E. Renesas Electronics America Inc - IDT79RC32T351-133DHG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS-II
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 1.1 (1)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79rc32t351-133dhg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Supports burst transfers
- USB
- Revision 1.1 compliant
- USB slave device controller
- Supports a 6th USB endpoint
- Full speed operation at 12 Mb/s
- Supports control, interrupt, bulk and isochronous endpoints
- Supports USB remote wakeup
- Integrated USB transceiver
- EJTAG
 - Run-time Mode provides a standard JTAG interface
- Real-Time Mode provides additional pins for real-time trace information
- Ethernet
- Full duplex support for 10 and 100 Mb/s Ethernet
- IEEE 802.3u compatible Media Independent Interface (MII) with serial management interface
- IEEE 802.3u auto-negotiation for automatic speed selection
- Flexible address filtering modes
- 64-entry hash table based multicast address filtering

ATM SAR

- Can be configured as one UTOPIA level 1 interface or 1 UTOPIA level 2 interface with 2 address lines (3 PHYs max)
- Supports 25Mb/s and faster ATM
- Supports UTOPIA data path interface operation at speeds up to 33 MHz
- Supports standard 53-byte ATM cells
- Performs HEC generation and checking
- Cell processing discards short cells and clips long cells
- 16 cells worth of buffering
- UTOPIA modes: 8 cell input buffer and 8 cell output buffer
- Hardware support for CRC-32 generation and checking for AAL5
- Hardware support for CRC-10 generation and checking
- Virtual caching receive mechanism supports reception of any length packet without CPU intervention on up to eight simultaneously active receive channels
- Frame Mode transmit mechanism supports transmission of any length packet without CPU intervention

System Features

- JTAG interface (IEEE Std. 1149.1 compatible)
- 208 pin PQFP package
- 2.5V core supply and 3.3V I/O supply
- Up to 133 MHz pipeline frequency and up to 66 MHz bus frequency

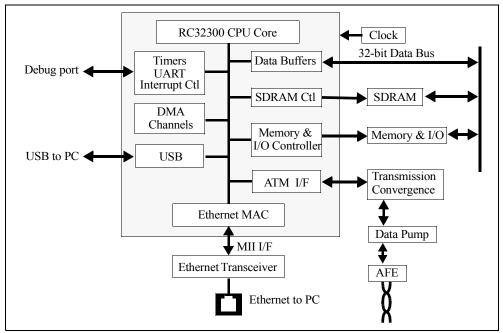


Figure 2 Example of xDSL Residential Gateway Using RC32351

Thermal Considerations

The RC32351 consumes less than 1.5 W peak power and is guaranteed in an ambient temperature range of 0° to $+70^{\circ}$ C (commercial).

Revision History

January 7, 2002: Initial publication.

May 20, 2002: Added values (in place of TBD) to Table 18, Power Consumption.

September 19, 2002: Added COLDRSTN Trise1 parameter to Table 5, Reset and System AC Timing Characteristics.

December 6, 2002: In Features section, changed UART speed from 115 Kb/s to 1.5 Mb/s.

December 17, 2002: Added $V_{\mbox{OH}}$ parameter to Table 16, DC Electrical Characteristics.

May 25, 2004: In Table 7, signals MIIRXCLK and MIITXCLK, the Min and Max values for 10 Mbps Thigh1/Tlow1 were changed to 140 and 260 respectively and the Min and Max values for 100 Mbps Thigh1/Tlow1 were changed to 14.0 and 26.0 respectively.

Name	Туре	I/O Type	Description
RWN	0	High Drive	Read or Write. This signal indicates if the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device, a low level indicates a write to an external device.
OEN	0	High Drive	Output Enable. This signal is asserted low when data should be driven by an external device during device read transac- tions on the memory and peripheral bus.
BWEN[3:0]	0	High Drive	SDRAM Byte Enable Mask or Memory and I/O Byte Write Enables. These signals are used as data input/output masks during SDRAM transactions and as byte write enable signals during device controller transactions on the memory and peripheral bus. They are active low. BWEN[0] corresponds to byte lane MDATA[7:0]. BWEN[1] corresponds to byte lane MDATA[15:8]. BWEN[2] corresponds to byte lane MDATA[23:16]. BWEN[3] corresponds to byte lane MDATA[31:24].
SDCSN[1:0]	0	High Drive	SDRAM Chip Select . These signals are used to select the SDRAM device on the memory and peripheral bus. Each bit is asserted low during an access to the selected SDRAM.
RASN	0	High Drive	SDRAM Row Address Strobe. The row address strobe asserted low during memory and peripheral bus SDRAM transac- tions.
CASN	0	High Drive	SDRAM Column Address Strobe. The column address strobe asserted low during memory and peripheral bus SDRAM transactions.
SDWEN	0	High Drive	SDRAM Write Enable. Asserted low during memory and peripheral bus SDRAM write transactions.
CKENP	0	Low Drive	SDRAM Clock Enable. Asserted high during active SDRAM clock cycles. Primary function: General Purpose I/O, GPIOP[21].
SDCLKINP	I	STI	SDRAM Clock Input. This clock input is a delayed version of SYSCLKP. SDRAM read data is sampled into the RC32351 on the rising edge of this clock.

ATM Interface

ATMINP[11:0]	I	STI	ATM PHY Inputs. These pins are the inputs for the ATM interface.
ATMIOP[1:0]	I/O	Low Drive with STI	ATM PHY Bidirectional Signals. These pins are the bidirectional pins for the ATM interface.
ATMOUTP[9:0]	0	Low Drive	ATM PHY Outputs. These pins are the outputs for the ATM interface.
TXADDR[1:0]	0	Low Drive	ATM Transmit Address [1:0]. 2-bit address bus used for transmission in Utopia-2 mode. TXADDR[0] Primary function: General purpose I/O, GPIOP[22]. TXADDR[1] Primary function: General purpose I/O, GPIOP[23].
RXADDR[1:0]	0	Low Drive	ATM Receive Address [1:0]. 2-bit address bus for receiving in Utopia-2 mode. RXADDR[0] Primary function: General purpose I/O, GPIOP[24]. RXADDR[1] Primary function: General purpose I/O, GPIOP[25].

General Purpose Input/Output

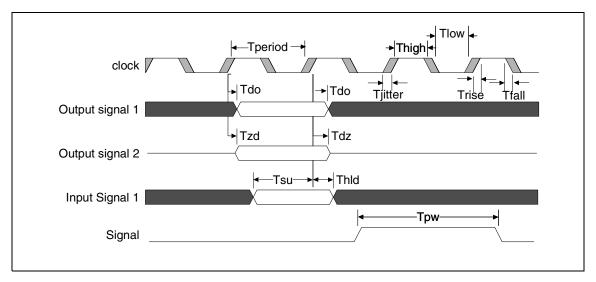
GPIOP[0]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 serial output, U0SOUTP.
GPIOP[1]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 serial input, U0SINP.
GPIOP[2]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 0 ring indicator, U0RIN. 2nd Alternate function: JTAG boundary scan tap controller reset, JTAG_TRST_N.
GPIOP[3]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 data carrier detect, U0DCRN.
GPIOP[4]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 0 data terminal ready, U0DTRN. 2nd Alternate function: CPU or DMA transaction indicator, CPUP.

Table 1 Pin Descriptions (Part 2 of 7)

Name	Туре	I/O Type	Description
MIIMDIOP	I/O		MII Management Data. This bidirectional signal is used to transfer data between the station management entity and the ethernet PHY.
MIIRXCLKP	I	STI	MII Receive Clock. This clock is a continuous clock that provides a timing reference for the reception of data.
MIIRXDP[3:0]	I	STI	MII Receive Data. This nibble wide data bus contains the data received by the ethernet PHY.
MIIRXDVP	I	STI	MII Receive Data Valid. The assertion of this signal indicates that valid receive data is in the MII receive data bus.
MIIRXERP	I	STI	MII Receive Error. The assertion of this signal indicates that an error was detected somewhere in the ethernet frame cur- rently being sent in the MII receive data bus.
MIITXCLKP	I	STI	MII Transmit Clock. This clock is a continuous clock that provides a timing reference for the transfer of transmit data.
MIITXDP[3:0]	0	Low Drive	MII Transmit Data. This nibble wide data bus contains the data to be transmitted.
MIITXENP	0	Low Drive	MII Transmit Enable. The assertion of this signal indicates that data is present on the MII for transmission.
MIITXERP	0		MII Transmit Coding Error. When this signal is asserted together with MIITXENP, the ethernet PHY will transmit symbols which are not valid data or delimiters.

EJTAG

JTAG_TCK	I	STI	JTAG Clock. This is an input test clock, used to shift data into or out of the boundary scan logic. This signal requires an external resistor, listed in Table 14.
JTAG_TDI	I	STI	JTAG Data Input. This is the serial data shifted into the boundary scan logic. This signal requires an external resistor, listed in Table 14. This is also used to input EJTAG_DINTN during EJTAG/ICE mode. EJTAG_DINTN is an interrupt to switch the PC trace mode off.
JTAG_TDO	0	Low Drive	JTAG Data Output. This is the serial data shifted out from the boundary scan logic. When no data is being shifted out, this signal is tri-stated. This signal requires an external resistor, listed in Table 14. This is also used to output the EJTAG_TPC during EJTAG/ICE mode. EJTAG_TPC is the non-sequential program counter output.
JTAG_TMS	I	STI	JTAG Mode Select . This input signal is decoded by the tap controller to control test operation. This signal requires an external resistor, listed in Table 14.
EJTAG_PCST[0]	0	Low Drive	PC trace status. This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 14. Primary function: General Purpose I/O, GPIOP[10]. 1st Alternate function: UART channel 1 data terminal ready, U1DTRN.
EJTAG_PCST[1]	0	Low Drive	PC trace status. This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 14. Primary function: General Purpose I/O, GPIOP[11]. At reset, this pin defaults to primary function GPIOP[11]. 1st Alternate function: UART channel 1 data set ready, U1DSRN.
EJTAG_PCST[2]	0	Low Drive	PC trace status. This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 14. Primary function: General Purpose I/O, GPIOP[12]. 1st Alternate function: UART channel 1 request to send, U1RTSN.
EJTAG_DCLK	0	Low Drive	PC trace clock. This is used to capture address and data during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 14. Primary function: General Purpose I/O, GPIOP[13]. 1st Alternate function: UART channel 1 clear to send, U1CTSN.


Table 1 Pin Descriptions (Part 5 of 7)

Signal	Name/Description
MDATA[2:0]	Clock Multiplier. This field specifies the value by which the system clock (CLKP) is multiplied internally to generate the CPU pipeline clock. 0x0 - multiply by 2 0x1 - multiply by 3 0x2 - multiply by 4 0x3 - reserved 0x4 - reserved 0x5 - reserved 0x6 - reserved 0x7 - reserved
MDATA[3]	Endian. This bit specifies the endianness of RC32351. 0x0 - little endian 0x1 - big endian
MDATA[4]	Reserved. Must be set to 0.
MDATA[5]	Debug Boot Mode . When this bit is set, the RC32351 begins executing from address 0xFF20_0200 rather than 0xBFC0_0000 following a reset. 0x0 - regular mode (processor begins executing at 0xBFC0_0000) 0x1 - debug boot mode (processor begins executing at 0xFF20_0200)
MDATA[7:6]	Boot Device Width. This field specifies the width of the boot device. 0x0 - 8-bit boot device width 0x1 - 16-bit boot device width 0x2 - 32-bit boot device width 0x3 - reserved
MDATA[8]	EJTAG/ICE Interface Enable. When this bit is set, Alternate 2 pin functions EJTAG_PCST[2:0], EJTAG_DCLK, and EJTAG_TRST_N are selected. 0x0 - GPIOP[31, 13:10] pins behaves as GPIOP 0x1 - GPIOP[31] pin behaves as EJTAG_TRST_N, GPIOP[12:10] pins behave as EJTAG_PCST[2:0], and GPIOP[13] pin behaves as EJTAG_DCLK
MDATA[9]	Fast Reset . When this bit is set, RC32351 drives RSTN for 64 clock cycles, used during test only. Clear this bit for normal operation. 0x0 - Normal reset: RC32351 drives RSTN for minimum of 4096 clock cycles 0x1 - Fast Reset: RC32351 drives RSTN for 64 clock cycles (test only)
MDATA[10]	 DMA Debug Enable. When this bit is set, Alternate 2 pin function, DMAP is selected. DMAP provides the DMA channel number during memory and peripheral bus DMA transactions. 0x0 - GPIOP[8, 9, 25, 23] pins behave as GPIOP 0x1 - GPIOP[8, 9, 25, 23] pins behave as DMAP[3:0]
MDATA[11]	Hold SYSCLKP Constant. For systems that do not require a SYSCLKP output and can instead use CLKP, setting this bit to a one causes the SYSCLKP output to be held at a constant level. This may be used to reduce EMI. 0x0 - Allow SYSCLKP to toggle 0x1 - Hold SYSCLKP constant
MDATA[12]	JTAG Boundary Scan Reset Enable . When this bit is set, Alternate 2 pin function, JTAG_TRST_N is selected. 0x0 - GPIOP[2] pin behaves as GPIOP 0x1 - GPIOP[2] pin behaves as JTAG_TRST_N
MDATA[13]	CPU / DMA Transaction Indicator Enable . When this bit is set, Alternate 2 pin function, CPUP is selected. 0x0 - GPIOP[4] pin behaves as GPIOP 0x1 - GPIOP[4] pin behaves as CPUP
MDATA[15:14]	Reserved. These pins must be driven low during boot configuration.

Table 2 Boot Configuration Vector Encoding

AC Timing Definitions

Below are examples of the AC timing characteristics used throughout this document.

Symbol	Definition
Tperiod	Clock period.
Tlow	Clock low. Amount of time the clock is low in one clock period.
Thigh	Clock high. Amount of time the clock is high in one clock period.
Trise	Rise time. Low to high transition time.
Tfall	Fall time. High to low transition time.
Tjitter	Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.
Tdo	Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data.
Tzd	Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.
Tdz	Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.
Tsu	Input set-up. Amount of time before the reference clock edge that the input must be valid.
Thld	Input hold. Amount of time after the reference clock edge that the input must remain valid.
Трw	Pulse width. Amount of time the input or output is active.

Table 4 AC Timing Definitions

AC Timing Characteristics

	• • •	Reference	100MHz		133	MHz			Timing
Signal	Symbol	Edge	Min	Мах	Min	Max	Unit	Conditions	Diagram Reference
Reset and System					1 1		11		
COLDRSTN	Tpw1	none	110	_	110	_	ms		Figure 6
	Trise1	none	_	5.0	—	5.0	ns		Figure 7
RSTN ¹	Tdo2	CLKP rising	4.0	10.7	4.0	10.7	ns		
MDATA[15:0] Boot Configuration Vector	Thld3	COLDRSTN rising	3	—	3	-	ns		•
INSTP	Tdo	CLKP rising	5	8	5.0	8.0	ns		
CPUP	Tdo	CLKP rising	3.5	7	3.5	7.0	ns		
DMAP	Tdo	CLKP rising	3.5	6.6	3.5	6.6	ns		
DMAREQN ²	Tpw	none	(CLKP+7)	_	(CLKP+7)	_	ns		
DMADONEN ²	Трw	none	(CLKP+7)	_	(CLKP+7)	_	ns		
DMAFIN	Tdo	CLKP rising	3.5	5.9	3.5	5.9	ns		
BRN	Tsu	CLKP rising	1.6	_	1.6	_	ns		
	Thld		0	_	0	_	ns		
BGN	Tdo	CLKP rising	3.3	5.8	3.3	5.8	ns		

(Ta = 0°C to +70°C Commercial, Vcc I/O = +3.3V \pm 5%,V_{cc} Core = +2.5V \pm 5%, V_{cc}P = +2.5V \pm 5%)

Table 5 Reset and System AC Timing Characteristics

		Reference Edge	100MHz		133MHz				Timing
Signal	Symbol		Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Memory and Peripheral Bu	s - SDRAM Acce	SS		1		11			
MDATA[31:0]	Tsu1	SDCLKINP	2.5	_	2.5	—	ns		Figure 8
	Thld1	rising	1.2	—	1.2	—	ns		Figure 9 Figure 10
	Tdo1	SYSCLKP	1.2	5.8	1.2	5.8	ns		
	Tdz1	rising	_	5.0	_	5.0	ns		
	Tzd1		1.0	_	1.0	—	ns		
MADDR[20:2], BWEN[3:0]	Tdo2	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		
CASN, RASN, SDCSN[1:0], SDWEN	Tdo3	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		
CKENP	Tdo4	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		
BDIRN	Tdo5	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		
BOEN[1:0]	Tdo6	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		
SYSCLKP rising	Tdo7	CLKP rising	0.5	5.0	0.5	5.0	ns		
SDCLKINP	Tperiod8	none	20	50	15	50	ns		
	Thigh8,Tlow8		10	_	6.0	—	ns		
	Trise8,Tfall8		_	3.0		3.0	ns		
·	Tdelay8	SYSCLKP rising	0	4.8	0	4.8	ns		

Table 6 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 2)

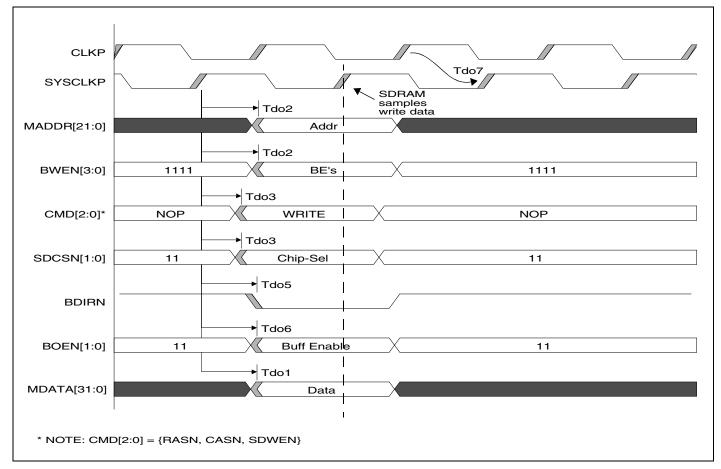


Figure 10 Memory and Peripheral Bus AC Timing Waveform - SDRAM Write Access

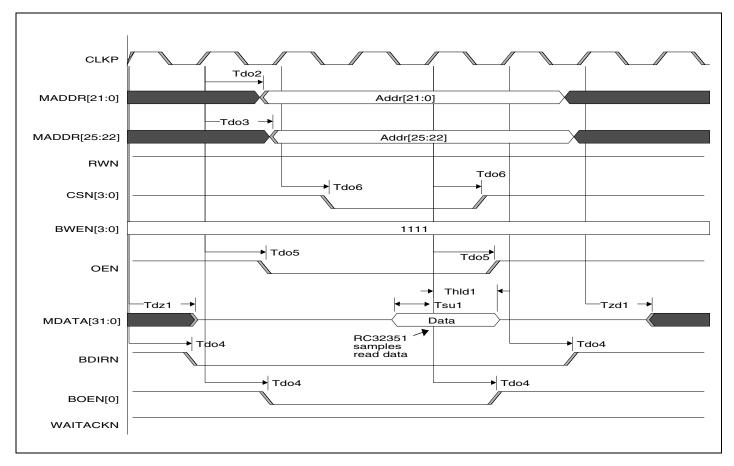


Figure 11 Memory and Peripheral Bus AC Timing Waveform - Device Read Access

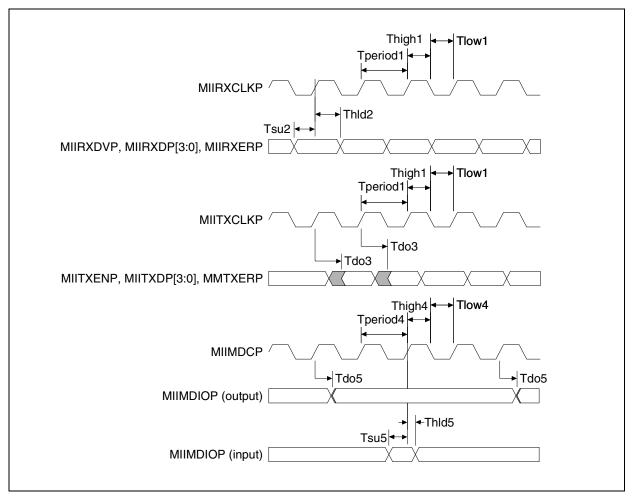
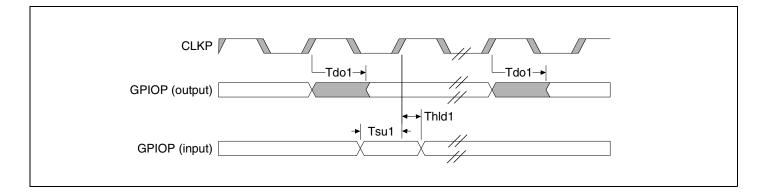
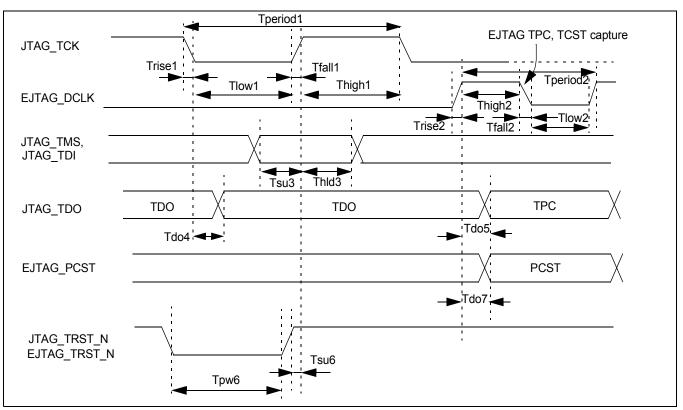


Figure 13 Ethernet AC Timing Waveform

Signal	0h.e.l	Reference	100MHz		133MHz			0	Timing
	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
GPIOP									
GPIOP[31:0] ¹	Tsu1	CLKP rising	4	—	4	—	ns		Figure 16
	Thld1		1.4	-	1.4	_	ns		
	Tdo1		2	8	2	8	ns		
GPIOP[35:32] ²	Tsu1		3	_	3	_	ns		
	Thld1		1	-	1	_	ns		
	Tdo1		3	8	3	8	ns		
¹ GPIO[31:0] can be asyr ² GPIOP[35:32] are sync		ne values are provi	ided for	ATE (te	st) only.			L	1




Figure 16 GPIOP AC Timing Waveform

Signal	Symbol	Reference	100MHz		133MHz			0	Timing
	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
EJTAG and JTAG									
JTAG_TCK	Tperiod1	none	100	—	100	—	ns		Figure 17
	Thigh1,Tlow1		40	-	40	—	ns		
	Trise1,Tfall1		_	5	-	5	ns		
EJTAG_DCLK ¹	Tperiod2	none	10.0	10.0	7.5	10.0	ns		
	Thigh2,Tlow2		2.5	-	2.5	—	ns		
	Trise2,Tfall2		_	3.5	-	3.5	ns		
JTAG_TMS, JTAG_TDI,	Tsu3	JTAG_TCK rising	3.0	_	3.0	—	ns		
JTAG_TRST_N	Thld3		1.0	-	1.0	—	ns		
JTAG_TDO	Tdo4	JTAG_TCK falling	2.0	12.0	2.0	12.0	ns		
	Tdo5	EJTAG_DCLK rising	-0.7 ²	1.0	-0.7 ²	1.0	ns		
JTAG_TRST_N	Tpw6	none	100	_	100	_	ns		
	Tsu6	JTAG_TCK rising	2	—	2	—	ns		
EJTAG_PCST[2:0]	Tdo7	EJTAG_DCLK rising	-0.3 ²	3.3	-0.3 ²	3.3	ns		

¹ EJTAG_DCLK is equal to the internal CPU pipeline clock.

 $^{2\cdot}$ A negative delay denotes the amount of time before the reference clock edge.

Table 13 JTAG AC Timing Characteristics

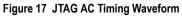


Table 14 shows the pin numbering for the Standard EJTAG connector. All the even numbered pins are connected to ground. Multiplexing of pin functions should be considered when connecting EJTAG_TRST_N and EJTAG_PCST.

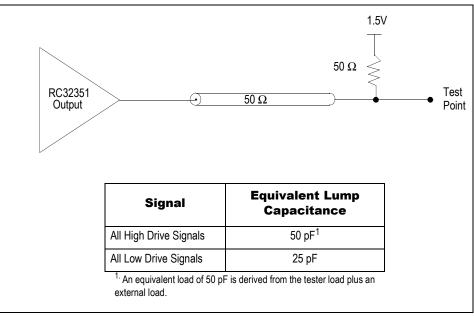

PIN	SIGNAL	RC32351 I/O	TERMINATION ¹
1	EJTAG_TRST_N	Input	10 k Ω pull-down resistor. A pull-down resistor will hold the EJTAG controller in reset when not in use if the EJTAG_TRST_N function is selected with the boot configuration vector. Refer to the User Manual.
3	JTAG_TDI	Input	10 kΩ pull-up resistor
5	JTAG_TDO	Output	33 Ω series resistor
7	JTAG_TMS	Input	10 kΩ pull-up resistor
9	JTAG_TCK	Input	10 k Ω pull-up resistor ²
11	System Reset	Input	10 k Ω pull-up resistor is used if it is combined with the system cold reset control, COLDRSTN.
13	EJTAG_PCST[0]	Output	33 Ω series resistor
15	EJTAG_PCST[1]	Output	33 Ω series resistor
17	EJTAG_PCST[2]	Output	33 Ω series resistor
19	EJTAG_DCLK	Output	33 Ω series resistor
21	Debug Boot	Input	This can be connected to the boot configuration vector to control debug boot mode if desired. Refer to Table 2 on page 12 and the RC32351 user reference manual.
23	Vccl/O	Output	Used to sense the circuit board power. Must be connected to the VCC I/O supply of the circuit board.

Table 14 Pin Numbering of the JTAG and EJTAG Target Connector

^{1.} The value of the series resistor may depend on the actual printed circuit board layout situation.

^{2.} JTAG_TCK pull-up resistor is not required according to the JTAG (IEEE1149) standard. It is indicated here to prevent a floating CMOS input when the EJTAG connector is unconnected.

Output Loading for AC Timing

USB Electrical Characteristics

	Parameter	Min	Max	Unit	Conditions
USB Interf	ace				
V _{di}	Differential Input Sensitivity	-0.2		V	I(D+)-(D-)I
V _{cm}	Differential Input Common Mode Range	0.8	2.5	V	
V _{se}	Single ended Receiver Threshold	0.8	2.0	V	
C _{in}	Transceiver Capacitance		20	pF	
l _{li}	Hi-Z State Data Line Leakage	-10	10	μs	0V < V _{in} < 3.3V
USB Upstr	eam/Downstream Port	1	1		
V _{oh}	Static Output High	2.8	3.6	V	15km <u>+</u> 5% to Gnd ^[7]
V _{ol}	Static Output Low		0.3	V	
Z _o	USB Driver Output Impedance	28	44	Ω	Including R_{ext} = 20 Ω

Table 17 USB Interface Characteristics

Power Consumption

Note: This table is based on a 2:1 CPU bus (PClock to CLKP) clock ratio.

Parameter		100MHz		133MHz		Unit	Conditions
		Typical	Max.	Typical	Max.		Conditions
I _{CC} I/O		60	110	80	130	mA	
I _{CC core}	Normal mode	300	350	400	450	mA	C _L = 0
	Standby mode ¹	240	290	320	370	mA	T _a = 25°C VccP = 2.625V (for max. values)
Power	Normal mode	0.95	1.30	1.26	1.63	W	V _{cc} core = 2.625V (for max. values)
Dissipation	Standby mode ¹	0.80	1.09	1.06	1.42	W	V_{cc} I/O = 3.46V (for max. values) VccP = 2.5V (for typical values) V_{cc} core = 2.5V (for typical values) V_{cc} I/O = 3.3V (for typical values)

^{1.} RISCore 32300 CPU core enters Standby mode by executing WAIT instructions; however, other logic continues to function. Standby mode reduces power consumption by 0.6 mA per MHz of the CPU pipeline clock, PClock.

Table 18 RC32351 Power Consumption

Power Curve

The following graph contains a power curve that shows power consumption at various bus frequencies.

Note: The system clock (CLKP) can be multiplied by 2, 3, or 4 to obtain the CPU pipeline clock (PClock) speed.

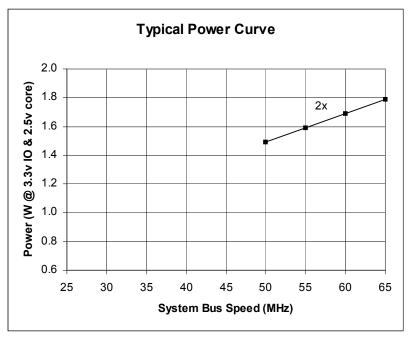


Figure 20 Typical Power Usage

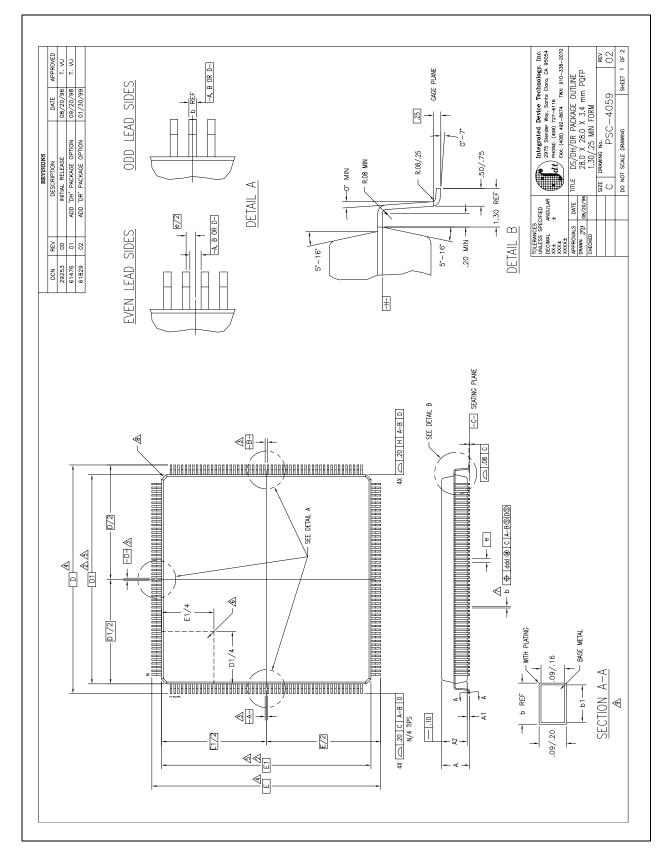
Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc} I/O	I/O Supply Voltage	-0.3	4.0	V
V _{cc} Core	Core Supply Voltage	-0.3	3.0	V
V _{cc} P	PLL Supply Voltage	-0.3	3.0	V
Vimin	Input Voltage - undershoot	-0.6	_	V
Vi	I/O Input Voltage	Gnd	V _{cc} I/O+0.5	V
Ta, Commercial	Ambient Operating Temperature	0	70	degrees C
Tstg	Storage Temperature	-40	125	degrees C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
38	Vcc Core		90	MIITXCLKP		142	Vss		194	MADDR[09]	
39	GPIOP[09]	2	91	MIITXERP		143	MDATA[07]		195	MADDR[20]	
40	GPIOP[10]	2	92	MIIRXERP		144	MDATA[23]		196	MADDR[10]	
41	GPIOP[11]	2	93	MIIRXCLKP		145	SDCLKINP		197	MADDR[21]	
42	GPIOP[12]	2	94	MIIRXDVP		146	MDATA[08]		198	CASN	
43	Vcc I/O		95	Vcc I/O		147	MDATA[24]		199	RASN	
44	GPIOP[13]	2	96	MIIRXDP[0]		148	MDATA[09]		200	SDWEN	
45	Vss		97	MIIRXDP[1]		149	MDATA[25]		201	Vcc I/O	
46	GPIOP[14]		98	MIIRXDP[2]		150	MDATA[10]		202	SDCSN[0]	
47	GPIOP[15]		99	MIIRXDP[3]		151	Vcc I/O		203	Vss	
48	GPIOP[35]		100	Vss		152	MDATA[26]		204	SDCSN[1]	
49	GPIOP[34]		101	MIIDCP		153	Vss		205	ATMINP[00]	
50	GPIOP[33]		102	MIIDIOP		154	MDATA[11]		206	ATMIOP[0]	
51	GPIOP[32]		103	RSTN		155	MDATA[27]		207	ATMIOP[1]	
52	INSTP		104	BRN		156	MDATA[12]		208	ATMINP[01]	


 Table 20:
 208-pin QFP Package Pin-Out (Part 2 of 2)

Alternate Pin Functions

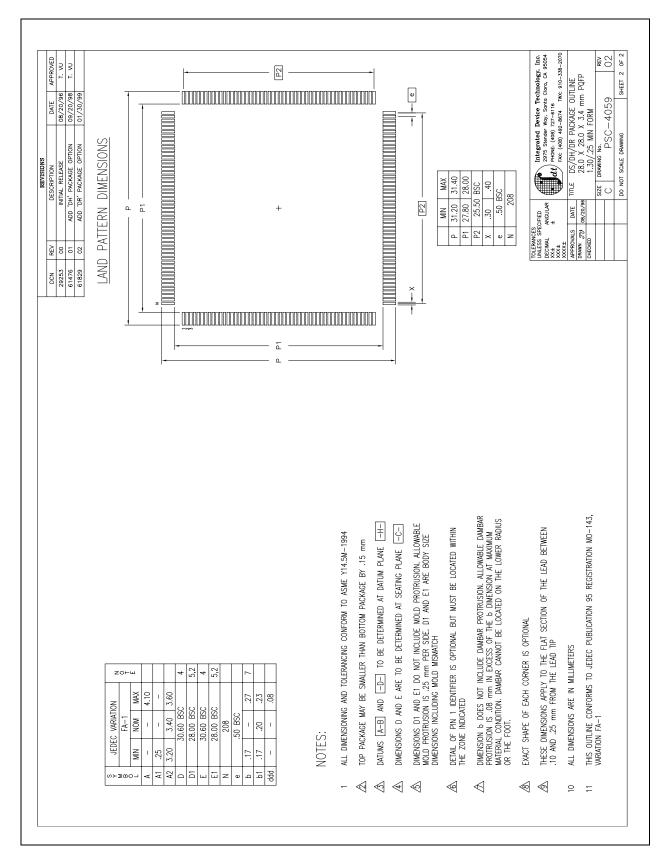
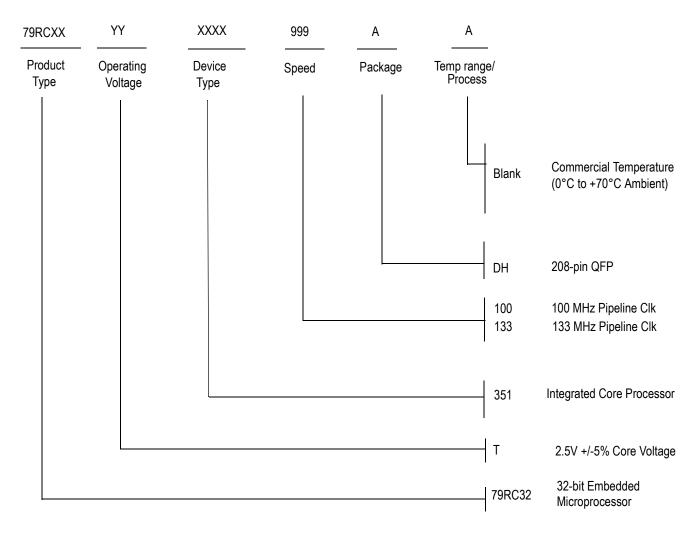

Pin	Primary	Alt #1	Alt #2	Pin	Primary	Alt #1	Alt #2
20	GPIOP[00]	U0SOUTP		55	GPIOP[17]	CSN[5]	
21	GPIOP[01]	UOSINP		56	GPIOP[18]	DMAREQN	
23	GPIOP[02]	UORIN	JTAG_TRST_N	59	GPIOP[19]	DMADONEN	
24	GPIOP[03]	U0DCRN		60	GPIOP[20]	USBSOF	
27	GPIOP[04]	U0DTRN	CPUP	62	GPIOP[21]	CKENP	
28	GPIOP[05]	U0DSRN		64	GPIOP[22]	TXADDR[0]	
33	GPIOP[06]	UORTSN		65	GPIOP[23]	TXADDR[1]	DMAP[0]
35	GPIOP[07]	UOCTSN		66	GPIOP[24]	RXADDR[0]	
37	GPIOP[08]	U1SOUTP	DMAP[3]	68	GPIOP[25]	RXADDR[1]	DMAP[1]
39	GPIOP[09]	U1SINP	DMAP[2]	71	GPIOP[27]	MADDR[22]	
40	GPIOP[10]	U1DTRN	EJTAG_PCST[0]	73	GPIOP[28]	MADDR[23]	
41	GPIOP[11]	U1DSRN	EJTAG_PCST[1]	74	GPIOP[29]	MADDR[24]	
42	GPIOP[12]	U1RTSN	EJTAG_PCST[2]	75	GPIOP[30]	MADDR[25]	
44	GPIOP[13]	U1CTSN	EJTAG_DCLK	76	GPIOP[31]	DMAFIN	EJTAG_TRST_N
54	GPIOP[16]	CSN[4]					

Table 21 Alternate Pin Functions

Package Drawing - 208-pin QFP



Package Drawing - page two

May 25, 2004

Ordering Information

Valid Combinations

79RC32T351 -100DH	208-pin QFP package, Commercial Temperature
79RC32T351 -133DH	208-pin QFP package, Commercial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: email: rischelp@idt.com phone: 408-284-8208