceive mode	only)								
		is complete, SS										
	0 = Receive	is not complete	, SSPxBUF is	sempty								
Note 1: F	Polarity of clock	state is set by th	ne CKP bit (S	SPxCON1<4>).								
	-	•		,								

REGISTER 27-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

FIGURE 27-4: SPI MODE WAVEFORM (MASTER MODE)

27.5.2 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

27.5.3 DAISY-CHAIN CONFIGURATION

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 27-5 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

© 2016-2017 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clear	red				

REGISTER 27-11: SSPxADD: MSSP ADDRESS REGISTER (I²C MASTER MODE)

Master mode: |²C mode

bit 7-0	Baud Rate Clock Divider bits ⁽¹⁾
	SCK/SCL pin clock period = ((SSPxADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a don't care. Bit pattern sent by master is fixed by I²C specification and must be equal to, '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<9:8>: Two Most Significant bits of 10-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a don't care.

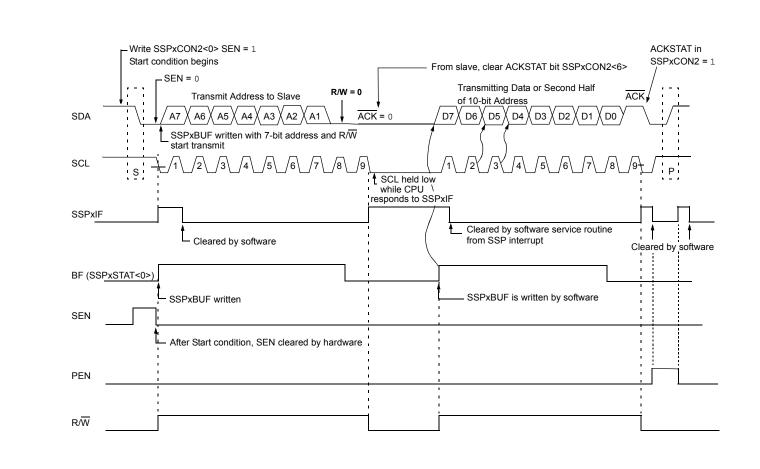
10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit Address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a don't care.

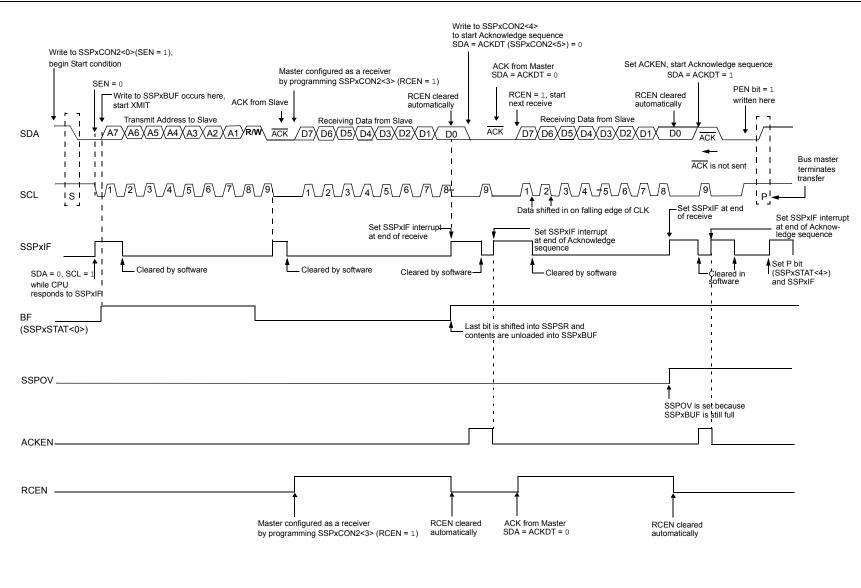
Note 1: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.


REGISTER 27-12: SSPxMSK: MSSPx ADDRESS MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			MSK<7:1>				MSK0
bit 7							bit 0
Legend:							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1	MSK<7:1>: Mask bits
	 1 = The received address bit n is compared to SSPxADDn to detect I²C address match 0 = The received address bit n is not used to detect I²C address match
bit 0	MSK0: Mask bit for I ² C Slave mode, 10-bit Address I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPxADD0 to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode, 7-bit address, the bit is ignored.



© 2016-2017 Microchip Technology Inc.

PIC18(L)F67K40

PIC18(L)F67K40

27.10.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

27.10.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

27.10.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

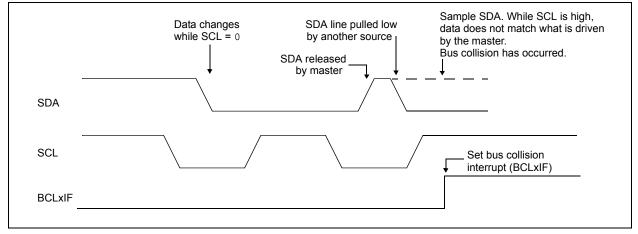
The states where arbitration can be lost are:

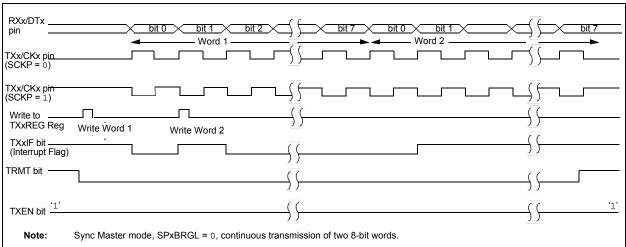
- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

27.10.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 27-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.


The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 27-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

FIGURE 28-10: SYNCHRONOUS TRANSMISSION

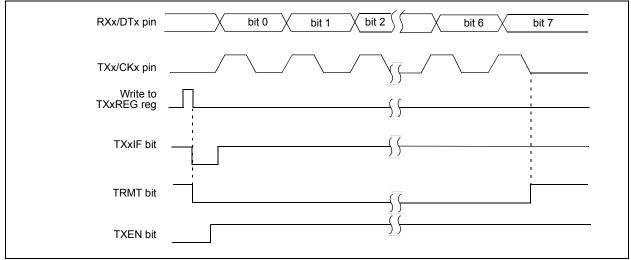
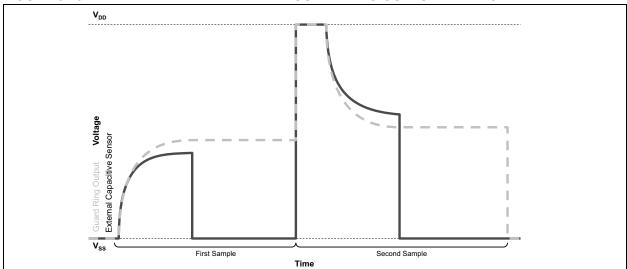



FIGURE 32-9: DIFFERENTIAL CVD WITH GUARD RING OUTPUT WAVEFORM

Precharge Time	Conversion Time (Traditional Timing of ADC Conversion)												
1-255 TINST (TPRE)	1-255 TINST (TACQ)	 ,TCY - TAE	TCY - TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 T							Tad11			
		Ì ↑ _ 4		b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
External and Internal Channels are charged/discharged	Channels share								ıs)				
If ADPRE ≠ 0	If ADPRE = 0 If ADACQ = 0					On the following cycle: AADRES0H:AADRES0L is loaded,							
et GO/DONE bit	(Traditional Operation Start) AADRESOH:AADRESOL is loaded, ADIF bit is set, GO/DONE bit is cleared												

32.4.5 ADDITIONAL SAMPLE AND HOLD CAPACITANCE

Additional capacitance can be added in parallel with the internal sample and hold capacitor (CHOLD) by using the ADCAP register. This register selects a digitally programmable capacitance which is added to the ADC conversion bus, increasing the effective internal capacitance of the sample and hold capacitor in the ADC module. This is used to improve the match between internal and external capacitance for a better sensing performance. The additional capacitance does not affect analog performance of the ADC because it is not connected during conversion. See Figure 32-11.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS						
Dimensio	on Limits	MIN	NOM	MAX				
Number of Pins	N		64					
Pitch	е		0.50 BSC					
Overall Height	A	0.80 0.90 1.00						
Standoff	A1	0.00	0.02	0.05				
Contact Thickness	A3		0.20 REF					
Overall Width	E		9.00 BSC					
Exposed Pad Width	E2	7.05	7.15	7.50				
Overall Length	D		9.00 BSC					
Exposed Pad Length	D2	7.05	7.15	7.50				
Contact Width	b	0.18	0.25	0.30				
Contact Length	L	0.30	0.40	0.50				
Contact-to-Exposed Pad	K	0.20	-	-				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2