

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	51.34MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 13x12b; D/A 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08mp12vwl

Email: info@E-XFL.COM

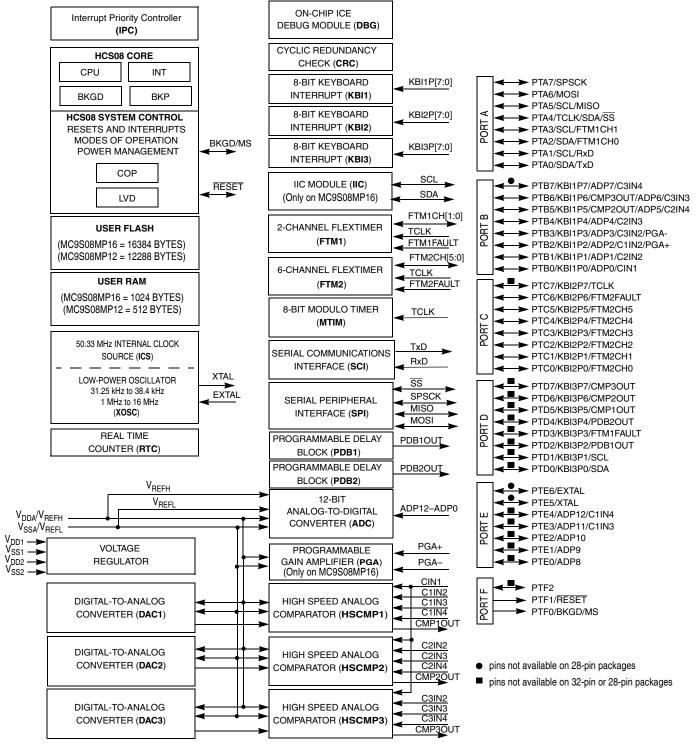

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin A	ssignments4		2.13 Programmable Gain Amplifier (PGA) Characteristics	26
		rical Characteristics		2.14 AC Characteristics	
	2.1	Introduction		2.14.1 Control Timing	
	2.2	Parameter Classification		2.14.2 FTM Module Timing	
	2.3	Absolute Maximum Ratings		2.14.3 MTIM Module Timing	
	2.4	Thermal Characteristics10		2.14.4 SPI	
	2.5	ESD Protection and Latch-Up Immunity		2.15 Flash Memory Specifications	33
	2.6	DC Characteristics		2.16 EMC Performance	33
	2.7	Supply Current Characteristics		2.16.1 Radiated Emissions	33
	2.8	External Oscillator (XOSC) Characteristics 20	3	Ordering Information	34
	2.9	Internal Clock Source (ICS) Characteristics		3.1 Device Numbering Scheme	35
	2.10	ADC Characteristics	4	Package Information	35
	2.11	Digital to Analog (DAC) Characteristics	5	Related Documentation	
	2.12	High Speed Comparator (HSCMP) Characteristics 26	6	Revision History	35

Notes: When PTF1 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pull-up device.

When PTF0 is configured as BKGD, pin becomes bi-directional.

 $\ensuremath{V_{DD2}}$ pad is tied internally on 32-pin and 28-pin packages,

V_{SS2} pad is tied internally on 28-pin packages

Figure 1. MC9S08MP16 Series Block Diagram

MC9S08MP16 Series Data Sheet, Rev. 2

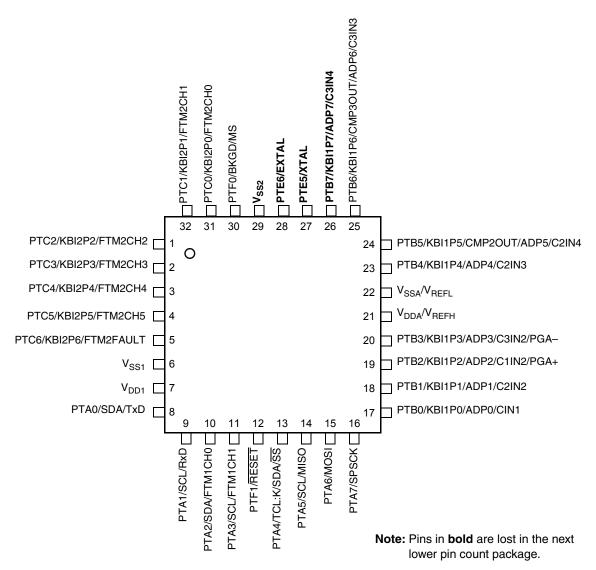


Figure 3. MC9S08MP16 Series in 32-Pin LQFP Package

Pin Assignments

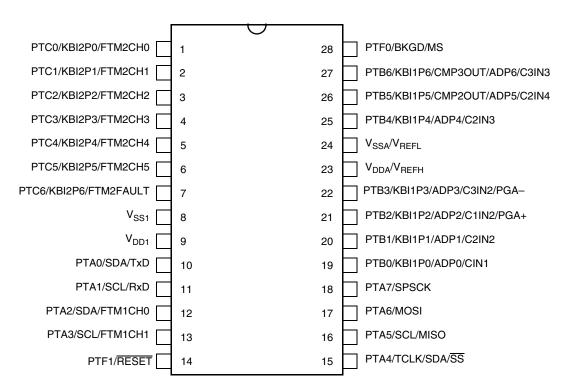


Figure 4. MC9S08MP16 Series in 28-Pin SOIC Package

Table 1. Pin Availability by Package Pin-Count (continued)

I	Pin Numbe	er		< Lowest	Priority	> Highest	
48	32 LQFP	28	Port Pin	Alt 1	Alt 2	Alt3	Alt4
35	_	_	PTE4		ADP12 ⁶	C1IN4 ⁶	
36	23	25	PTB4	KBI1P4		ADP4 ⁶	C2IN3 ⁶
37	24	26	PTB5	KBI1P5	CMP2OUT ²	ADP5 ⁶	C2IN4 ⁶
38	25	27	PTB6	KBI1P6	CMP3OUT ³	ADP6 ⁶	C3IN3 ⁶
39	26	_	PTB7	KBI1P7		ADP7 ⁶	C3IN4 ⁶
40	27	_	PTE5	XTAL			
41	28	_	PTE6	EXTAL			
42	29	_					V _{SS2}
43	_	_					V_{DD2}
44	30	28	PTF0	BKGD	MS		
45	31	1	PTC0	KBI2P0	FTM2CH0		
46	32	2	PTC1	KBI2P1	FTM2CH1		
47	1	3	PTC2	KBI2P2	FTM2CH2		
48	2	4	PTC3	KBI2P3	FTM2CH3		

¹ TCLK pin can be repositioned using TCLKPS in SOPT2. Default reset location is PTC7.

2 Electrical Characteristics

2.1 Introduction

This section contains electrical and timing specifications for the MC9S08MP16 Series of microcontrollers available at the time of publication.

² HSCMP2 output CMP2OUT can be repositioned using the CMP2OPS in the SOPT2 register. Default reset location is PTD6.

³ HSCMP3 output CMP3OUT can be repositioned using the CMP3OPS in the SOPT2 register. Default reset location is PTD7.

Pin is open drain with an internal pullup that is always enabled. Pin does not contain a clamp diode to V_{DD} and should not be driven above V_{DD}. The voltage measured on the internally pulled up RESET will not be pulled to V_{DD}. The internal gates connected to this pin are pulled to V_{DD}.

⁵ IIC pins SDA and SCL can be repositioned using IICPS in SOPT2. Default reset locations are PTD0 and PTD1.

⁶ If ADC, HSCMP, or PGA is enabling a shared analog input pin, each has access to the pin.

2.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 4. Thermal Characteristics

Num	С	Rating	Symbol	Consumer & Industrial	Automotive	Unit
1	_	Operating temperature range (packaged)	T _A	-40 to 105	-40 to 125	°C
2	D	Maximum junction temperature	T _J	115	135	°C
3	D	Thermal resistance ^{1,2} single-layer board				
		48-pin LQFP		80	80	
		32-pin LQFP	$\theta_{\sf JA}$	85	_	°C/W
		28-pin SOIC		71	_	
4	D	Thermal resistance ^{1,2} four-layer board				
		48-pin LQFP		56	56	
		32-pin LQFP	$\theta_{\sf JA}$	57	_	°C/W
		28-pin SOIC		48	_	

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_{\rm D} = P_{\rm int} + P_{\rm I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

MC9S08MP16 Series Data Sheet, Rev. 2

² Junction-to-ambient natural convection

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human	Series resistance	R1	1500	Ω
Body	Storage capacitance	С	100	pF
	Number of pulses per pin	_	3	
Latch-up	Minimum input voltage limit		- 2.5	V
	Maximum input voltage limit		7.5	V

Table 5. ESD and Latch-up Test Conditions

Table 6. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V_{HBM}	± 2000	_	V
2	Charge device model (CDM)	V _{CDM}	± 500	_	V
3	Latch-up current at T _A = 125°C	I _{LAT}	± 100	_	mA

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

2.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 7. DC Characteristics

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
1	_	Operating Voltage	V_{DD}		2.7	_	5.5	V
2	_	Analog Supply voltage delta to $V_{DD} (V_{DD} - V_{DDA})^{(2)}$	ΔV_{DDA}		_	0	±100	mV
3		Analog Ground voltage delta to V _{SS} (V _{SS} – V _{SSA}) ⁽²⁾	ΔV _{SSA}			0	±100	mV

Table 7. DC Characteristics (continued)

Num	С	Chara	cteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
	С	All I/O	pins (except PTF1/RESET)		5 V, I _{Load} = -4 mA	V _{DD} – 1.5	_	_	
	Р		low-drive strength		5 V, I _{Load} = -2 mA	V _{DD} – 0.8	_	_	
4	С	Output high		V _{OH}	3 V, $I_{Load} = -1 \text{ mA}$	V _{DD} – 0.8	_	_	V
4	С	voltage			5 V, $I_{Load} = -20 \text{ mA}$	V _{DD} – 1.5	_	_	
	Р		high-drive strength		5 V, $I_{Load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	
	С				3 V, $I_{Load} = -5 \text{ mA}$	V _{DD} – 0.8	_	_	
5	D	Output high current	Max total I _{OH} for all ports	I _{OHT}	V _{OUT} < V _{DD}	0	_	-100	mA
	С		All I/O pins		5 V, I _{Load} = 4 mA	_	_	1.5	
	Р		(except PTF1/RESET)		5 V, I _{Load} = 2 mA	_	_	0.8	
6	С		low-drive strength	V_{OL}	3 V, I _{Load} = 1 mA	_	_	0.8	V
0	С		All I/O pins		5 V, I _{Load} = 20 mA	_	_	1.5	
	Р	Output low	(Except PTF1/RESET)		5 V, I _{Load} = 10 mA	_	_	0.8	
	С	voltage	high-drive strength		3 V, I _{Load} = 5 mA	_	_	0.8	
7	С		PTF1/RESET		5 V, I _{Load} = 3.2 mA	_	_	1.5	
8	Р				5 V, I _{Load} = 1.6 mA	_	_	0.8	
9	С				3 V, I _{Load} = 0.8 mA	_	_	0.8	
10	D	Output low current	Max total I _{OL} for all ports	I _{OLT}	V _{OUT} > V _{SS}	0	_	100	mA
11	Р	Input high voltage; all digit	tal inputs	V _{IH}	5V	0.65 x V _{DD}	_	_	V
''	С				3V	0.7 x V _{DD}	_	_	
12	Р	Input low voltage; all digita	al inputs	V _{IL}	5V	_	_	0.35 x V _{DD}	V
12	С				3V	_	_	0.35 x V _{DD}	
13	С	Input hysteresis		V _{hys}		0.06 x V _{DD}			V
14	Р	Input leakage current (per	pin)	I _{In}	$V_{In} = V_{DD}$ or V_{SS}	_	_	1	μΑ
	Р	Hi-Z (off-st	ate) leakage current (per pin)						
15			input/output port pins	$ I_{OZ} $	$V_{In} = V_{DD}$ or V_{SS}	_	_	1	μΑ
			PTF1/RESET, PTE5/XTAL pins		$V_{In} = V_{DD}$ or V_{SS}	_	_	2	μА
		Pullup or Pulldown ³ resist	ors; when enabled						
16	Р		I/O pins	R _{PU} ,R _{PD}		17	37	52	kΩ
	С		PTF1/RESET ⁴	R _{PU}		17	37	52	kΩ
	D	DC injection current 5, 6, 7,	8						
			Single pin limit		$V_{IN} > V_{DD}$	0	_	2	mA
17				I _{IC}	$V_{IN} < V_{SS}$	0	_	-0.2	mA
			Total MCU limit, includes		$V_{IN} > V_{DD}$	0	_	25	mA
			sum of all stressed pins		$V_{IN} < V_{SS}$	0	_	- 5	mA

MC9S08MP16 Series Data Sheet, Rev. 2

Table 7. DC Characteristics (continued)

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
13	С	Input Capacitance, all pins	C _{In}		_	_	8	pF
14	С	RAM retention voltage	V_{RAM}		_	0.6	1.0	V
15	С	POR re-arm voltage ⁹	V _{POR}		0.9	1.4	2.0	V
16	D	POR re-arm time	t _{POR}		10	_	_	μS
17	Р	Low-voltage detection threshold — high range $ {\rm V_{DD}} \ {\rm falling} \\ {\rm V_{DD}} \ {\rm rising} $	V _{LVD1}		3.9 4.0	4.0 4.1	4.1 4.2	V
18	Р	Low-voltage detection threshold — low range $ V_{DD} \text{ falling} \\ V_{DD} \text{ rising} $	V _{LVD0}		2.48 2.54	2.56 2.62	2.64 2.70	V
19	Р	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}		4.5 4.6	4.6 4.7	4.7 4.8	V
20	Р	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}		4.2 4.3	4.3 4.4	4.4 4.5	V
21	Р	Low-voltage warning threshold low range 1 V_{DD} falling V_{DD} rising	V _{LVW1}		2.84 2.90	2.92 2.98	3.00 3.06	V
22	Р	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising			2.66 2.72	2.74 2.80	2.82 2.88	V
23	Т	Low-voltage inhibit reset/recover hysteresis	V _{hys}	5 V	_	100	_	mV
				3 V	_	60	_	
24	Р	Bandgap voltage reference at 25°C ¹⁰]		1.18	1.202	1.21	V
25	Р	Bandgap voltage reference across temperature range ¹⁰	V _{BG}		1.17		1.22	V

¹ Typical values are measured at 25°C. Characterized, not tested

² DC potential difference.

³ When keyboard interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors.

⁴ The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured externally on the pin.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- 7 All functional non-supply pins except PTF1/ $\overline{\text{RESET}}$ are internally clamped to V_{SS} and V_{DD}.
- 8 The PTF1/RESET pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .
- Maximum is highest voltage that POR is guaranteed.
- 10 Factory trimmed at $V_{DD} = 5.0 \text{ V}$

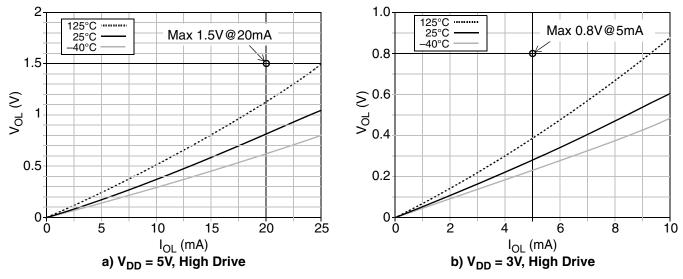


Figure 5. Typical V_{OL} vs I_{OL} , High Drive Strength (except PTF1/RESET)

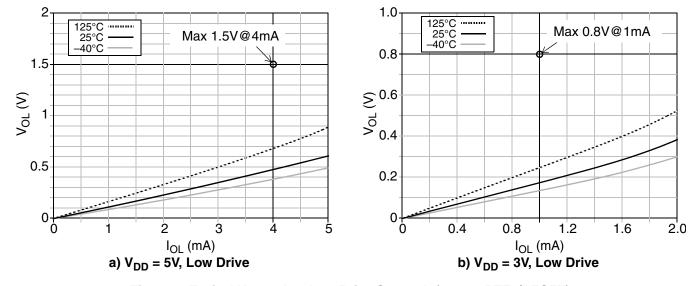


Figure 6. Typical V_{OL} vs I_{OL}, Low Drive Strength (except PTF1/RESET)

Table 8. Supply Current Characteristics (continued)

Num	С	Parameter	Symbol	V _{DD} (V)	Typ ¹	Max ²	Unit
10	С	LVD adder to stop3 (LVDE = LVDSE = 1)	S3I _{DDLVD}	5	110	180	μΑ
10				3	90	160	μΑ
11	С	Adder to stop3 for oscillator enabled ⁸ (EREFSTEN =1)	S3I _{DDOSC}	5,3	5	8	μА

Typical values are based on characterization data at 25°C. See Figure 9 through Figure 14 for typical curves across temperature and voltage.

- ² Max values in this column apply for the full operating temperature range of the device unless otherwise noted.
- ³ All modules except ADC active, ICS configured for FBELP, and does not include any dc loads on port pins
- ⁴ All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins
- ⁵ All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins
- ⁶ Stop currents are tested in production for 25°C on all parts. Tests at other temperatures depend upon the part number suffix and maturity of the product. Freescale may eliminate a test insertion at a particular temperature from the production test flow once sufficient data has been collected and is approved.
- Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode.
- 8 Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal and low power mode (HGO = 0).

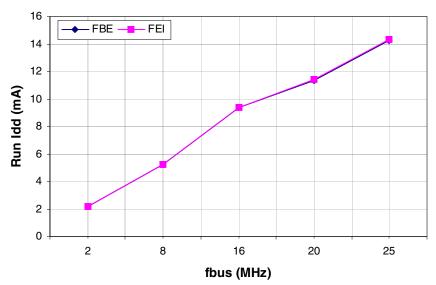


Figure 9. Typical Run I_{DD} vs. Bus Frequency ($V_{DD} = 5V$)

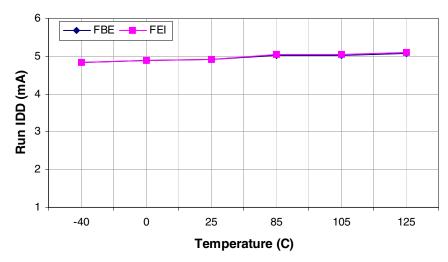


Figure 12. Typical Run I_{DD} vs. Temperature (V_{DD} = 3V, f_{bus} = 8MHz)

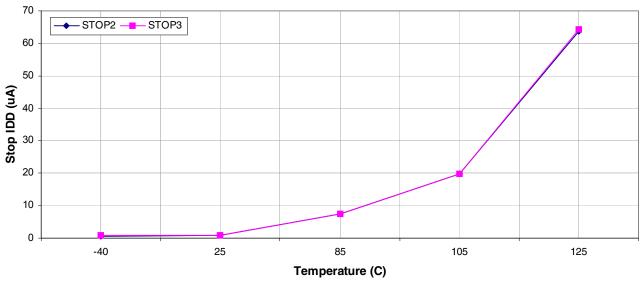


Figure 13. Typical Stop I_{DD} vs. Temperature ($V_{DD} = 5V$)

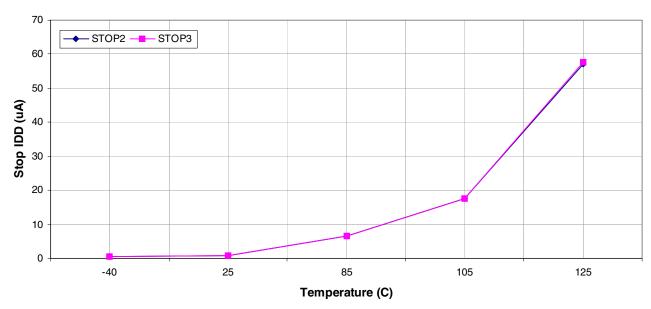
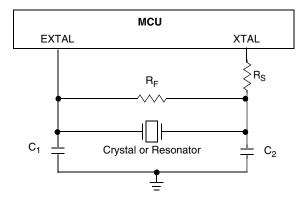


Figure 14. Typical Stop I_{DD} vs. Temperature ($V_{DD} = 3V$)

2.8 External Oscillator (XOSC) Characteristics

Table 9. Oscillator Electrical Specifications


Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)					
		Low range (RANGE = 0)	f _{lo}	32	_	38.4	kHz
1	С	High range (RANGE = 1) FEE^2 or FBE^3 mode	f _{hi}	1	_	16	MHz
		High range (RANGE = 1, HGO = 1) FBELP mode	f _{hi-hgo}	1	_	16	MHz
		High range (RANGE = 1, HGO = 0) FBELP mode	f _{hi-lp}	1	_	8	MHz
2	_	Load capacitors	C _{1,} C ₂		See crystal or resonator manufacturer's recommendation		
		Feedback resistor					
3	_	Low range (32 kHz to 100 kHz)	R_{F}	_	10	_	МΩ
		High range (1 MHz to 16 MHz)		_	1	_	
		Series resistor					
		Low range, low gain (RANGE = 0, HGO = 0)		_	0	_	
		Low range, high gain (RANGE = 0, HGO = 1)		_	100	_	
4		High range, low gain (RANGE = 1, HGO = 0)	R _S	_	0	_	kΩ
4		High range, high gain (RANGE = 1, HGO = 1)	i is				N22
		≥ 8 MHz		_	0	0	
		4 MHz		_	0	10	
		1 MHz		_	0	20	

MC9S08MP16 Series Data Sheet, Rev. 2

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
		Crystal start-up time ⁴					
	Т	Low range, low gain (RANGE = 0, HGO = 0)	t CSTL-LP	_	200	_	
5		Low range, high gain (RANGE = 0, HGO = 1)	t CSTL-HGO	_	400	_	ms
		High range, low gain (RANGE = 1, HGO = 0) ⁵	t CSTH-LP	_	5	_	
		High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTH-HGO	1	20	_	
		Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)					
	_	FEE mode ²		0.03125	_	51.34	MHz
6	1	FBE mode ³	f _{extal}	0	_	51.34	MHz
		FBELP mode		0	_	51.34	MHz

Typical data was characterized at 5.0 V, 25°C or is recommended value.

2.9 Internal Clock Source (ICS) Characteristics

Table 10. ICS Frequency Specifications

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1a	Р	Average internal reference frequency — factory trimmed (consumer- and industrial-qualified devices) at V _{DD} = 5 V and temperature = 25°C	f _{int_t}	_	32.768	_	kHz
1b	Р	Average internal reference frequency — factory trimmed (automotive-qualified devices) at V _{DD} = 5 V and temperature = 25°C	f _{int_t}	_	31.25	_	kHz
2	Р	Internal reference frequency — user trimmed	f _{int_t}	31.25	_	39.06	kHz
3	T	Internal reference start-up time	t _{irefst}	_	60	100	μS

 $^{^2}$ The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

 $^{^{3}\,}$ The input clock source must be divided using RDIV to less than or equal to 39.0625 kHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

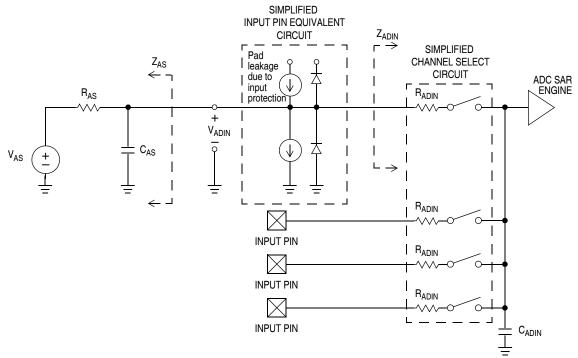


Figure 16. ADC Input Impedance Equivalency Diagram

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Т	Supply Current ADLPC=1 ADLSMP=1 ADCO=1		I _{DDA}	_	133		μА	
Т	Supply Current ADLPC=1 ADLSMP=0 ADCO=1		I _{DDA}		218		μА	
Т	Supply Current ADLPC=0 ADLSMP=1 ADCO=1		I _{DDA}	_	327	_	μА	
T	Supply Current ADLPC=0 ADLSMP=0 ADCO=1		I _{DDA}	_	0.582		mA	
Р		High Speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
	Clock Source	Low Power (ADLPC=1)		1.25	2	3.3		1/f _{ADACK}

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
D	Conversion Time	Short Sample (ADLSMP=0)	t _{ADC}	_	20	_	ADCK	See ADC
	(Including sample time)	Long Sample (ADLSMP=1)		_	40	_	cycles	chapter in the Reference
D	Sample Time	Short Sample (ADLSMP=0)	t _{ADS}		3.5	_	ADCK	Manual for conversion time
		Long Sample (ADLSMP=1)		_	23.5	_	cycles	variances
Т	Temp Sensor	-40°C to 25°C	m	_	3.266	_	mV/°C	
	Slope	25°C to 125°C		_	3.638	_		
Т	Temp Sensor Voltage	25°C	V _{TEMP25}		1.396	_	mV	
Т	Total Unadjusted	12 bit mode	E _{TUE}	_	±3.0	±6.5	LSB ²	Includes
Р	Error	10 bit mode		_	±1	±2.5	•	quantization
Т		8 bit mode		_	±0.5	±1.0		
Т	Differential	12 bit mode	DNL	_	±1.75	±3.5	LSB ²	
Р	Non-Linearity	10 bit mode ³	-	_	±0.5	±1.0		
Т		8 bit mode ³		_	±0.3	±0.5		
Т	Integral	12 bit mode	INL	_	±1.5	±4.5	LSB ²	
Р	Non-Linearity	10 bit mode		_	±0.5	±1.0		
Т		8 bit mode		_	±0.3	±0.5		
Т	Zero-Scale Error	12 bit mode	E _{ZS}	_	±1.5	0.0/ -3.0	LSB ²	V _{ADIN} = V _{SSAD}
Р		10 bit mode		_	±0.5	±1.5		
Т		8 bit mode		_	±0.5	±0.5		
Т	Full-Scale Error	12 bit mode	E _{FS}	_	±1.0	+1.75/ -1.25	LSB ²	$V_{ADIN} = V_{DDAD}$
Т		10 bit mode		_	±0.5	±1		
Т		8 bit mode		_	±0.5	±0.5		
D	Quantization Error	12 bit mode	EQ	_	-1 to 0	_	LSB ²	
		10 bit mode		_	_	±0.5		
		8 bit mode		_	_	±0.5		
D	Input Leakage Error	12 bit mode	E _{IL}	_	±1	_	LSB ²	Pad leakage ⁴ *
		10 bit mode		_	±0.2	±2.5		R _{AS}
		8 bit mode		_	±0.1	±1]	
	i e							

Typical values assume V_{DDAD} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

MC9S08MP16 Series Data Sheet, Rev. 2

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

Table 17.	FTM I	Input	Timina	(continued)
IUDIC II.		II I P G L	1 1111111	(OOIILIIIGCA)

No.	С	Function	Symbol	Min	Max	Unit
4	D	External clock low time	t _{clkl}	0.75	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	0.75	_	t _{cyc}

The maximum external clock frequency is limited to 10MHz due to input filter characteristics.

Figure 19. FTM External Clock

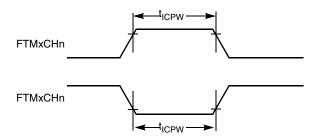


Figure 20. FTM Input Capture Pulse

2.14.3 MTIM Module Timing

Synchronizer circuits determine the fastest clock that can be used as the optional external clock source to the MTIM timer counter. These synchronizers operate from the current bus rate clock.

Table 18. MTIM Input Timing

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}

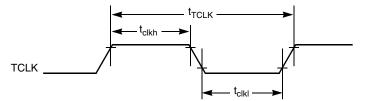


Figure 21. MTIM Timer External Clock

MC9S08MP16 Series Data Sheet, Rev. 2

2.14.4 SPI

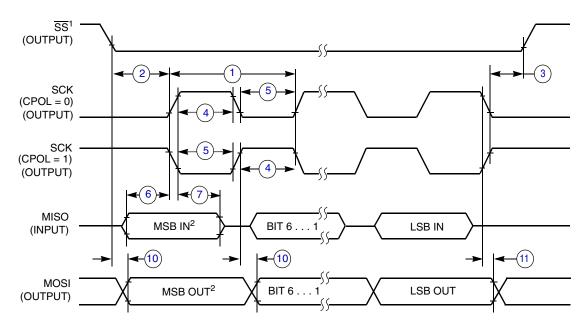
Table 19 and Figure 22 through Figure 25 describe the timing requirements for the SPI system.

Table 19. SPI Electrical Characteristics

Num ¹	С	Rating ²	Symbol	Min	Max	Unit
1	D	Cycle time Master Slave	t _{SCK}	2 4	4096 —	t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead} t _{Lead}	— 1/2	1/2 —	t _{SCK}
3	D	Enable lag time Master Slave	t _{Lag} t _{Lag}	— 1/2	1/2 —	t _{SCK}
4	D	Clock (SPSCK) high time Master and Slave	t _{SCKH}	1/2 t _{SCK} – 25	_	ns
5	D	Clock (SPSCK) low time Master and Slave	t _{SCKL}	1/2 t _{SCK} – 25	_	ns
6	D	Data setup time (inputs) Master Slave	t _{SI(M)} t _{SI(S)}	30 30		ns ns
7	D	Data hold time (inputs) Master Slave	t _{HI(M)} t _{HI(S)}	30 30	_	ns ns
8	D	Access time, slave ³	t _A	0	40	ns
9	D	Disable time, slave ⁴	t _{dis}	_	40	ns
10	D	Data setup time (outputs) Master Slave	t _{SO}		25 25	ns ns
11	D	Data hold time (outputs) Master Slave	t _{HO} t _{HO}	-10 -10		ns ns
12	D	Operating frequency Master (SPIFE=0) Slave (SPIFE=0) Master (SPIFE=1) Slave (SPIFE=1)	f _{op}	f _{Bus} /4096 dc f _{Bus} /4096 dc	8 ⁵ f _{Bus} /4 5 ⁶ 5 ⁶	MHz MHz MHz

MC9S08MP16 Series Data Sheet, Rev. 2

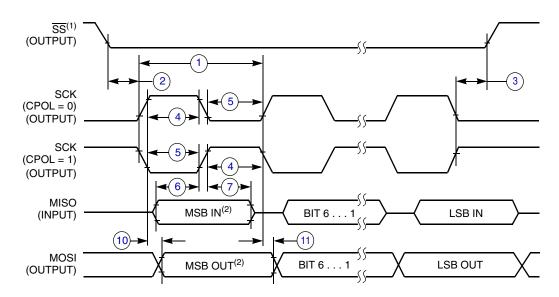
Refer to Figure 22 through Figure 25.
 All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.


³ Time to data active from high-impedance state.

⁴ Hold time to high-impedance state.

⁵ Maximum baud rate must be limited to 8 MHz.

⁶ Maximum baud rate must be limited to 5 MHz due to input filter characteristics.



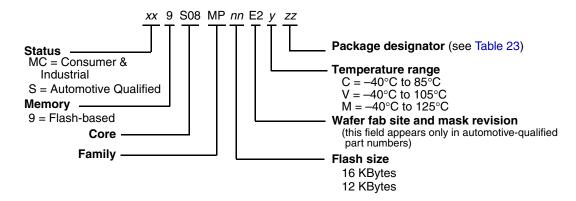
NOTES:

- 1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 22. SPI Master Timing (CPHA = 0)

NOTES:

- 1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.


Figure 23. SPI Master Timing (CPHA = 1)

35

3.1 Device Numbering Scheme

Example of the device numbering system:

4 Package Information

The latest package outline drawings are available on the product summary pages on our web site: http://www.freescale.com/8bit. The following table lists the document numbers per package. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

NOTE

The 32 LQFP and 28 SOIC are not qualified to meet automotive requirements.

Table 23. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
48	Low Quad Flat Pack	LQFP	LF	932-03	98ASH00962A
32	Low Quad Flat Pack	LQFP	LC	873A-03	98ASH70029A
28	Small Outline Integrated Circuit	SOIC	WL	751F-05	98ASB42345B

5 Related Documentation

Find the most current versions of all documents at http://www.freescale.com.

Reference Manual (MC9S08MP16RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

6 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com