
Intersil - CS80C286-16 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 80C286

Number of Cores/Bus Width 1 Core, 16-Bit

Speed 16MHz

Co-Processors/DSP Math Engine; 80C287

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 68-LCC (J-Lead)

Supplier Device Package 68-PLCC (24.23x24.23)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=cs80c286-16

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/cs80c286-16-4467860
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors


The 80C286 can be single-stepped using only the CPU
clock. This state can be maintained as long as necessary.
Single step clock information allows simple interface circuitry
to provide critical information for system debug.

Static design also allows very low frequency operation
(down to DC). In a power critical situation, this can provide
low power operation since 80C286 power dissipation is
directly related to operating frequency. As the system fre-
quency is reduced, so is the operating power until, ulti-
mately, with the clock stopped in phase two of the processor
clock cycle, the 80C286 power requirement is the standby
current (5mA maximum).

80C286 Base Architecture

The 80C86, 80C88, and 80C286 CPU family all contain the
same basic set of registers, instructions, and addressing
modes. The 80C286 processor is upwardly compatible with
the 80C86 and 80C88 CPU's.

Register Set

The 80C286 base architecture has fifteen registers as
shown in Figure 1. These registers are grouped into the fol-
lowing four categories.

GENERAL REGISTERS: Eight 16-bit general purpose regis-
ters used to contain arithmetic and logical operands. Four of
these (AX, BX, CX and DX) can be used either in their
entirety as 16-bit words or split into pairs of separate 8-bit
registers.

SEGMENT REGISTERS: Four 16-bit special purpose regis-
ters select, at any given time, the segments of memory that
are immediately addressable for code, stack and data. (For
usage, refer to Memory Organization.)

BASE AND INDEX REGISTERS: Four of the general pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers may
contain base addresses or indexes to particular locations
within a segment. The addressing mode determines the spe-
cific registers used for operand address calculations.

STATUS AND CONTROL REGISTERS: Three 16-bit spe-
cial purpose registers record or control certain aspects of the
80C286 processor state. These include the Flags register
and Machine Status Word register shown in Figure 2, and
the Instruction Pointer, which contains the offset address of
the next sequential instruction to be executed.

Flags Word Description

The Flags word (Flags) records specific characteristics of
the result of logical and arithmetic instructions (bits 0, 2, 4, 6,
7 and 11) and controls the operation of the 80C286 within a
given operating mode (bits 8 and 9). Flags is a 16-bit regis-
ter. The function of the flag bits is given in Table 1.

AH AL

DL

CL

BL

DH

CH

BH

AX

DX

CX

BX

BP

SI

DI

SP

BYTE
ADDRESSABLE

(8-BIT
REGISTER

NAMES
SHOWN)

MULTIPLY/DIVIDE
I/O INSTRUCTIONS

LOOP/SHIFT/REPEAT

BASE REGISTERS

COUNT

INDEX REGISTERS

STACK POINTER

15 0

0707

SPECIAL
REGISTER

FUNCTIONS

16-BIT
REGISTER

NAME

GENERAL
REGISTERS

CS

DS

SS

ES

015

CODE SEGMENT

SEGMENT
REGISTERS

SELECTOR

DATA SEGMENT
SELECTOR

STACK SEGMENT
SELECTOR

EXTRA SEGMENT
SELECTOR

F

015

FLAGS

INSTRUCTION

MACHINE

POINTER

STATUS WORD

IP

MSW

STATUS AND CONTROL
REGISTERS

FIGURE 1. REGISTER SET
80C286
7



TABLE 1. FLAGS WORD BIT FUNCTIONS

BIT POSITION NAME FUNCTION

0 CF Carry Flag - Set on high-order bit carry or borrow; cleared otherwise.

2 PF Parity Flag - Set if low-order 8 bits of result contain an even number of 1 bits; cleared otherwise.

4 AF Set on carry from or borrow to the low order four bits of AL; cleared otherwise.

6 ZF Zero Flag - Set if result is zero; cleared otherwise.

7 SF Sign Flag - Set equal to high-order bit of result (0 if positive, 1 if negative).

11 OF Overflow Flag - Set if result is a too-large positive number or a too-small negative number (excluding 
sign-bit) to fit in destination operand; cleared otherwise.

8 TF Single Step Flag - Once set, a single step interrupt occurs after the next instruction executes. TF is 
cleared by the single step interrupt.

9 IF Interrupt-Enable Flag - When set, maskable interrupts will cause the CPU to transfer control to an inter-
rupt vector specified location.

10 DF Direction Flag - Causes string instructions to auto decrement the appropriate index registers when set. 
Clearing DF causes auto increment.

CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE
DIRECTION FLAG

SPECIAL FIELDS:
I/O PRIVILEGE LEVEL
NESTED TASK FLAG

TS EM MP PE

CFPFAFZFSFTFIFDFOFIOPLNTFLAGS:

1415 13 12 11 10 9 8 7 6 5 4 3 2 1 0

012315

OVERFLOW
SIGN

ZERO
AUXILIARY CARRY

PARITY

CARRY

STATUS FLAGS:

MSW:

RESERVED TASK SWITCH
PROCESSOR EXTENSION EMULATED

MONITOR PROCESSOR EXTENSION

PROTECTION ENABLE

FIGURE 2. STATUS AND CONTROL REGISTER BIT FUNCTIONS
80C286
8



Memory Organization

Memory is organized as sets of variable-length segments. Each
segment is a linear contiguous sequence of up to 64K (216) 8-
bit bytes. Memory is addressed using a two-component
address (a pointer) that consists of a 16-bit segment selector
and a 16-bit offset. The segment selector indicates the desired
segment in memory. The offset component indicates the
desired byte address within the segment. (See Figure 3).

All instructions that address operands in memory must spec-
ify the segment and the offset. For speed and compact
instruction encoding, segment selectors are usually stored in
the high speed segment registers. An instruction need spec-
ify only the desired segment register and offset in order to
address a memory operand.

Most instructions need not explicitly specify which segment
register is used. The correct segment register is automati-
cally chosen according to the rules of Table 3. These rules
follow the way programs are written (see Figure 4) as inde-
pendent modules that require areas for code and data, a
stack, and access to external data areas.

Special segment override instruction prefixes allow the
implicit segment register selection rules to be overridden for
special cases. The stack, data and extra segments may
coincide for simple programs. To access operands not resid-
ing in one of the four immediately available segments, a full
32-bit pointer or a new segment selector must be loaded.

Addressing Modes

The 80C286 provides a total of eight addressing modes for
instructions to specify operands. Two addressing modes are
provided for instructions that operate on register or immedi-
ate operands:

REGISTER OPERAND MODE: The operand is located in
one of the 8 or 16-bit general registers.

IMMEDIATE OPERAND MODE: The operand is included in
the instruction.

Six modes are provided to specify the location of an operand in
a memory segment. A memory operand address consists of
two 16-bit components: segment selector and offset. The seg-
ment selector is supplied by a segment register either implicitly
chosen by the addressing mode or explicitly chosen by a seg-
ment override prefix. The offset is calculated by summing any
combination of the following three address elements:

the displacement (an 8 or 16-bit immediate value contained
in the instruction)

the base (contents of either the BX or BP base registers)

the index (contents of either the SI or Dl index registers)

Any carry out from the 16-bit addition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

TABLE 3. SEGMENT REGISTER SELECTION RULES

MEMORY
REFERENCE

NEEDED

SEGMENT
REGISTER

USED
IMPLICIT SEGMENT
SELECTION RULE

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any 
memory reference which uses BP 
as a base register.

Local Data Data (DS) All data references except when
relative to stack or string destination

External
(Global) Data

Extra (ES) Alternate data segment and
destination of string operation

POINTER

OFFSETSEGMENT

31 16 15 0
OPERAND SELECTED

SEGMENT

MEMORY

SELECTED

FIGURE 3. TWO COMPONENT ADDRESS CODE

DATA

CODE

DATA

MEMORY

CPU

CODE

DATA

STACK

EXTRA

SEGMENT
REGISTERS

MODULE A

MODULE B

PROCESS
STACK

PROCESS
DATA

BLOCK 1

PROCESS
DATA

BLOCK 2

FIGURE 4. SEGMENTED MEMORY HELPS STRUCTURE
SOFTWARE
80C286
11



Combinations of these three address elements define the six
memory addressing modes, described below.

DIRECT MODE: The operand's offset is contained in the
instruction as an 8 or 16-bit displacement element.

REGISTER INDIRECT MODE: The operand's offset is in
one of the registers SI, Dl, BX or BP.

BASED MODE: The operand's offset is the sum of an 8 or
16-bit displacement and the contents of a base register (BX
or BP).

INDEXED MODE: The operand's offset is the sum of an 8 or 16-
bit displacement and the contents of an index register (SI or Dl).

BASED INDEXED MODE: The operand's offset is the sum
of the contents of a base register and an index register.

BASED INDEXED MODE WITH DISPLACEMENT: The
operand's offset is the sum of a base register's contents, an
index register's contents, and an 8 or 16-bit displacement.

Data Types

The 80C286 directly supports the following data types:

Integer: A signed binary numeric value contained in an 8-
bit byte or a 16-bit word. All operations assume a
2's complement representation. Signed 32 and
64-bit integers are supported using the 80287
Numeric Data Processor.

Ordinal: An unsigned binary numeric value contained in an
8-bit byte or 16-bit word.

Pointer: A 32-bit quantity, composed of a segment selec-
tor component and an offset component. Each
component is a 16-bit word.

String: A contiguous sequence of bytes or words. A string
may contain from 1 byte to 64K bytes.

ASClI: A byte representation of alphanumeric and control
characters using the ASClI standard of character
representation.

BCD: A byte (unpacked) representation of the decimal
digits 0-9.

Packed A byte (packed) representation of two decimal
BCD: digits 0-9 storing one digit in each nibble of the

byte.

Floating A signed 32, 64 or 80-bit real number representa-
Point: tion. (Floating point operands are supported using

the 80287 Numeric Processor extension).

Figure 5 graphically represents the data types supported by
the 80C286.

NOTE: Supported by 80C286/80C287 Numeric Data Processor 
Configuration

SIGNED
BYTE

UNSIGNED
BYTE

SIGNED
WORD

SIGNED
DOUBLE

WORD
(NOTE)

SIGN BIT

SIGN BIT

SIGNED
QUAD
WORD
(NOTE)

SIGN BIT

UNSIGNED
WORD

BINARY
CODED

DECIMAL
(BCD)

ASCII

STRING

PACKED
BCD

POINTER

FLOATING
POINT (NOTE)

SIGN BIT

MAGNITUDE

7 0

MAGNITUDE

7 0

MSB

15

MAGNITUDE

MSB

14 +1 08 7 0

SIGN BIT

31 +3 +2 16 +1 015 0

MAGNITUDE

MAGNITUDE

MSB

MSB

63
+6+7 +5 +4 +3 +2 +1 0

48 47 32 31 16 15 0

MAGNITUDE

MSB

15
+1

0
0

BCD

7 +N 0

DIGIT N
BCD

7 +1 0

DIGIT 1
BCD

7 0 0

DIGIT 0

• • •

• • •

• • •

• • •

ASCII

7 +N 0

CHARACTERN

ASCII

7 +1 0

CHARACTER1

ASCII

7 0 0

CHARACTER0

7 +N 0

MOST
SIGNIFICANT DIGIT

7 +1 0 7 0 0

LEAST
SIGNIFICANT DIGIT

BYTE/WORD N BYTE/WORD 1 BYTE/WORD 0

7/15 +N 0 7/15 +1 0 7/15 0 0

SELECTOR OFFSET

31 +3 16 +1 0 0

EXPONENT MAGNITUDE

79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 0

+1 15

FIGURE 5. 80C286 SUPPORTED DATA TYPES
80C286
12



I/O Space

The I/O space consists of 64K 8-bit ports, 32K 16-bit ports, or
a combination of the two. I/O instructions address the I/O
space with either an 8-bit port address, specified in the
instruction, or a 16-bit port address in the DX register. 8-bit
port addresses are zero extended such that A15-A8 are LOW.
I/O port addresses 00F8(H) through 00FF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program location.
The old program address (CS:lP) and machine state (Flags)
are saved on the stack to allow resumption of the interrupted
program. Interrupts fall into three classes: hardware initiated,
INT instructions, and instruction exceptions. Hardware initi-
ated interrupts occur in response to an external input and
are classified as non-maskable or maskable. Programs may
cause an interrupt with an INT instruction. Instruction excep-
tions occur when an unusual condition which prevents fur-
ther instruction processing is detected while attempting to
execute an instruction. The return address from an excep-
tion will always point to the instruction causing the exception
and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0-31,
some of which are used for instruction exceptions, are
reserved. For each interrupt, an 8-bit vector must be sup-
plied to the 80C286 which identifies the appropriate table
entry. Exceptions supply the interrupt vector internally. INT
instructions contain or imply the vector and allow access to
all 256 interrupts. Maskable hardware initiated interrupts
supply the 8-bit vector to the CPU during an interrupt
acknowledge bus sequence. Nonmaskable hardware inter-
rupts use a predefined internally supplied vector.

Maskable Interrupt (INTR)

The 80C286 provides a maskable hardware interrupt request
pin, INTR. Software enables this input by setting the interrupt
flag bit (IF) in the flag word. All 224 user-defined interrupt
sources can share this input, yet they can retain separate
interrupt handlers. An 8-bit vector read by the CPU during the
interrupt acknowledge sequence (discussed in System Inter-
face section) identifies the source of the interrupt.

The processor automatically disables further maskable inter-
rupts internally by resetting the IF as part of the response to
an interrupt or exception. The saved flag word will reflect the
enable status of the processor prior to the interrupt. Until the
flag word is restored to the flag register, the interrupt flag will
be zero unless specifically set. The interrupt return instruc-
tion includes restoring the flag word, thereby restoring the
original status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided. NMI
has higher priority than INTR. A typical use of NMI would be
to activate a power failure routine. The activation of this input
causes an interrupt with an internally supplied vector value
of 2. No external interrupt acknowledge sequence is per-
formed.

While executing the NMI servicing procedure, the 80C286
will service neither further NMI requests, INTR requests, nor
the processor extension segment overrun interrupt until an
interrupt return (lRET) instruction is executed or the CPU is
reset. If NMI occurs while currently servicing an NMI, its
presence will be saved for servicing after executing the first
IRET instruction. IF is cleared at the beginning of an NMI
interrupt to inhibit INTR interrupts.

TABLE 4. INTERRUPT VECTOR ASSIGNMENTS

FUNCTION
INTERRUPT

NUMBER
 RELATED

INSTRUCTIONS

DOES RETURN ADDRESS
POINT TO INSTRUCTION
CAUSING EXCEPTION?

Divide Error Exception 0 DlV, lDlV Yes

Single Step Interrupt 1 All

NMI Interrupt 2 INT 2 or NMI Pin

Breakpoint Interrupt 3 INT 3

INTO Detected Overflow Exception 4 INTO No

BOUND Range Exceeded Exception s BOUND Yes

Invalid Opcode Exception 6 Any Undefined Opcode Yes

Processor Extension Not Available Exception 7 ESC or WAIT Yes

Reserved - Do Not Use 8 - 15

Processor Extension Error Interrupt 16 ESC or WAIT

Reserved 17 - 31

User Defined 32 - 255
80C286
13



80C286 Real Address Mode

The 80C286 executes a fully upward-compatible superset of
the 80C86 instruction set in real address mode. In real
address mode the 80C286 is object code compatible with
80C86 and 80C88 software. The real address mode archi-
tecture (registers and addressing modes) is exactly as
described in the 80C286 Base Architecture section of this
Functional Description.

Memory Size

Physical memory is a contiguous array of up to 1,048,576
bytes (one megabyte) addressed by pins A0 through A19
and BHE. A20 through A23 should be ignored.

Memory Addressing

In real address mode physical memory is a contiguous array
of up to 1,048,576 bytes (one megabyte) addressed by pin
A0 through A19 and BHE. Address bits A20-A23 may not
always be zero in real mode. A20-A23 should not be used by
the system while the 80C286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the upper
16-bits of a 20-bit segment address. The lower four bits of
the 20-bit segment address are always zero. Segment
addresses, therefore, begin on multiples of 16 bytes. See
Figure 6 for a graphic representation of address information.

All segments in real address mode are 64K bytes in size and
may be read, written, or executed. An exception or interrupt
can occur if data operands or instructions attempt to wrap
around the end of a segment (e.g. a word with its low order
byte at offset FFFF(H) and its high order byte at offset
0000(H)). If, in real address mode, the information contained

in a segment does not use the full 64K bytes, the unused
end of the segment may be overlaid by another segment to
reduce physical memory requirements.

TABLE 8. RECOMMENDED MSW ENCODINGS FOR PROCESSOR EXTENSION CONTROL

TS MP EM RECOMMENDED USE

INSTRUCTION
CAUSING

EXCEPTION 7

0 0 0 Initial encoding after RESET. 80C286 operation is identical to 80C86/88. None

0 0 1 No processor extension is available. Software will emulate its function. ESC

1 0 1 No processor extension is available. Software will emulate its function. The 
current processor extension context may belong to another task.

ESC

0 1 0 A processor extension exists. None

1 1 0 A processor extension exists. The current processor extension context may 
belong to another task. The exception 7 on WAIT allows software to test for 
an error pending from a previous processor extension operation.

ESC or WAIT

TABLE 9. REAL ADDRESS MODE ADDRESSING INTERRUPTS

FUNCTION
INTERRUPT

NUMBER RELATED INSTRUCTIONS
RETURN ADDRESS

BEFORE INSTRUCTION

Interrupt table limit too small exception 8 INT vector is not within table limit Yes

Processor extension segment overrun 
interrupt

9 ESC with memory operand extending beyond offset 
FFFF(H)

No

Segment overrun exception 13 Word memory reference with offset = FFFF(H) or an 
attempt to execute past the end of a segment

Yes

0000 OFFSET OFFSET
ADDRESS

0000
SEGMENT
SELECTOR

ADDER

19 0

015

15 0

20-BIT PHYSICAL
MEMORY ADDRESS

SEGMENT
ADDRESS

FIGURE 6. 80C286 REAL ADDRESS MODE ADDRESS
CALCULATION
80C286
15



Data segments (S = 1, E = 0) may be either read-only or read-
write as controlled by the W bit of the access rights byte.
Read-only (W = 0) data segments may not be written into.
Data segments may grow in two directions, as determined by
the Expansion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment containing
a stack. The limit field for a data segment descriptor is inter-
preted differently depending on the ED bit (see Table 10).

A code segment (S = 1, E = 1) may be execute-only or exe-
cute/read as determined by the Readable (R) bit. Code seg-
ments may never be written into and execute-only code
segments (R = 0) may not be read. A code segment may
also have an attribute called conforming (C). A conforming
code segment may be shared by programs that execute at
different privilege levels. The DPL of a conforming code seg-
ment defines the range of privilege levels at which the seg-
ment may be executed (refer to privilege discussion below).
The limit field identifies the last byte of a code segment.

System Segment Descriptors (S = 0, Type = 1-3)

In addition to code and data segment descriptors, the pro-
tected mode 80C286 defines System Segment Descriptors.
These descriptors define special system data segments
which contain a table of descriptors (Local Descriptor Table
Descriptor) or segments which contain the execution state of
a task (Task State Segment Descriptor).

Table 11 gives the formats for the special system data seg-
ment descriptors. The descriptors contain a 24-bit base
address of the segment and a 16-bit limit. The access byte
defines the type of descriptor, its state and privilege level.
The descriptor contents are valid and the segment is in
physical memory if P = 1. If P = 0, the segment is not valid.
The DPL field is only used in Task State Segment descrip-
tors and indicates the privilege level at which the descriptor
may be used (see Privilege). Since the Local Descriptor
Table descriptor may only be used by a special privileged
instruction, the DPL field is not used. Bit 4 of the access byte
is 0 to indicate that it is a system control descriptor. The type
field specifies the descriptor type as indicated in Table 11.

Gate Descriptors (S = 0, Type = 4-7)

Gates are used to control access to entry points within the
target code segment. The gate descriptors are call gates,
task gates, interrupt gates and trap gates. Gates provide a
level of indirection between the source and destination of the
control transfer. This indirection allows the CPU to automati-
cally perform protection checks and control entry point of the
destination. Call gates are used to change privilege levels
(see Privilege), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify interrupt ser-
vice routines. The interrupt gate disables interrupts (resets
IF) while the trap gate does not.

Table 12 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to the
descriptor of the target segment and the entry point offset.
The destination selector in an interrupt gate, trap gate, and
call gate must refer to a code segment descriptor. These gate
descriptors contain the entry point to prevent a program from
constructing and using an illegal entry point. Task gates may
only refer to a task state segment. Since task gates invoke a
task switch, the destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a destina-
tion selector does not refer to the correct descriptor type. The
word count field is used in the call gate descriptor to indicate
the number of parameters (0-31 words) to be automatically
copied from the caller’s stack to the stack of the called routine
when a control transfer changes privilege levels. The word
count field is not used by any other gate descriptor.

The access byte format is the same for all descriptors. P = 1
indicates that the gate contents are valid. P = 0 indicates the
contents are not valid and causes exception 11 if refer-
enced. DPL is the descriptor privilege level and specifies
when this descriptor may be used by a task (refer to privilege
discussion below). Bit 4 must equal 0 to indicate a system
control descriptor. The type field specifies the descriptor type
as indicated in Table 12.

RESERVED †

P DPL 0 TYPE BASE 23 - 16

BASE 15 - 0

LIMIT 15 - 0

15

7 0 7

78 0

0

+6

+4

+2

0

+7

+5

+3

+1

† MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

FIGURE 10. SYSTEM SEGMENT DESCRIPTOR

TABLE 11. SYSTEM SEGMENT DESCRIPTOR FORMAT FIELDS

NAME VALUE DESCRIPTION

TYPE 1 Available Task State Segment (TSS)

2 Local Descriptor Table

3 Busy Task State Segment (TSS)

P 0 Descriptor contents are not valid

1 Descriptor contents are valid

DPL 0-3 Descriptor Privilege Level

BASE 24-Bit
Number

Base Address of special system data 
segment in real memory

LIMIT 16-Bit
Number

Offset of last byte in segment
80C286
19



The LGDT and LLDT instructions load the base and limit of
the global and local descriptor tables. LGDT and LLDT are
privileged, i.e. they may only be executed by trusted pro-
grams operating at level 0. The LGDT instruction loads a six
byte field containing the 16-bit table limit and 24-bit physical
base address of the Global Descriptor Table as shown in
Figure 15. The LDT instruction loads a selector which refers
to a Local Descriptor Table descriptor containing the base
address and limit for an LDT, as shown in Table 11.

Interrupt Descriptor Table

The protected mode 80C286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure 16),
used to define up to 256 interrupts. It may contain only task
gates, interrupt gates and trap gates. The IDT (Interrupt
Descriptor Table) has a 24-bit physical base and 16-bit limit
register in the CPU. The privileged LlDT instruction loads
these registers with a six byte value of identical form to that
of the LGDT instruction (see Figure 16 and Protected Mode
lnitialization).

References to IDT entries are made via INT instructions, exter-
nal interrupt vectors, or exceptions. The IDT must be at least
256 bytes in size to allocate space for all reserved interrupts.

Privilege

The 80C286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and access
to descriptors (and their associated segments) within a task.
Four-level privilege, as shown in Figure 17, is an extension
of the users/supervisor mode commonly found in minicom-
puters. The privilege levels are numbered 0 through 3. Level
0 is the most privileged level. Privilege levels provide protec-
tion within a task. (Tasks are isolated by providing private
LDT’s for each task.) Operating system routines, interrupt
handlers, and other system software can be included and
protected within the virtual address space of each task using
the four levels of privilege. Each task in the system has a
separate stack for each of its privilege levels.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege affects the use of instructions and
descriptors. Descriptor and selector privilege only affect
access to the descriptor.

CPU

GDT LIMIT

GDT BASE
24-BIT PHYS AD

LDT
DESCR

SELECTOR

LDT LIMIT

LDT BASE
24-BIT PHYS AD

PROGRAM INVISIBLE
(AUTOMATICALLY

LOADED
FROM LDT DESCR

WITHIN GDT)

GDT

CURRENT
LDT

IN
C

R
E

A
S

IN
G

M
E

M
O

R
Y

A
D

D
R

E
S

S

MEMORY

LDT1

LDTn

15 0

0

015

23

23

15

FIGURE 14. LOCAL AND GLOBAL DESCRIPTOR TABLE
DEFINITION

RESERVED †

BASE 15 - 0

LIMIT 15 - 0

15

7 0 7

78 0

0

+4

+2

0

+5

+3

+1

† MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

BASE 23 - 16

FIGURE 15. GLOBAL DESCRIPTOR TABLE AND INTERRUPT 
DESCRlPTOR TABLE DATA TYPE

IDT LIMIT

IDT BASE

INTERRUPT
DESCRIPTOR
TABLE

MEMORY

0

15

23

0

GATE FOR
INTERRUPT #n

CPU

GATE FOR
INTERRUPT #1

GATE FOR
INTERRUPT #n-1

GATE FOR
INTERRUPT #0

IN
C

R
E

A
S

IN
G

M
E

M
O

R
Y

A
D

D
R

E
S

S

(IDT)

FIGURE 16. INTERRUPT DESCRIPTOR TABLE DEFINITION

APPLICATIONS

OS EXTENSIONS

SYSTEM
SERVICES

KERNAL
PL = 0
MOST

PRIVILEGED

CPU
ENFORCED
SOFTWARE
INTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

PL = 1

PL = 2

PL = 3

NOTE: PL becomes numerically lower as privilege level increases.

FIGURE 17. HIERARCHICAL PRIVILEGE LEVELS
80C286
21



function of the IRET instruction. If NT = 0, the IRET instruc-
tion performs the regular current task by popping values off
the stack; when NT = 1, IRET performs a task switch opera-
tion back to the previous task.

When a CALL, JMP, or INT instruction initiates a task switch,
the old (except for case of JMP) and new TSS will be
marked busy and the back link field of the new TSS set to
the old TSS selector. The NT bit of the new task is set by
CALL or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. NT may also be set or
cleared by POPF or IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a selec-
tor that references a busy task state segment causes
Exception 13.

Processor Extension Context Switching

The context of a processor extension is not changed by the
task switch operation. A processor extension context need
only be changed when a different task attempts to use the
processor extension (which still contains the context of a pre-
vious task). The 80C286 detects the first use of a processor
extension after a task switch by causing the processor exten-
sion not present exception (7). The interrupt handler may then
decide whether a context change is necessary.

Whenever the 80C286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proces-
sor extension context may belong to a different task than
the current one. The processor extension not present
exception (7) will occur when attempting to execute an
ESC or WAIT instruction if TS = 1 and a processor exten-
sion is present (MP = 1 in MSW).

Pointer Testing Instructions

The 80C286 provides several instructions to speed pointer
testing and consistency checks for maintaining system integ-
rity (see Table 18). These instructions use the memory man-
agement hardware to verify that a selector value refers to an

appropriate segment without risking an exception. A condition
flag (ZF) indicates whether use of the selector or segment will
cause an exception.

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80C286 performs the double fault
exception (8). If an exception occurs during processing of
the double fault exception, the 80C286 will enter shutdown.
During shutdown no further instructions or exceptions are
processed. Either NMI (CPU remains in protected mode) or
RESET (CPU exits protected mode) can force the 80C286
out of shutdown. Shutdown is externally signalled via a
HALT bus operation with A1 LOW.

Protected Mode lnitialization

The 80C286 initially executes in real address mode after
RESET. To allow initialization code to be placed at the top of
physical memory. A23-20 will be HIGH when the 80C286
performs memory references relative to the CS register until
CS is changed. A23-20 will be zero for references to the DS,
ES, or SS segments. Changing CS in real address mode will
force A23-20 LOW whenever CS is used again. The initial
CS:lP value of F000:FFF0 provides 64K bytes of code space
for initialization code without changing CS.

Protected mode operation requires several registers to be
initialized. The GDT and IDT base registers must refer to a
valid GDT and IDT. After executing the LMSW instruction to
set PE, the 80C286 must immediately execute an intraseg-
ment JMP instruction to clear the instruction queue of
instructions decoded in real address mode.

To force the 80C286 CPU registers to match the initial pro-
tected mode state assumed by software, execute a JMP
instruction with a selector referring to the initial TSS used in
the system. This will load the task register, local descriptor
table register, segment registers and initial general register
state. The TR should point at a valid TSS since any task
switch operation involves saving the current task state.

TABLE 18. 80C286 POINTER TEST INSTRUCTIONS

INSTRUCTION OPERANDS FUNCTION

ARPL Selector,
Register

Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric maximum of 
current selector RPL value and the RPL value in the register. Set zero flag if selector RPL was 
changed by ARPL.

VERR Selector VERify for Read: sets the zero flag if the segment referred to by the selector can be read.

VERW Selector VERify for Write: sets the zero flag if the segment referred to by the selector can be written.

LSL Register,
Selector

Load Segment Limit: reads the segment limit into the register if privilege rules and descriptor type 
allow. Set zero flag if successful.

LAR Register,
Selector

Load Access Rights: reads the descriptor access rights byte into the register if privilege rules al-
low. Set zero flag if successful.
80C286
25



Bus Cycle Termination

At maximum transfer rates, the 80C286 bus alternates
between the status and command states. The bus status
signals become inactive after TS so that they may correctly
signal the start of the next bus operation after the completion
of the current cycle. No external indication of TC exists on
the 80C286 local bus. The bus master and bus controller
enter TC directly after TS and continue executing TC cycles
until terminated by the assertion of READY.

READY Operation

The current bus master and 82C288 bus controller terminate
each bus operation simultaneously to achieve maximum bus
operation bandwidth. Both are informed in advance by
READY active (open-collector output from 82C284) which
identifies the last TC cycle of the current bus operation. The
bus master and bus controller must see the same sense of
the READY signal, thereby requiring READY to be synchro-
nous to the system clock.

Synchronous Ready

The 82C284 clock generator provides READY synchroniza-
tion from both synchronous and asynchronous sources (see
Figure 24). The synchronous ready input (SRDY) of the
clock generator is sampled with the falling edge of CLK at

the end of phase 1 of each TC. The state of SRDY is then
broadcast to the bus master and bus controller via the
READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are asyn-
chronous to the system clock. As a result, their ready out-
puts cannot be guaranteed to meet the 82C284 SRDY setup
and hold time requirements. But the 82C284 asynchronous
ready input (ARDY) is designed to accept such signals. The
ARDY input is sampled at the beginning of each TC cycle by
82C284 synchronization logic. This provides one system
CLK cycle time to resolve its value before broadcasting it to
the bus master and bus controller.

ARDY or ARDYEN must be HIGH at the end of TS. ARDY
cannot be used to terminate the bus cycle with no wait
states.

Each ready input of the 82C284 has an enable pin
(SRDYEN and ARDYEN) to select whether the current bus
operation will be terminated by the synchronous or asyn-
chronous ready. Either of the ready inputs may terminate a
bus operation. These enable inputs are active low and have
the same timing as their respective ready inputs. Address
decode logic usually selects whether the current bus opera-
tion should be terminated by ARDY or SRDY.

FIGURE 23. CMDLY CONTROLS THE LEADING EDGE OF COMMAND SIGNAL

TS TC TC TS TC

READ CYCLE N -1 READ CYCLE N

VALID ADDR NVALID ADDR (N-1)A23 - A0

PROC

CLK

CLK

S1 • S0

ALE

READY

RD

CMDLY

RD

CMDLY

EX1

EX2

φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2
80C286
30



FIGURE 25. BACK TO BACK READ-WRITE CYCLE

TI TS TC TS TC

READ CYCLE WRITE CYCLE

φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2

TI

A23 - A0

CLK

S0 • S1

MRDC

MWTC

DT/R

D15 - D0

DEN

VALID
READ DATA

VALID ADDR VALID ADDR

VALID WRITE DATA
80C286
33



Local Bus Usage Priorities

The 80C286 local bus is shared among several internal units
and external HOLD requests. In case of simultaneous
requests, their relative priorities are:

Halt or Shutdown Cycles

The 80C286 externally indicates halt or shutdown conditions
as a bus operation. These conditions occur due to a HLT
instruction or multiple protection exceptions while attempting
to execute one instruction. A halt or shutdown bus operation
is signalled when S1, S0 and COD/lNTA are LOW and M/IO
is HIGH. A1 HIGH indicates halt, and A1 LOW indicates
shutdown. The 82C288 bus controller does not issue ALE,
nor is READY required to terminate a halt or shutdown bus
operation.

During halt or shutdown, the 80C286 may service PEREQ or
HOLD requests. A processor extension segment overrun
during shutdown will inhibit further service of PEREQ. Either
NMl or RESET will force the 80C286 out of either halt or
shutdown. An INTR, if interrupts are enabled, or a processor
extension segment overrun exception will also force the
80C286 out of halt.

System Configurations

The versatile bus structure of the 80C286 micro-system, with
a full complement of support chips, allows flexible configura-
tion of a wide range of systems. The basic configuration,
shown in Figure 30, is similar to an 80C86 maximum mode
system. It includes the CPU plus an 82C59A interrupt con-
troller, 82C284 clock generator, and the 82C288 Bus Con-
troller. The 80C86 latches (82C82 and 82C83H) and
transceivers (82C86H and 82C87H) may be used in an
80C286 microsystem.

As indicated by the dashed lines in Figure 30, the ability to
add processor extensions is an integral feature of 80C286
based microsystems. The processor extension interface
allows external hardware to perform special functions and
transfer data concurrent with CPU execution of other instruc-
tions. Full system integrity is maintained because the
80C286 supervises all data transfers and instruction execu-
tion for the processor extension.

An 80C286 system which includes the 80287 numeric proces-
sor extension (NPX) uses this interface. The 80C286/80287
system has all the instructions and data types of an 80C86 or
80C88 with 8087 numeric processor extension. The 80287
NPX can perform numeric calculations and data transfers
concurrently with CPU program execution. Numerics code
and data have the same integrity as all other information pro-
tected by the 80C286 protection mechanism.

The 80C286 can overlap chip select decoding and address
propagation during the data transfer for the previous bus
operation. This information is latched into the 82C82/83H's
by ALE during the middle of a TS cycle. The latched chip
select and address information remains stable during the
bus operation while the next cycle's address is being
decoded and propagated into the system. Decode logic can
be implemented with a high speed PROM or PAL.

The optional decode logic shown in Figure 30 takes advan-
tage of the overlap between address and data of the 80C286
bus cycle to generate advanced memory and I/O select sig-
nals. This minimizes system performance degradation
caused by address propagation and decode delays. In addi-
tion to selecting memory and I/O, the advanced selects may
be used with configurations supporting local and system
buses to enable the appropriate bus interface for each bus
cycle. The COD/lNTA and M/IO signals are applied to the
decode logic to distinguish between interrupt, I/O, code, and
data bus cycles.

By adding the 82289 bus arbiter chip the 80C286 provides a
Multibus system bus interface as shown in Figure 31. The
ALE output of the 82C288 for the Multibus bus is connected to
its CMDLY input to delay the start of commands one system
CLK as required to meet Multibus address and write data
setup times. This arrangement will add at least one extra TC
state to each bus operation which uses the Multibus.

A second 82C288 bus controller and additional latches and
transceivers could be added to the local bus of Figure 31.
This configuration allows the 80C286 to support an on-board
bus for local memory and peripherals, and the Multibus for
system bus interfacing.

(Highest) Any transfers which assert LOCK either explic-
itly (via the LOCK instruction prefix) or implic-
itly (i.e. some segment descriptor accesses, an
interrupt acknowledge sequence, or an XCHG
with memory).

The second of the two byte bus operations
required for an odd aligned word operand.

The second or third cycle of a processor exten-
sion data transfer.

Local bus request via HOLD input.

Processor extension data operand transfer via
PEREQ input.

Data transfer performed by EU as part of an
instruction.

(Lowest) An instruction prefetch request from BU. The
EU will inhibit prefetching two processor clocks
in advance of any data transfers to minimize
waiting by the EU for a prefetch to finish.
80C286
37



NOTES:

18. Data is ignored.

19. First INTA cycle should have at least one wait state inserted to meet 82C59A minimum INTA pulse width.

20. Second INTA cycle must have at least one wait state inserted since the CPA will not drive A23-A0, BHE, and LOCK until after the first TC 
state. The CPU imposed one/clock delay prevents has contention between cascade address buffer being disabled by MCE ↓ and address
outputs.

21. Without the wait state, the 80C286 address will not be valid for a memory cycle started immediately after the second INTA cycle. The 
82C59A also requires one wait state for minimum INTA pulse width.

22. LOCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a multi-master system. LOCK 
is also active for the second INTA cycle.

23. A23-A0 exits three-state OFF during φ2 of the second TC in the INTA cycle.

FIGURE 29. INTERRUPT ACKNOWLEDGE SEQUENCE

TC

φ2φ1

INTA CYCLE 1

TS

φ2φ1

TC

φ2φ1

TC

φ2φ1

TI

φ2φ1

TI

φ2φ1

TI

φ2φ1

TS

φ2φ1

TC

φ2φ1

TC

φ2φ1

TS

φ2φ1

INTA CYCLE 2

BUS CYCLE

CLK

S1 • S0

M/IO,

LOCK

A23 - A0

BHE

D15 - D0

READY

INTA

MCE

ALE

DT/R

DEN

(SEE NOTE 21)

(SEE NOTE 22) (SEE NOTE 22)
DON’T CARE

DON’T CARE

PREVIOUS
WRITE CYCLE

(SEE NOTE 18)
VECTOR

(SEE NOTE 20)

NOT READY READY

(SEE NOTE 19)

NOT READY READY

COD/INTA

TYPE

80
C

28
6

82
C

28
8

80C286
38



Waveforms

FIGURE 34. MAJOR CYCLE TIMING
NOTE: The modified timing is due to the CMDLY signal being active.

3

2
12A

1

12B

19

13

13

13
19

13

9

8
14

11

10 10

11

15

14

13

30
29

24

13

1212

13

22

23
21

20

19

29 30

13

12

17

19 20

19

12

11

19

16

TI

φ2 φ2 φ2φ1

TS

φ2φ1

TC

φ2φ1

TS

φ2φ1

TC

φ1

TC

WRITE CYCLE

BUS

VALID IF TS

READ
(TS OR TS)

ILLUSTRATED WITH ONE
WAIT STATE

READ CYCLE
ILLUSTRATED WITH ZERO

WAIT STATES
CYCLE TYPE

VOH

CLK

VOL

S1 • S0

A23 - A0
M/IO, COD,

BHE, LOCK

READY

SRDY + SRDYEN

ARDY + ARDYEN

PLCK

CMDLY

MWTC

MRDC

DT/R

DEN

ALE

INTA

D15 - D0

VALID ADDRESSVALID ADDRESS

VALID CONTROL VALID CONTROL

VALID WRITE DATA

VALID READ DATA

(SEE NOTE 1)

82
C

28
8

82
C

28
4

80
C

28
6

80C286
47



ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED, 80C286 TRANSFERS TO/FROM MEMORY BYTE-AT-A-TIME WITH TWO MEMORY 
CYCLES.

FIGURE 38. 80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY
NOTES:

54. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus opera-
tion will be either a memory read at operand address or I/O read at port address 00FA(H).

55. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is
3 x  - 12AMAX - MIN. The actual configuration dependent, maximum time is: 3 x  - 12AMAX - MIN + N x 2 x . N is the
number of extra TC states added to either the first or second bus operation of the processor extension data operand transfer sequence.

FIGURE 39. INITIAL 80C286 PIN STATE DURING RESET
NOTES:

56. Setup time for RESET ↑ may be violated with the consideration that φ1 of the processor clock may begin one system CLK period later.

57. Setup and hold times for RESET ↓ must be met for proper operation, but RESET ↓ may occur during φ1 or φ2.

58. The data bus is only guaranteed to be in a high impedance state at the time shown.

Waveforms  (Continued)

1

12A 12B

4
5

TI φ2

BUS
CYCLE TYPE

VCH

CLK

VCL

φ1

S1 • S0

A23 - A0

M/IO,

PEACK

PEREQ

φ2 φ2 φ1 φ2 φ1 φ2 φ1
TS TC TS TC TI

I/O READ IF PROC. EXT. TO MEMORY
MEMORY READ IF MEMORY TO PROC. EXT.

MEMORY WRITE IF PROC. EXT. TO MEMORY
I/O WRITE IF MEMORY TO PROC. EXT.

MEMORY ADDRESS IF PROC. EXT. TO MEMORY TRANSFER I/O PORT
ADDRESS 00FA(H) IF MEMORY TO PROC. EXT. TRANSFER

I/O PORT ADDRESS 00FA(H) IF PROC. EXT. TO MEMORY TRANSFER
MEMORY ADDRESS IF MEMORY TO PROC. EXT. TRANSFER

(SEE NOTE 54)

(SEE NOTE 55)

COD INTA

1 4 1 4 1

67

12B

13

13

13

15

16

19

φ2

BUS
CYCLE TYPE

VCH

CLK

VCL

φ1

RESET

A23 - A0

(SEE NOTE 56)

φ2 φ1 φ2 φ1 φ2 φ1 φ2

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

S1 • S0

BHE

M/IO

COD/INTA

LOCK

DATA

HLDA

PEACK

TX TX TX TI

AT LEAST (SEE NOTE 57)

(SEE NOTE 58)

16 CLK PERIODS
80C286
50



Real Address Mode Only

1. This is a protected mode instruction. Attempted execu-
tion in real address mode will result in an undefined
opcode exception (6).

2. A segment overrun exception (13) will occur if a word 
operand references at offset FFFF(H) is attempted.

3. This instruction may be executed in real address mode to 
initialize the CPU for protected mode.

4. The IOPL and NT fields will remain 0.

5. Processor extension segment overrun interrupt (9) will 
occur if the operand exceeds the segment limit.

Either Mode

6. An exception may occur, depending on the value of the 
operand.

7. LOCK is automatically asserted regardless of the pres-
ence or absence of the LOCK instruction prefix.

8. LOCK does not remain active between all operand 
transfers.

Protected Virtual Address Mode Only

9. A general protection exception (13) will occur if the mem-
ory operand cannot be used due to either a segment limit
or access rights violation. If a stack segment limit is vio-
lated, a stack segment overrun exception (12) occurs.

10. For segment load operations, the CPL, RPL and DPL 
must agree with privilege rules to avoid an exception.
The segment must be present to avoid a not-present
exception (11). If the SS register is the destination and a

segment not-present violation occurs, a stack exception
(12) occurs.

11. All segment descriptor accesses in the GDT or LDT made 
by this instruction will automatically assert LOCK to main-
tain descriptor integrity in multiprocessor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to 
another code segment will cause a general protection
exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL ≠ 0.

14. A general protection exception (13) occurs if CPL > IOPL.

15. The IF field of the flag word is not updated if CPL > IOPL. 
The IOPL field is updated only if CPL = 0.

16. Any violation of privilege rules as applied to the selector 
operand does not cause a protection exception; rather,
the instruction does not return a result and the zero flag
is cleared.

17. If the starting address of the memory operand violates a 
segment limit, or an invalid access is attempted, a gen-
eral protection exception (13) will occur before the ESC
instruction is executed. A stack segment overrun excep-
tion (12) will occur if the stack limit is violated by the
operand’s starting address. If a segment limit is violated
during an attempted data transfer then a processor
extension segment overrun exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET or IRET 
instruction must be in the defined limit of a code segment
or a general protection exception (13) will occur.

80C286 Instruction Set Summary

FUNCTION FORMAT CLOCK COUNT COMMENTS

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE

DATA TRANSFER

MOV = Move

Register to Register/Mem-
ory

1000100w mod reg
r/m

2, 3
(Note 59)

2, 3
(Note 59)

2 9

Register/Memory to Regis-
ter

1000101w mod reg
r/m

2, 5
(Note 59)

2, 5
(Note 59)

2 9

Immediate to Register/Mem-
ory

1100011w   mod 000
r/m

data data if
w = 1

2, 3
(Note 59)

2, 3
(Note 59)

2 9

Immediate to Register 1011w reg data data if w =
1

 2 2

Memory to Accumulator 1010000w addr-low addr-high 5 5 2 9
80C286
52



Accumulator to Memory 1010001w addr-low addr-high 3 3 2 9

Register/Memory to Seg-
ment Register

10001110 mod 0 reg
r/m

2, 5
(Note 59)

17, 19
(Note 59)

2 9, 10, 11

Segment Register to Regis-
ter/Memory

10001100 mod 0 reg
r/m

2, 3
(Note 59)

2, 3
(Note 59)

2 9

PUSH = Push

Memory 11111111 mod 110
r/m

5
(Note 59)

5
(Note 59)

2 9

Register 01010 reg 3 3 2 9

Segment Register 000 reg
110

3 3 2 9

Immediate 011010s0 data data if s =
0

3 3 2 9

PUSHA = Push All 01100000 17 17 2 9

POP = Pop

Memory 10001111 mod 000
r/m

5
(Note 59)

5
(Note 59)

2 9

Register 01011 reg 5 5 2 9

Segment Register 000 reg
111

(reg ≠ 01) 5 20 2 9, 10, 11

POPA = Pop All 01100001 19 19 2 9

XCHG = Exchange

Register/Memory with Reg-
ister

1000011w mod reg
r/m

3, 5
(Note 59)

3, 5
(Note 59)

2, 7 7, 9

Register with Accumulator 10010 reg 3 3

IN = Input From

Fixed Port 1110010w port 5 5 14

Variable Port 1110110w 5 5 14

OUT = Output To

Fixed Port 1110011w port 3 3 14

Variable Port 1110111w 3 3 14

XLAT = Translate Byte to
AL

11010111 5 5 9

80C286 Instruction Set Summary  (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE
80C286
53



Immediate from Regis-
ter/Memory

100000sw mod 101
r/m

data data if
sw = 01

3, 7
(Note 59)

3, 7
(Note 59)

2 9

Immediate from Accumula-
tor

0010110w data data if w =
1

3 3

SBB = Subtract with Borrow

Reg/Memory and Register
to
Either

000110dw mod reg
r/m

2, 7
(Note 59)

2, 7
(Note 59)

2 9

Immediate from Regis-
ter/Memory

100000sw mod 011
r/m

data data if
sw = 01

3, 7
(Note 59)

3, 7
(Note 59)

2 9

Immediate from Accumula-
tor

0001110w data data if w =
1

3 3

DEC = Decrement

Register/Memory 1111111w mod 001
r/m

2, 7
(Note 59)

2, 7
(Note 59)

2 9

Register 01001 reg 2 2

CMP = Compare

Register/Memory with Reg-
ister

0011101w mod reg
r/m

2, 6
(Note 59)

2, 6
(Note 59)

2 9

Register with Regis-
ter/Memory

0011100w mod reg
r/m

2, 7
(Note 59)

2, 7
(Note 59)

2 9

Immediate with Regis-
ter/Memory

100000sw mod 111
r/m

data data if
sw = 01

3, 6
(Note 59)

3, 6
(Note 59)

2 9

Immediate with Accumula-
tor

0011110w data data if w =
1

3 3

NEG = Change Sign 1111011w mod 011
r/m

2 7
(Note 59)

2 7

AAA = ASCII Adjust for Add 00110111 3 3

DAA = Decimal Adjust for
Add

00100111 3 3

AAS = ASCII Adjust for
Subtract

00111111 3 3

DAS = Decimal Adlust for
Subtract

00101111 3 3

MUL = Multiply (Unsigned) 1111011w mod 100
r/m

80C286 Instruction Set Summary  (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE
80C286
55



Register - Byte 13 13

Register - Word 21 21

Memory - Byte 16
(Note 59)

16
(Note 59)

2 9

Memory - Word 24
(Note 59)

24
(Note 59)

2 9

IMUL = Integer Multiply
(Signed)

1111011w mod 101
r/m

Register - Byte 13 13

Register - Word 21 21

Memory - Byte 16
(Note 59)

16
(Note 59)

2 9

Memory - Word 24
(Note 59)

24
(Note 59)

2 9

IMUL = Interger Immediate
Multiply (Signed)

011010s1 mod reg
r/m

data data if s =
0

21, 24
(Note 59)

21, 24
(Note 59)

2 9

DIV = Divide (Unsigned) 1111011w mod 110
r/m

Register - Byte 14 14 6 6

Register - Word 22 22 6 6

Memory - Byte 17
(Note 59)

17
(Note 59)

2, 6 6, 9

Memory - Word 25
(Note 59)

25
(Note 59)

2, 6 6, 9

IDIV = Integer Divide
(Signed)

1111011w mod 111
r/m

Register - Byte 17 17 6 6

Register - Word 25 25 6 6

Memory - Byte 20
(Note 59)

20
(Note 59)

2, 6 6, 9

Memory - Word 28
(Note 59)

28
(Note 59)

2, 6 6, 9

AAM = ASCII Adjust for
Multiply

 11010100 00001010 16 16

80C286 Instruction Set Summary  (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE
80C286
56



Immediate Data and Regis-
ter/Memory

1111011w mod 000
r/m

data data if w =
1

3, 6
(Note 59)

3, 6
(Note 59)

2 9

Immediate Data and Accu-
mulator

1010100w data data if w =
1

3 3

OR = Or

Reg/Memory and Register
to
Either

000010dw mod reg
r/m

2, 7
(Note 59)

2, 7
(Note 59)

2 9

Immediate to Regis-
ter/Memory

1000000w mod 001
r/m

  data data if w =
1

3, 7
(Note 59)

3, 7
(Note 59)

2 9

Immediate to Accumulator 0000110w data data if w =
1

3 3

XOR = Exclusive or

Reg/Memory and Register
to
Either

001100dw mod reg
r/m

2, 7
(Note 59)

2, 7
(Note 59)

2 9

Immediate to Regis-
ter/Memory

1000000w mod reg
r/m

data data if w =
1

3, 7
(Note 59)

3, 7
(Note 59)

2 9

Immediate to Accumulator 0011010w data data if w =
1

3 3

NOT = Invert Regis-
ter/Memory

1111011w mod 010
r/m

2, 7
(Note 59)

2, 7
(Note 59)

2 9

STRING MANIPULATION

MOVS = Move Byte/Word 1010010w 5 5 2 9

CMPS = Compare
Byte/Word

1010011w 8 8 2 9

SCAS = Scan Byte/Word 1010111w 7 7 2 9

LODS = Load Byte/Word to
AL/AX 

1010110w 5 5 2 9

STOS = Store Byte/Word
from AL/A 

1010101w 3 3 2 9

INS = Input Byte/Word from
DX Port

0110110w 5 5 2 9, 14

OUTS = Output Byte/Word
to
DX Port

0110111w 5 5 2 9, 14

80C286 Instruction Set Summary  (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE

REAL
ADDRES
S
MODE

PRO-
TECTED
VIRTUAL
ADDRESS
MODE
80C286
58


