

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 13x12b; D/A 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s08mp16e2mlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments

1 Pin Assignments

This section shows the pin assignments for the MC9S08MP16 Series devices.

MC9S08MP16 Series Data Sheet, Rev. 2

Pin Assignments

Figure 3. MC9S08MP16 Series in 32-Pin LQFP Package

Pin Assignments

F	in Numbe	er		< Lowest	Priority	> Highest	
48	32 LQFP	28	Port Pin	Alt 1	Alt 2	Alt3	Alt4
1	3	5	PTC4	KBI2P4	FTM2CH4		
2	4	6	PTC5	KBI2P5	FTM2CH5		
3	5	7	PTC6	KBI2P6	FTM2FAULT		
4			PTC7	KBI2P7	TCLK ¹		
5	—	_	PTD0	KBI3P0	SDA ⁵		
6	—		PTD1	KBI3P1	SCL ⁵		
7	—	_	PTD2	KBI3P2	PDB1OUT		
8		_	PTD3	KBI3P3	FTM1FAULT		
9	6	8					V _{SS1}
10	7	9					V _{DD1}
11	8	10	PTA0	SDA ⁵	TxD		
12	9	11	PTA1	SCL ⁵	RxD		
13	10	12	PTA2	SDA ⁵	FTM1CH0		
14	11	13	PTA3	SCL ⁵	FTM1CH1		
15	—	_	PTD4	KBI3P4	PDB2OUT		
16	—	_	PTD5	KBI3P5	CMP1OUT		
17	—	_	PTD6	KBI3P6	CMP2OUT ²		
18			PTD7	KBI3P7	CMP3OUT ³		
19	12	14	PTF1	RESET ⁴			
20	—	_	PTF2				
21	13	15	PTA4	TCLK ¹	SDA ⁵	SS	
22	14	16	PTA5		SCL ⁵	MISO	
23	15	17	PTA6			MOSI	
24	16	18	PTA7			SPSCK	
25	—	_	PTE0		ADP8		
26	_	_	PTE1		ADP9		
27			PTE2		ADP10		
28	17	19	PTB0	KBI1P0	ADP0 ⁶	CIN1 ⁶	
29	18	20	PTB1	KBI1P1	ADP1 ⁶	C2IN2 ⁶	
30	19	21	PTB2	KBI1P2	ADP2 ⁶	C1IN2 ⁶	PGA+ ⁶
31	20	22	PTB3	KBI1P3	ADP3 ⁶	C3IN2 ⁶	PGA- ⁶
32	21	23					V _{DDA} /V _{REFH}
33	22	24					V _{SSA} /V _{REFL}
34	—	_	PTE3		ADP11 ⁶	C1IN3 ⁶	

Table 1. Pin Availability by P	Package Pin-Count
--------------------------------	-------------------

MC9S08MP16 Series Data Sheet, Rev. 2

Pin Number				< Lowest	Priority	> Highest	
48	32 LQFP	28	Port Pin	Alt 1	Alt 2	Alt3	Alt4
35	—	_	PTE4		ADP12 ⁶	C1IN4 ⁶	
36	23	25	PTB4	KBI1P4		ADP4 ⁶	C2IN3 ⁶
37	24	26	PTB5	KBI1P5	CMP2OUT ²	ADP5 ⁶	C2IN4 ⁶
38	25	27	PTB6	KBI1P6	CMP3OUT ³	ADP6 ⁶	C3IN3 ⁶
39	26	_	PTB7	KBI1P7		ADP7 ⁶	C3IN4 ⁶
40	27	_	PTE5	XTAL			
41	28	_	PTE6	EXTAL			
42	29	_					V _{SS2}
43	—	_					V _{DD2}
44	30	28	PTF0	BKGD	MS		
45	31	1	PTC0	KBI2P0	FTM2CH0		
46	32	2	PTC1	KBI2P1	FTM2CH1		
47	1	3	PTC2	KBI2P2	FTM2CH2		
48	2	4	PTC3	KBI2P3	FTM2CH3		

Table 1. Pin Availability by Package Pin-Count (continued)

¹ TCLK pin can be repositioned using TCLKPS in SOPT2. Default reset location is PTC7.

² HSCMP2 output CMP2OUT can be repositioned using the CMP2OPS in the SOPT2 register. Default reset location is PTD6.

³ HSCMP3 output CMP3OUT can be repositioned using the CMP3OPS in the SOPT2 register. Default reset location is PTD7.

⁴ Pin is open drain with an internal pullup that is always enabled. Pin does not contain a clamp diode to V_{DD} and should not be driven above V_{DD} . The voltage measured on the internally pulled up RESET will not be pulled to V_{DD} . The internal gates connected to this pin are pulled to V_{DD} .

- ⁵ IIC pins SDA and SCL can be repositioned using IICPS in SOPT2. Default reset locations are PTD0 and PTD1.
- ⁶ If ADC, HSCMP, or PGA is enabling a shared analog input pin, each has access to the pin.

2 Electrical Characteristics

2.1 Introduction

This section contains electrical and timing specifications for the MC9S08MP16 Series of microcontrollers available at the time of publication.

2.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 2. Paramete	er Classifications
-------------------	--------------------

Р	Those parameters that are guaranteed during production testing on each individual device.
С	Those parameters that are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters that are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters that are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Table 3. Absolute	Maximum	Ratings
-------------------	---------	---------

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	± 25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

² All functional non-supply pins, except for PTF1/RESET are internally clamped to V_{SS} and V_{DD}.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

2.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Num	с	Rating	Symbol	Consumer & Industrial	Automotive	Unit
1	—	Operating temperature range (packaged)	T _A	-40 to 105	-40 to 125	°C
2	D	Maximum junction temperature	TJ	115	135	°C
3	D	Thermal resistance ^{1,2} single-layer board				
		48-pin LQFP		80	80	
		32-pin LQFP	θ_{JA}	85	_	°C/W
		28-pin SOIC		71	_	
4	D	Thermal resistance ^{1,2} four-layer board				
		48-pin LQFP		56	56	
		32-pin LQFP	θ_{JA}	57	—	°C/W
		28-pin SOIC		48	_	1

Table 4. Thermal	Characteristics
------------------	-----------------

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction-to-ambient natural convection

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W $P_D = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C) \qquad \qquad Eqn. 2$$

Solving Equation 1 and Equation 2 for K gives:

$$\mathbf{K} = \mathbf{P}_{\mathbf{D}} \times (\mathbf{T}_{\mathbf{A}} + 273^{\circ}\mathbf{C}) + \theta_{\mathbf{J}\mathbf{A}} \times (\mathbf{P}_{\mathbf{D}})^{2} \qquad \qquad Eqn. 3$$

MC9S08MP16 Series Data Sheet, Rev. 2

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human	Series resistance	R1	1500	Ω
Body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
Latch-up	Minimum input voltage limit		- 2.5	V
	Maximum input voltage limit		7.5	V

Table 5. ESD and Latch-up Test Conditions

Table 6. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Мах	Unit
1	Human body model (HBM)	V _{HBM}	±2000	—	V
2	Charge device model (CDM)	V _{CDM}	±500	—	V
3	Latch-up current at $T_A = 125^{\circ}C$	I _{LAT}	± 100	_	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

2.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 7. DC Characteristics

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
1		Operating Voltage	V _{DD}		2.7	—	5.5	V
2		Analog Supply voltage delta to $V_{DD} (V_{DD} - V_{DDA})^{(2)}$	ΔV_{DDA}		_	0	±100	mV
3	—	Analog Ground voltage delta to $V_{SS} (V_{SS} - V_{SSA})^{(2)}$	ΔV_{SSA}		_	0	±100	mV

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
13	С	Input Capacitance, all pins	C _{In}			—	8	pF
14	С	RAM retention voltage	V _{RAM}		_	0.6	1.0	V
15	С	POR re-arm voltage ⁹	V _{POR}		0.9	1.4	2.0	V
16	D	POR re-arm time	t _{POR}		10	_	_	μS
17	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}		3.9 4.0	4.0 4.1	4.1 4.2	v
18	Ρ	Low-voltage detection threshold — Iow range V _{DD} falling V _{DD} rising	V _{LVD0}		2.48 2.54	2.56 2.62	2.64 2.70	v
19	Ρ	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}		4.5 4.6	4.6 4.7	4.7 4.8	v
20	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}		4.2 4.3	4.3 4.4	4.4 4.5	v
21	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}		2.84 2.90	2.92 2.98	3.00 3.06	v
22	Ρ	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}		2.66 2.72	2.74 2.80	2.82 2.88	v
23	Т	Low-voltage inhibit reset/recover hysteresis	V _{hys}	5 V 3 V		100 60		mV
24	Ρ	Bandgap voltage reference at 25°C ¹⁰			1.18	1.202	1.21	V
25	Ρ	Bandgap voltage reference across temperature range ¹⁰	V _{BG}		1.17	—	1.22	v

Table 7. DC Characteristics (continued)

¹ Typical values are measured at 25°C. Characterized, not tested

² DC potential difference.

³ When keyboard interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors.

⁴ The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured externally on the pin.

- ⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- 7 All functional non-supply pins except PTF1/RESET are internally clamped to V_{SS} and V_{DD}
- 8 The PTF1/RESET pin does not have a clamp diode to V_DD. Do not drive this pin above V_DD.
- ⁹ Maximum is highest voltage that POR is guaranteed.

 10 Factory trimmed at V_{DD} = 5.0 V

Figure 5. Typical V_{OL} vs I_{OL} , High Drive Strength (except PTF1/RESET)

Figure 6. Typical V_{OL} vs I_{OL}, Low Drive Strength (except PTF1/RESET)

Figure 7. Typical $V_{DD} - V_{OH}$ vs I_{OH}, High Drive Strength

Figure 8. Typical V_{DD} – V_{OH} vs I_{OH}, Low Drive Strength

2.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Table 8. Supply Current Characteristics

Num	с	Parameter	Symbol	V _{DD} (V)	Typ ¹	Max ²	Unit
1	С	Run supply current measured at	Blas	5	2.16	3	mΔ
	С	$(CPU Clock = 4 MHz, t_{Bus} = 2 MHz)$	טטייי	3	1.8	2.5	ШA
2	Ρ	Run supply current ³ measured at	Blaa	5	5.26	7.5	mΔ
2	С	(CPU clock = 16 MHz, t _{Bus} = 8 MHz)	ם מייי	3	4.92	7	ША

Num	с	Parameter	Symbol	V _{DD} (V)	Typ ¹	Max ²	Unit
10	С	LVD adder to stop3 (LVDE = LVDSE = 1)	S3I _{DDLVD}	5	110	180	μA
10				3	90	160	μA
11	С	Adder to stop3 for oscillator enabled ⁸ (EREFSTEN =1)	S3I _{DDOSC}	5,3	5	8	μA

Table 8. Supply Current Characteristics (continued)

¹ Typical values are based on characterization data at 25°C. See Figure 9 through Figure 14 for typical curves across temperature and voltage.

² Max values in this column apply for the full operating temperature range of the device unless otherwise noted.

³ All modules except ADC active, ICS configured for FBELP, and does not include any dc loads on port pins

⁴ All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins

⁵ All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins

⁶ Stop currents are tested in production for 25°C on all parts. Tests at other temperatures depend upon the part number suffix and maturity of the product. Freescale may eliminate a test insertion at a particular temperature from the production test flow once sufficient data has been collected and is approved.

⁷ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode.

⁸ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal and low power mode (HGO = 0).

Figure 9. Typical Run I_{DD} vs. Bus Frequency ($V_{DD} = 5V$)

Figure 11. Typical Run I_{DD} vs. Bus Frequency (V_{DD} = 3V)

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
		Crystal start-up time ⁴					
		Low range, low gain (RANGE = 0, HGO = 0)	t CSTL-LP	—	200	—	
5	т	Low range, high gain (RANGE = 0, HGO = 1)	t CSTL-HGO	—	400	—	ms
		High range, low gain (RANGE = 1, HGO = 0) ⁵	t CSTH-LP	—	5	—	
		High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTH-HGO	—	20	—	
		Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)					
6	-	FEE mode ²	f	0.03125	—	51.34	MHz
6 1	1	FBE mode ³	ⁱ extal	0	—	51.34	MHz
		FBELP mode		0	—	51.34	MHz

Table 9. Oscillator Electrical Specifications (continued)

¹ Typical data was characterized at 5.0 V, 25°C or is recommended value.

 2 The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

 3 The input clock source must be divided using RDIV to less than or equal to 39.0625 kHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

2.9 Internal Clock Source (ICS) Characteristics

Table 10. ICS Frequency Specifications

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1a	Ρ	Average internal reference frequency — factory trimmed (consumer- and industrial-qualified devices) at V _{DD} = 5 V and temperature = 25°C	f _{int_t}	_	32.768	_	kHz
1b	Ρ	Average internal reference frequency — factory trimmed (automotive-qualified devices) at V _{DD} = 5 V and temperature = 25°C	f _{int_t}	_	31.25	_	kHz
2	Ρ	Internal reference frequency — user trimmed	f _{int_t}	31.25	_	39.06	kHz
3	Т	Internal reference start-up time	t _{irefst}		60	100	μS

MC9S08MP16 Series Data Sheet, Rev. 2

С

Т

Electrical Characteristics

Figure 16. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC=1 ADLSMP=1 ADCO=1		I _{DDA}	—	133	_	μA	

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

т	Currently Current							
	ADLPC=1 ADLSMP=0 ADCO=1		I _{DDA}	_	218	_	μΑ	
Т	Supply Current ADLPC=0 ADLSMP=1 ADCO=1		I _{DDA}		327		μA	
Т	Supply Current ADLPC=0 ADLSMP=0 ADCO=1		I _{DDA}		0.582		mA	
Р	ADC Asynchronous	High Speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
	Clock Source	Low Power (ADLPC=1)		1.25	2	3.3		1/1ADACK

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
D	Conversion Time	Short Sample (ADLSMP=0)	t _{ADC}	_	20		ADCK	See ADC
	(Including sample time)	Long Sample (ADLSMP=1)			40	—	cycles	chapter in the Reference
D	Sample Time	Short Sample (ADLSMP=0)	t _{ADS}	_	3.5	—	ADCK	conversion time
		Long Sample (ADLSMP=1)			23.5	_	cycles	variances
Т	Temp Sensor	-40°C to 25°C	m	_	3.266	_	mV/°C	
	Slope	25°C to 125°C			3.638	_		
Т	Temp Sensor Voltage	25°C	V _{TEMP25}	_	1.396	_	mV	
Т	Total Unadjusted	12 bit mode	E _{TUE}	_	±3.0	±6.5	LSB ²	Includes
Р	Error	10 bit mode			±1	±2.5		quantization
Т		8 bit mode		_	±0.5	±1.0		
Т	Differential	12 bit mode	DNL		±1.75	±3.5	LSB ²	
Р	Non-Linearity	10 bit mode ³		_	±0.5	±1.0		
Т		8 bit mode ³			±0.3	±0.5		
Т	Integral	12 bit mode	INL		±1.5	±4.5	LSB ²	
Р	Non-Linearity	10 bit mode			±0.5	±1.0		
Т		8 bit mode			±0.3	±0.5		
Т	Zero-Scale Error	12 bit mode	E _{ZS}	_	±1.5	0.0/ -3.0	LSB ²	$V_{ADIN} = V_{SSAD}$
Р		10 bit mode		_	±0.5	±1.5		
Т		8 bit mode			±0.5	±0.5		
Т	Full-Scale Error	12 bit mode	E _{FS}	_	±1.0	+1.75/ -1.25	LSB ²	$V_{ADIN} = V_{DDAD}$
Т		10 bit mode		_	±0.5	±1		
Т		8 bit mode			±0.5	±0.5		
D	Quantization Error	12 bit mode	EQ	_	-1 to 0	_	LSB ²	
		10 bit mode			—	±0.5		
		8 bit mode			_	±0.5		
D	Input Leakage Error	12 bit mode	E _{IL}	—	±1	—	LSB ²	Pad leakage ⁴ *
		10 bit mode		—	±0.2	±2.5]	H _{AS}
		8 bit mode		—	±0.1	±1	1	

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

Num	С	Parameter	Symbol	Min	Typical	Мах	Unit
4	D	Differential input voltage	V _{DIFFMAX}	$-\left(\frac{V_{DDA}-1.4}{2\times Gain}\right)$	0	$\frac{V_{DDA}-1.4}{2 \times Gain}$	V
5	Т	Linearity (@ voltage gain) ¹ • 1x • 2x • 4x • 8x • 16x • 32x	Lv	1 – 1/2 LSB 2 – 1/2 LSB 4 – 1 LSB 8 – 1 LSB 16 – 4 LSB 32 – 4 LSB	1 2 4 8 16 32	1 + 1/2 LSB 2 + 1/2 LSB 4 + 1 LSB 8 + 1 LSB 16 + 4 LSB 32 + 4 LSB	V/V
6	Т	Max gain error	E _G		1	2	%
7a	D	PGA clock • normal mode (LP=0) • low power mode (LP=1)	f _{PGA}		8 ² 4	8 ² 4	MHz
7b	D	PGA sampling frequency ³	f _{SAMPL}	_	$\frac{1}{\left(\frac{12+18 \times \text{NUM_CLK_GS}}{f_{PGA}}\right) + \frac{43}{f_{ADC}} + \frac{5}{f_{BUS}}}$	_	Samples per second
8	D	Input signal bandwidth	BW	0	f _{SAMPL} ÷ 8	f _{SAMPL} ÷ 2	Hz
9	D	Charge pump clock frequency	f _{cpclk}	100	f _{PGA} ÷ 4	—	Hz

Table 15. Programmable Gain Amplifier Electrical Specifications (continued)

¹ LSB in 12-bit resolution

 $^2~$ 8 MHz is required for PGA achieving 1 μs sampling time.

 $^3\,$ ADC in 12-bit mode, long sampling time, f_{ADC} = f_{PGA}

2.14 AC Characteristics

This section describes timing characteristics for each peripheral system.

2.14.1 Control Timing

Table 16. Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	П	Bus frequency -40 to 105 °C	f _{Bus}	DC	—	25.67	MHz
	D	$(t_{cyc} = 1/f_{Bus})$ -40 to 125 °C	f _{Bus}	DC	—	20	MHz
2	Ρ	Internal low power oscillator period	t _{LPO}	700	—	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	—	—	ns
4	D	Reset low drive	t _{rstdrv}	34 x t _{cyc}	—	—	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	—	—	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	—	—	μS

Num	С	Rating	Symbol	Min	Typ ¹	Мах	Unit
7	D	Keyboard interrupt pulse width Asynchronous path ⁴ Synchronous path ⁵	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}			ns
8	С	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		40 75	_	ns
		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		11 35		ns

Table 16. Control Timing (continued)

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

- ³ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- ⁴ This is the minimum pulse width that is guaranteed to be recognized as a keyboard interrupt request in stop mode.
- ⁵ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- ⁶ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 125°C.

Figure 18. KBIxPn Timing

2.14.2 FTM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the FTM timer counter. These synchronizers operate from the current ICSOUT clock. The ICSOUT clock period = $0.5 \times t_{cvc} = 1/(f_{Bus} \times 2)$.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{ICSOUT} /4 ¹	Hz
2	D	External clock period	t _{TCLK}	2	—	t _{cyc}
3	D	External clock high time	t _{clkh}	0.75	—	t _{cyc}

Table 17. FTM Input Timing

1. Not defined but normally MSB of character just received **Figure 24. SPI Slave Timing (CPHA = 0)**

3.1 Device Numbering Scheme

Example of the device numbering system:

4 Package Information

The latest package outline drawings are available on the product summary pages on our web site: http://www.freescale.com/8bit. The following table lists the document numbers per package. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

NOTE

The 32 LQFP and 28 SOIC are not qualified to meet automotive requirements.

Table 23.	Package	Descriptions
-----------	---------	--------------

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
48	Low Quad Flat Pack	LQFP	LF	932-03	98ASH00962A
32	Low Quad Flat Pack	LQFP	LC	873A-03	98ASH70029A
28	Small Outline Integrated Circuit	SOIC	WL	751F-05	98ASB42345B

5 Related Documentation

Find the most current versions of all documents at http://www.freescale.com.

Reference Manual (MC9S08MP16RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

6 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

Table 24 summarizes changes contained in this document.

Table 24. Revision History

Rev	Date	Description of Changes	
1	10/15/2009	Initial public revision	
2	08/09/2011	Updated Table 10. Changed the value of row 8 column "C" from to C to P.	

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9S08MP16 Rev. 2 08/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2011. All rights reserved.

