
Microchip Technology - PIC18F24K42-E/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-SSOP (0.209", 5.30mm Width)

Supplier Device Package 28-SSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k42-e-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f24k42-e-ss-4402348
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F24/25K42

11.2 Interrupt Vector Table (IVT)
The interrupt controller supports an Interrupt Vector
Table (IVT) that contains the vector address location
for each interrupt request source.

The Interrupt Vector Table (IVT) resides in program
memory, starting at address location determined by the
IVTBASE registers; refer to Registers 11-36 through
11-38 for details. The IVT contains 68 vectors, one for
each source of interrupt. Each interrupt vector location
contains the starting address of the associated
Interrupt Service Routine (ISR).

The MVECEN bit in Configuration Word 2L controls the
availability of the vector table.

11.2.1 INTERRUPT VECTOR TABLE BASE
ADDRESS (IVTBASE)

The start address of the vector table is user
programmable through the IVTBASE registers. The
user must ensure the start address is such that it can
encompass the entire vector table inside the program
memory.

Each vector address is a 16-bit word (or two address
locations on PIC18 devices). So for n interrupt sources,
there are 2n address locations necessary to hold the
table starting from IVTBASE as the first location. So the
staring address of IVTBASE should be chosen such
that the address range form IVTBASE to (IVTBASE
+2n-1) can be encompassed inside the program flash
memory.

For example, the PIC18(L)F24/25K42 devices the
highest vector number is 81. So IVTBASE should be
chosen such that (IVTBASE + 0xA1) is less than the
last memory location in program flash memory.

A programmable vector table base address is useful in
situations to switch between different sets of vector
tables, depending on the application. It can also be
used when the application program needs to update
the existing vector table (vector address values).

11.2.2 INTERRUPT VECTOR TABLE
CONTENTS

MVECEN = 0

When MVECEN = 0, the address location pointed by
the IVTBASE registers has a GOTO instruction for a
high priority interrupt. Similarly, the corresponding low
priority vector location also has a GOTO instruction,
which is executed in case of a low priority interrupt.

MVECEN = 1

When MVECEN = 1, the value in the vector table of
each interrupt, points to the address location of the first
instruction of the interrupt service routine.

ISR Location = Interrupt Vector Table entry << 2.

11.2.3 INTERRUPT VECTOR TABLE (IVT)
ADDRESS CALCULATION

MVECEN = 0

When the MVECEN bit in Configuration Word 2L
(Register 5-3) is cleared, the address pointed by
IVTBASE registers is used as the high priority interrupt
vector address. The low priority interrupt vector
address is offset eight instruction words from the
address in IVTBASE registers.

For PIC18 devices the IVTBASE registers default to
00 0008h, the high priority interrupt vector address will
be 00 0008h and the low priority interrupt vector
address will be 00 0018h.

MVECEN = 1

Each interrupt has a unique vector number associated
with it as defined in Table 11-2. This vector number is
used for calculating the location of the interrupt vector
for a particular interrupt source.

Interrupt Vector Address = IVTBASE + (2*Vector
Number).

This calculated Interrupt Vector Address value is stored
in the IVTAD<20:0> registers when an interrupt is
received (Registers 11-39 through 11-41).

User-assigned software priority assigned using the
IPRx registers does not affect address calculation and
is only used to resolve concurrent interrupts.

Note: It is required that the user assign an even
address to the IVTBASE register for
correct operation.

If for any reason the address of the ISR could not be
fetched from the vector table, it will cause the system
to reset and clear the memory execution violation flag
(MEMV bit) in PCON1 register (Register 8-3). This
occurs due to any one of the following:

• The entry for the interrupt in the vector table lies
outside the executable PFM area (SAF area is
non-executable when SAFEN = 1).

• ISR pointed by the vector table lies outside the
executable PFM area (SAF area is non-execut-
able when SAFEN = 1).
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 121


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 129

PIC
18(L)F24/25K

42

11

Wh
sim
ge
int

FIG

Rev. 10-000267D
9/12/2016

Main routine

E Executed
.4.4 SIMULTANEOUS LOW AND HIGH PRIORITY
INTERRUPTS

en both high and low interrupts are active in the same instruction cycle (i.e.,
ultaneous interrupt events), both the high and the low priority requests are

nerated. The high priority ISR is serviced first before servicing the low priority
errupt see Figure 11-5.

URE 11-5: INTERRUPT EXECUTION: SIMULTANEOUS LOW AND HIGH PRIORITY INTERRUPTS

Low Priority
Interrupt

Main Code Main Code Execution Halted

Low Interrupt
received

Low ISR

High ISR High ISR

Main routine

Low ISR

High Priority
Interrupt High Interrupt

received

RETFIE Executed

RETFI

High Interrupt
cleared

Low Interrupt
cleared

PIC18(L)F24/25K42
REGISTER 13-2: WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1
U-0 R/W(3)-q/q(1) R/W(3)-q/q(1) R/W(3)-q/q(1) U-0 R/W(4)-q/q(2) R/W(4)-q/q(2) R/W(4)-q/q(2)

— CS<2:0> — WINDOW<2:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 Unimplemented: Read as ‘0’
bit 6-4 CS<2:0>: Watchdog Timer Clock Select bits

111 = Reserved
 •
 •
 •

011 = Reserved
010 = SOSC
001 = MFINTOSC 31.25 kHz
000 = LFINTOSC 31 kHz

bit 3 Unimplemented: Read as ‘0’
bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

Note 1: If WDTCCS <2:0> in CONFIG3H = 111, the Reset value of CS<2:0> is 000.
2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3H

register.
3: If WDTCCS<2:0> in CONFIG3H ≠ 111, these bits are read-only.
4: If WDTCWS<2:0> in CONFIG3H ≠ 111, these bits are read-only.

WINDOW<2:0> Window delay
Percent of time

Window opening
Percent of time

111 N/A 100
110 12.5 87.5
101 25 75
100 37.5 62.5
011 50 50
010 62.5 37.5
001 75 25
000 87.5 12.5
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 187

PIC18(L)F24/25K42

16.2 CRC Functional Overview
The CRC module can be used to detect bit errors in the
program memory using the built-in memory scanner or
through user input RAM memory. The CRC module can
accept up to a 16-bit polynomial with up to a 16-bit seed
value. A CRC calculated check value (or checksum)
will then be generated into the CRCACC<15:0>
registers for user storage. The CRC module uses an
XOR shift register implementation to perform the
polynomial division required for the CRC calculation.

EXAMPLE 16-1: CRC EXAMPLE
Rev. 10-000206A

1/8/2014

CRC-16-ANSI

x16 + x15 + x2 + 1 (17 bits)

CRCXORH = 0b10000000
CRCXORL = 0b0000010- (1)

Standard 16-bit representation = 0x8005

Data Sequence:
0x55, 0x66, 0x77, 0x88

Check Value (ACCM = 1):

SHIFTM = 0: 0x32D6
CRCACCH = 0b00110010
CRCACCL = 0b11010110

SHIFTM = 1: 0x6BA2
CRCACCH = 0b01101011
CRCACCL = 0b10100010

DLEN = 0b0111
PLEN = 0b1111

Data entered into the CRC:
SHIFTM = 0:

01010101 01100110 01110111 10001000

SHIFTM = 1:
10101010 01100110 11101110 00010001

Note 1: Bit 0 is unimplemented. The LSb of any
CRC polynomial is always ‘1’ and will always
be treated as a ‘1’ by the CRC for calculating
the CRC check value. This bit will be read in
software as a ‘0’.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 218

PIC18(L)F24/25K42

16.5 CRC Check Value
The CRC check value will be located in the CRCACC
registers after the CRC calculation has finished. The
check value will depend on two mode settings of the
CRCCON0 register: ACCM and SHIFTM. When the
ACCM bit is set, the CRC module augments the data
with a number of zeros equal to the length of the
polynomial to align the final check value. When the
ACCM bit is not set, the CRC will stop at the end of the
data. A number of zeros equal to the length of the
polynomial can then be entered into CRCDAT to find
the same check value as augmented mode.
Alternatively the expected check value can be entered
at this point to make the final result equal ‘0’.

When the CRC check value is computed with the
SHIFTM bit set, selecting LSb first, and the ACCM bit
is also set then the final value in the CRCACC registers
will be reversed such that the LSb will be in the MSb
position and vice versa. This is the expected check
value in bit reversed form. If you are creating a check
value to be appended to a data stream then a bit
reversal must be performed on the final value to
achieve the correct checksum. You can use the CRC to
do this reversal by the following method:

• Save the CRCACC value in user RAM space
• Clear the CRCACC registers
• Clear the CRCXOR registers
• Write the saved CRCACC value to the CRCDAT

input.

The properly oriented check value will be in the
CRCACC registers as the result.

16.6 CRC Interrupt
The CRC will generate an interrupt when the BUSY bit
transitions from 1 to 0. The CRCIF Interrupt Flag is set
every time the BUSY bit transitions, regardless of
whether or not the CRC interrupt is enabled. The
CRCIF bit can only be cleared in software.

16.7 Configuring the CRC
The following steps illustrate how to properly configure
the CRC.

1. Determine if the automatic program memory
scan will be used with the scanner or manual
calculation through the SFR interface and
perform the actions specified in Section
16.4 “CRC Data Sources”, depending on which
decision was made.

2. If desired, seed a starting CRC value into the
CRCACCH/L registers.

3. Program the CRCXORH/L registers with the
desired generator polynomial.

4. Program the DLEN<3:0> bits of the CRCCON1
register with the length of the data word - 1 (refer
to Example 16-1). This determines how many
times the shifter will shift into the accumulator for
each data word.

5. Program the PLEN<3:0> bits of the CRCCON1
register with the length of the polynomial -2
(refer to Example 16-1).

6. Determine whether shifting in trailing zeros is
desired and set the ACCM bit of the CRCCON0
register appropriately.

7. Likewise, determine whether the MSb or LSb
should be shifted first and write the SHIFTM bit
of the CRCCON0 register appropriately.

8. Write the GO bit of the CRCCON0 register to
begin the shifting process.

9a. If manual SFR entry is used, monitor the FULL bit
of the CRCCON0 register. When FULL = 0,
another word of data can be written to the
CRCDATH/L registers, keeping in mind that
CRCDATH should be written first if the data has
more than eight bits, as the shifter will begin upon
the CRCDATL register being written.

9b. If the scanner is used, the scanner will
automatically load words into the CRCDATH/L
registers as needed, as long as the GO bit is set.

10a.If manual entry is used, monitor the CRCIF (and
BUSY bit to determine when the completed
CRC calculation can be read from CRCACCH/L
registers.

10b.If using the memory scanner, monitor the
SCANIF (or the GO bit) for the scanner to finish
pushing information into the CRCDAT registers.
After the scanner is completed, monitor the
BUSY bit to determine that the CRC has been
completed and the check value can be read
from the CRCACC registers. If both the interrupt
flags are set and the BUSY and GO bits are
cleared, the completed CRC calculation can be
read from the CRCACCH/L registers.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 220

PIC18(L)F24/25K42

17.8.4 OVERRUN INTERRUPT
When the DMA receives a trigger to start a new
message before the current message is completed,
then the DMAxORIF Overrun interrupt flag is set.

This condition indicates that the DMA is being
requested before its current transaction is finished.
This implies that the active DMA may not be able to
keep up with the demands from the peripheral module
being serviced, which may result in data loss.

The DMAxORIF flag being set does not cause the
current DMA transfer to terminate.

The Overrun interrupt is only available for trigger
sources that are edge based and not available for
sources that are level-based. Therefore a level-based
interrupt source does not trigger a DMA overrun error
due to the potential latency issues in the system.

An example of an interrupt that could use the overrun
interrupt would be a timer overflow (or period match)
interrupt. This event only happens every time the timer
rolls over and is not dependent on any other system
conditions.

An example of an interrupt that does not allow the
overrun interrupt would be the UARTTX buffer. The
UART will continue to assert the interrupt until the DMA
is able to process the MSG. Due to latency issues, the
DMA may not be able to service an empty buffer
immediately, but the UART continues to assert its
transmit interrupt until it is serviced. If overrun was
allowed in this case, the overrun would occur almost
immediately as the module samples the interrupt
sources every instruction cycle.

17.9 DMA Setup and Operation
The following steps illustrate how to configure the DMA
for data transfer:

1. Program the appropriate Source and
Destination addresses for the transaction into
the DMAxSSA and DMAxDSA registers

2. Select the source memory region that is being
addressed by DMAxSSA register, using the
SMR<1:0> bits.

3. Program the SMODE and DMODE bits to select
the addressing mode.

4. Program the Source size DMAxSSZ and
Destination size DMAxDSZ registers with the
number of bytes to be transferred. It is
recommended for proper operation that the size
registers be a multiple of each other.

5. If the user desires to disable data transfers once
the message has completed, then the SSTP and
DSTP bits in DMAxCON0 register need to be
set.(see Section 17.5.3.2 “Source/Destina-
tion Stop”).

6. If using hardware triggers for data transfer,
setup the hardware trigger interrupt sources for
the starting and aborting DMA transfers
(DMAxSIRQ and DMAxAIRQ), and set the
corresponding interrupt request enable bits
(SIRQEN and AIRQEN).

7. Select the priority level for the DMA (see
Section 3.1 “System Arbitration”) and lock
the priorities (see Section 3.1.1 “Priority
Lock”)

8. Enable the DMA (DMAxCON1bits. EN = 1)
9. If using software control for data transfer, set the

DGO bit, else this bit will be set by the hardware
trigger.

Once the DMA is set up, the following flow chart
describes the sequence of operation when the DMA
uses hardware triggers and utilizes the unused CPU
cycles (bubble) for DMA transfers.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 240

PIC18(L)F24/25K42

20.6 Register Definitions: Interrupt-on-Change Control

REGISTER 20-1: IOCxP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER EXAMPLE
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
IOCxP7 IOCxP6 IOCxP5 IOCxP4 IOCxP3 IOCxP2 IOCxP1 IOCxP0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 IOCxP<7:0>: Interrupt-on-Change Positive Edge Enable bits
1 = Interrupt-on-Change enabled on the IOCx pin for a positive-going edge. Associated Status bit and interrupt flag

will be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 20-2: IOCxN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER EXAMPLE
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
IOCxN7 IOCxN6 IOCxN5 IOCxN4 IOCxN3 IOCxN2 IOCxN1 IOCxN0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 IOCxN<7:0>: Interrupt-on-Change Negative Edge Enable bits
1 = Interrupt-on-Change enabled on the IOCx pin for a negative-going edge. Associated Status bit and interrupt

flag will be set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin

REGISTER 20-3: IOCxF: INTERRUPT-ON-CHANGE FLAG REGISTER EXAMPLE
R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0

IOCxF7 IOCxF6 IOCxF5 IOCxF4 IOCxF3 IOCxF2 IOCxF1 IOCxF0
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware

bit 7-0 IOCxF<7:0>: Interrupt-on-Change Flag bits
1 = A enabled change was detected on the associated pin. Set when IOCP[n] = 1 and a positive edge was detected

on the IOCn pin, or when IOCN[n] = 1 and a negative edge was detected on the IOCn pin
0 = No change was detected, or the user cleared the detected change
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 290

PIC18(L)F24/25K42

27.6.2 GATED TIMER MODE
Gated Timer mode uses the SMTSIGx input to control
whether or not the SMT1TMR will increment. Upon a
falling edge of the external signal, the SMT1CPW
register will update to the current value of the
SMT1TMR. Example waveforms for both repeated and
single acquisitions are provided in Figure 27-4 and
Figure 27-5.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 369

PIC18(L)F24/25K42

28.9 Dead-Band Jitter
When the rising and falling edges of the input source
are asynchronous to the CWG clock, it creates jitter in
the dead-band time delay. The maximum jitter is equal
to one CWG clock period. Refer to Equation 28-1 for
more details.

EQUATION 28-1: DEAD-BAND DELAY TIME
CALCULATION

TDEAD BAND_MIN–
1

FCWG CLOCK
-- DBx 4: 0>=

TDEAD BANDMAX–
1

FCWG CLOCK
-- DBx 4: 0>+1=

TJITTER T
DEAD BAND_MAX–

T
DEAD BAND_MIN–

–=

TJITTER
1

F
CWG_CLOCK

--=

T
DEAD BAND_MAX–

T
DEAD BAND_MIN–

TJITTER+=

EXAMPLE

DBR<4:0> 0x0A 10==

FCWG_CLOCK 8 MHz=

TJITTER 1
8MHz---------------- 125 ns==

TDEAD BAND_MIN– 125 ns*10 125 s==

TDEAD BAND_MAX– 1.25 s 0.125s 1.37s=+=
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 422

PIC18(L)F24/25K42

29.2 CLCx Interrupts
An interrupt will be generated upon a change in the
output value of the CLCx when the appropriate interrupt
enables are set. A rising edge detector and a falling
edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be
set when either edge detector is triggered and its asso-
ciated enable bit is set. The INTP enables rising edge
interrupts and the INTN bit enables falling edge inter-
rupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

• CLCxIE bit of the respective PIE register
• INTP bit of the CLCxCON register (for a rising

edge detection)
• INTN bit of the CLCxCON register (for a falling

edge detection)
• GIE bits of the INTCON0 register

The CLCxIF bit of the respective PIR register, must be
cleared in software as part of the interrupt service. If
another edge is detected while this flag is being
cleared, the flag will still be set at the end of the
sequence.

29.3 Output Mirror Copies
Mirror copies of all CON output bits are contained in the
CLCxDATA register. Reading this register reads the
outputs of all CLCs simultaneously. This prevents any
reading skew introduced by testing or reading the OUT
bits in the individual CLCxCON registers.

29.4 Effects of a Reset
The CLCxCON register is cleared to zero as the result
of a Reset. All other selection and gating values remain
unchanged.

29.5 Operation During Sleep
The CLC module operates independently from the
system clock and will continue to run during Sleep,
provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the
CLC module is enabled and the HFINTOSC is
selected as an input source, regardless of the system
clock source selected.

In other words, if the HFINTOSC is simultaneously
selected as the system clock and as a CLC input
source, when the CLC is enabled, the CPU will go idle
during Sleep, but the CLC will continue to operate and
the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

29.6 CLCx Setup Steps
The following steps should be followed when setting up
the CLCx:

• Disable CLCx by clearing the EN bit.
• Select desired inputs using CLCxSEL0 through

CLCxSEL3 registers (See Table 29-1).
• Clear any associated ANSEL bits.
• Set all TRIS bits associated with inputs.
• Clear all TRIS bits associated with outputs.
• Enable the chosen inputs through the four gates

using CLCxGLS0, CLCxGLS1, CLCxGLS2, and
CLCxGLS3 registers.

• Select the gate output polarities with the GyPOL
bits of the CLCxPOL register.

• Select the desired logic function with the
MODE<2:0> bits of the CLCxCON register.

• Select the desired polarity of the logic output with
the POL bit of the CLCxPOL register. (This step
may be combined with the previous gate output
polarity step).

• If driving a device pin, set the desired pin PPS
control register and also clear the TRIS bit
corresponding to that output.

• If interrupts are desired, configure the following
bits:
- Set the INTP bit in the CLCxCON register for

rising event.
- Set the INTN bit in the CLCxCON register for

falling event.
- Set the CLCxIE bit of the respective PIE

register.
- Set the GIE bits of the INTCON0 register.

• Enable the CLCx by setting the EN bit of the
CLCxCON register.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 440

PIC18(L)F24/25K42

FIGURE 33-5: ASYNCHRONOUS RECEPTION

Start
bit last bitbit 1bit 0 last bit bit 0Stop

bit

Start
bit

Start
bitlast bit Stop

bit
RX pin

Reg
Rcv Buffer Reg.

Rcv Shift

Read Rcv
Buffer Reg.
UxRXB

UxRXIF
(Interrupt Flag)

RXFOIF bit

Word 1
UxRXB

Word 2
UxRXB

Stop
bit

Note: This timing diagram shows three words appearing on the RX input. The UxRXB (receive buffer) is not read before the third word
is received, causing the RXFOIF (FIFO overrun) bit to be set. STPMD = 0, STP<1:0> = 00.

RXIDL

Cleared by software
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 483

PIC18(L)F24/25K42

33.9 Stop Bits
The number of Stop bits is user selectable with the STP
bits in the UxCON2 register.The STP bits affect all
modes of operation.

Stop bits selections include:

• 1 transmit with receive verify on first
• 1.5 transmit with receive verify on first
• 2 transmit with receive verify on both
• 2 transmit with receive verify on first only

In all modes, except DALI, the transmitter is idle for the
number of Stop bit periods between each consecutively
transmitted word. In DALI, the Stop bits are generated
after the last bit in the transmitted data stream.

The input is checked for the idle level in the middle of
the first Stop bit, when receive verify on first is selected,
as well as in the middle of the second Stop bit, when
verify on both is selected. If any Stop bit verification
indicates a non-idle level, the framing error FERIF bit is
set for the received word.

33.9.1 DELAYED UXRXIF
When operating in Half-Duplex mode, where the micro-
controller needs to reverse the transceiver direction
after a reception, it may be more convenient to hold off
the UxRXIF interrupt until the end of the Stop bits to
avoid line contention. The user selects when the
UxRXIF interrupt occurs with the STPMD bit in the
UxFIFO register. When STPMD is ‘1’, the UxRXIF
occurs at the end of the last Stop bit. When STPMD is
‘0’, UxRXIF occurs when the received byte is stored in
the receive FIFO. When STP<1:0> = 10, the store
operation is performed in the middle of the second Stop
bit, otherwise, it is performed in the middle of the first
Stop bit. The FERIF and PERIF interrupts are not
delayed with STPMD. Only UxRXIF is delayed when
STPMD is set and should be the only indicator for
reversing transceiver direction.

33.10 Operation after FIFO overflow
The Receive Shift Register (RSR) can be configured to
stop or continue running during a receive FIFO
overflow condition. Stopped operation is the Legacy
mode.

When the RSR continues to run during an overflow
condition, the first word received after clearing the
overflow will always be valid.

When the RSR is stopped during an overflow condition,
synchronization with the Start bits is lost. Therefore, the
first word received after the overflow is cleared may
start in the middle of a word.

Operation during overflow is selected with the
RUNOVF bit in the UxCON2 register. Setting the
RUNOVF bit selects the run during overflow method.

33.11 Receive and Transmit Buffers
The UART uses small buffer areas to transmit and
receive data. These are sometimes referred to as
FIFOs.

The receiver has a Receive Shift Register (RSR) and
two buffer registers. The buffer at the top of the FIFO
(earliest byte to enter the FIFO) is by retrieved by read-
ing the UxRXB register.

The transmitter has one Transmit Shift Register (TSR)
and one buffer register. Writes to UxTXB go to the
transmit buffer then immediately to the TSR, if it is
empty. When the TSR is not empty, writes to UxTXB
are held then transferred to the TSR when it becomes
available.

33.11.1 FIFO STATUS
The UxFIFO register contains several status bits for
determining the state of the receive and transmit buf-
fers.

The RXBE bit indicates that the receive FIFO is empty.
This bit is essentially the inverse of UxRXIF. The RXBF
bit indicates that the receive FIFO is full.

The transmitter has only one buffer register so the sta-
tus bits are essentially a copy and inverse of the
UxTXIF bit. The TXBE bit indicates that the buffer is
empty (same as UxTXIF) and the TXBF bit indicates
that the buffer is full (UxTXIF inverse). A third transmit-
ter status bit, TXWRE (transmit write error), is set
whenever a UxTXB write is performed when the TXBF
bit is set. This indicates that the write was unsuccess-
ful.

33.11.2 FIFO RESET
All modes support resetting the receive and transmit
buffers.

The receive buffer is flushed and all unread data dis-
carded when the RXBE bit in the UxFIFO register is
written to ‘1’. The MOVWF instruction with the TXBE bit
cleared should be used to avoid inadvertently clearing
a byte pending in the TSR when UxTXB is empty.

Data written to UxTXB when TXEN is low will be held
in the Transmit Shift Register (TSR) then sent when
TXEN is set. The transmit buffer and inactive TSR are
flushed by setting the TXBE bit in the UxFIFO register.
Setting TXBE while a character is actively transmitting
from the TSR will complete the transmission without
being flushed.

Clearing the ON bit will discard all received data and
transmit data pending in the TSR and UxTXB.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 491

PIC18(L)F24/25K42

33.16 Clock Accuracy with

Asynchronous Operation
The factory calibrates the internal oscillator block
output (INTOSC). However, the INTOSC frequency
may drift as VDD or temperature changes, and this
directly affects the asynchronous baud rate. Two
methods may be used to adjust the baud rate clock, but
both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE
register to adjust the INTOSC output. Adjusting the
value of the OSCTUNE register allows for fine resolution
changes to the system clock source. See
Section 6.2.2.3 “Internal Oscillator Frequency
Adjustment” for more information.

The other method adjusts the value of the Baud Rate
Generator. This can be done automatically with the
Auto-Baud Detect feature (see Section
33.17.1 “Auto-Baud Detect”). There may not be fine
enough resolution when adjusting the Baud Rate
Generator to compensate for a gradual change of the
peripheral clock frequency.

33.17 UART Baud Rate Generator (BRG)
The Baud Rate Generator (BRG) is a 16-bit timer that
is dedicated to the support of the UART operation.

The UxBRGH, UxBRGL register pair determines the
period of the free running baud rate timer. The multiplier
of the baud rate period is determined by the BRGS bit in
the UxCON0 register.

Table 33-1 contains the formulas for determining the
baud rate. Example 33-1 provides a sample calculation
for determining the baud rate and baud rate error.

The high baud rate range (BRGS = 1) is intended to
extend the baud rate range up to a faster rate when the
desired baud rate is not possible otherwise. Using the
normal baud rate range (BRGS = 0) is recommended
when the desired baud rate is achievable with either
range.

Writing a new value to the UxBRGH, UxBRGL register
pair causes the BRG timer to be reset (or cleared). This
ensures that the BRG does not wait for a timer overflow
before outputting the new baud rate.

If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RXIDL bit to
make sure that the receive operation is idle before
changing the system clock.

EXAMPLE 33-1: CALCULATING BAUD
RATE ERROR

TABLE 33-1: BAUD RATE FORMULAS
BRGS BRG/UART Mode Baud Rate Formula

1 High Rate FOSC/[4 (n+1)]

0 Normal Rate FOSC/[16(n+1)]

Legend: n = value of UxBRGH, UxBRGL register pair.

For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, BRGS = 0:

 X

FOSC
Desired Baud Rate---

16
--- 1–=

Desired Baud Rate FOSC
16 [UxBRG] 1+ 
---=

16000000
9600

16
--------------------------- 1–=

 103.17  103= =

Calculated Baud Rate 16000000
16 103 1+ 
-------------------------------=

 9615=

Error Calc. Baud Rate Desired Baud Rate –
Desired Baud Rate

--=

 9615 9600– 
9600

------------------------------------- 0.16%= =
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 495

PIC18(L)F24/25K42
REGISTER 33-14: UxP2H: UART PARAMETER 2 HIGH REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0
— — — — — — — P2<8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’
bit 0 P2<8>: Most Significant Bit of Parameter 2

DMX mode:
Most Significant bit of first address of receive block
DALI mode:
Most Significant bit of number of half-bit periods of idle time in Forward Frame detection threshold
Other modes:
Not used

REGISTER 33-15: UxP2L: UART PARAMETER 2 LOW REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

P2<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 P2<7:0>: Least Significant Bits of Parameter 2
DMX mode:
Least Significant Byte of first address of receive block
LIN Slave mode:
Number of data bytes to transmit
DALI mode:
Least Significant Byte of number of half-bit periods of idle time in Forward Frame detection threshold
Asynchronous Address mode:
Receiver address
Other modes:
Not used
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 510

PIC18(L)F24/25K42

34.4.3 TRANSFER COUNTER IN SLAVE

MODE
In Slave Mode, the transfer counter will still decrement
as data is shifted in and out of the SPI module, but it will
not control data transfers. In addition, in slave mode,
the BMODE bit along with the transfer counter is used
to determine when the device should look for Slave
Select faults. If BMODE = 0, the SSFLT bit will be set if
Slave Select transitions from its active to inactive state
during bytes of data, as well as if it transitions before
the last bit sent during the final byte (if SPIx-
TWIDTH≠0). If BMODE=1, the SSFLT bit will be set if
Slave Select transitions from its active to inactive state
before the final bit of each individual transfer is com-
pleted. Note that SSFLT does not have an associated
interrupt, so it should be checked in software. An ideal
time to do this is when the End of Slave Select Interrupt
(EOSIF) is triggered (see Section 34.8.3.3 “Start of
Slave Select and End of Slave Select Interrupts”).

34.5 Master mode
In master mode, the device controls the SCK line, and
as such, initiates data transfers and determines when
any slaves broadcast data onto the SPI bus.

Master mode of this device can be configured in four
different modes, configured by the TXR and RXR bits:

• Full Duplex mode
• Receive Only mode
• Transmit Only mode
• Transfer Off mode

The modes are illustrated in Table 34-1, below:

TABLE 34-1: MASTER MODE TXR/RXR SETTINGS
TXR = 1 TXR = 0

RXR = 1

Full Duplex Mode
If BMODE = 1, transfer when RxFIFO is not full and

TxFIFO is not empty
 If BMODE = 0, Transfer when RXFIFO is not full,

TXFIFO is not empty, and the Transfer Counter is non-
zero

Receive Only mode
Transfer when RxFIFO is not full and the

Transfer Counter is non-zero
Transmitted data is either the top of the FIFO

or the most recently received data

RXR = 0

Transmit Only Mode
If BMODE = 1, transfer when TxFIFO is not empty

If BMODE = 0, Transfer when TXFIFO is not empty and
the Transfer Counter is non-zero

Received data is not stored

No Transfers
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 522


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 560

PIC
18(L)F24/25K

42

FIG

Rev. 10-000 297A
11/2/201 6

D0

8 9

P

0x00

PCIF is set

ACK

a

Master sends
stop condition

 = 0
111)

 set
URE 35-10: I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (NO CLOCK STRETCHING)

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7

SDA

SCL

ACKSTAT

S

0x02 0x01I2CxCNT

Before Start, software loads
one byte in I2CxTXB

CSTR

ACKTIF is set

SCIF is set

CNTIF is set

ACKTIF is set

TXBE

0x00

R/W = 1

Master Releases SDA
Slave sends ACK

R/W

D/A

ADRIE = 0
ACKTIE = 0 ACKTIE = 0 ACKTIE = 0

Slave Transmitting Data

Master sends ACK Master sends N

Slave Transmitting Dat

R/W copied from matching address
ADRIF is set

matching address copy to I2CxADB0

 Master’s ACK
copied to ACKSTAT

NACKIF is set

 No new TX data on I2CxCNT
(shifter loaded 8’b1111 1

I2CxTXIF NOT

Data byte 2 loaded from
I2CxTXB to shifter

I2CxTXIF NOT set

Software writes
I2CxTXB

MSb is of I2CxTXB copied to SDA

Data byte 1 loaded from
I2CxTXB to shifter

TXIF set

MSb is of I2CxTXB copied to SDA

PIC18(L)F24/25K42

38.6.5 BURST AVERAGE MODE
The Burst Average mode (ADMD = 011) acts the same
as the Average mode in most respects. The one way it
differs is that it continuously retriggers ADC sampling
until the CNT value is greater than or equal to RPT,
even if Continuous Sampling mode (see Section
38.6.8 “Continuous Sampling mode”) is not
enabled. This allows for a threshold comparison on the
average of a short burst of ADC samples.

38.6.6 LOW-PASS FILTER MODE
The Low-pass Filter mode (ADMD = 100) acts similarly
to the Average mode in how it handles samples
(accumulates samples until CNT value greater than or
equal to RPT, then triggers threshold comparison), but
instead of a simple average, it performs a low-pass
filter operation on all of the samples, reducing the effect
of high-frequency noise on the average, then performs
a threshold comparison on the results. (see Table 38-2
for a more detailed description of the mathematical
operation). In this mode, the ADCRS bits determine the
cut-off frequency of the low-pass filter (as
demonstrated by Table 38-3).

38.6.7 THRESHOLD COMPARISON
At the end of each computation:

• The conversion results are latched and held
stable at the end-of-conversion.

• The error is calculated based on a difference
calculation which is selected by the
ADCALC<2:0> bits in the ADCON3 register. The
value can be one of the following calculations
(see Register 38-4 for more details):
- The first derivative of single measurements
- The CVD result in CVD mode
- The current result vs. a setpoint
- The current result vs. the filtered/average

result
- The first derivative of the filtered/average

value
- Filtered/average value vs. a setpoint

• The result of the calculation (ERR) is compared to
the upper and lower thresholds,
UTH<ADUTHH:ADUTHL> and
LTH<ADLTHH:ADLTHL> registers, to set the
ADUTHR and ADLTHR flag bits. The threshold
logic is selected by ADTMD<2:0> bits in the
ADCON3 register. The threshold trigger option
can be one of the following:
- Never interrupt
- Error is less than lower threshold
- Error is greater than or equal to lower

threshold
- Error is between thresholds (inclusive)
- Error is outside of thresholds
- Error is less than or equal to upper threshold
- Error is greater than upper threshold

- Always interrupt regardless of threshold test
results

- If the threshold condition is met, the threshold
interrupt flag ADTIF is set.

38.6.8 CONTINUOUS SAMPLING MODE
Setting the CONT bit in the ADCON0 register
automatically retriggers a new conversion cycle after
updating the ADACC register. The GO bit remains set
and re-triggering occurs automatically.

If ADSOI = 1, a threshold interrupt condition will clear
GO and the conversions will stop.

38.6.9 DOUBLE SAMPLE CONVERSION
Double sampling is enabled by setting the ADDSEN bit
of the ADCON1 register. When this bit is set, two
conversions are required before the module will
calculate threshold error (each conversion must still be
triggered separately). The first conversion will set the
ADMATH bit of the ADSTAT register and update
ADACC, but will not calculate ERR or trigger ADTIF.
When the second conversion completes, the first value
is transferred to PREV (depending on the setting of
ADPSIS) and the value of the second conversion is
placed into ADRES. Only upon the completion of the
second conversion is ERR calculated and ADTIF
triggered (depending on the value of ADCALC).

Note 1: The threshold tests are signed
operations.

2: If ADAOV is set, a threshold interrupt is
signaled.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 620

PIC18(L)F24/25K42
REGISTER 40-2: CMxCON1: COMPARATOR x CONTROL REGISTER 1
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0

— — — — — — INTP INTN

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-2 Unimplemented: Read as ‘0’
bit 1 INTP: Comparator Interrupt on Positive-Going Edge Enable bit

1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit
0 = No interrupt flag will be set on a positive-going edge of the CxOUT bit

bit 0 INTN: Comparator Interrupt on Negative-Going Edge Enable bit
1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit
0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit

REGISTER 40-3: CMxNCH: COMPARATOR x INVERTING CHANNEL SELECT REGISTER
U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — — NCH<2:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’
bit 2-0 NCH<2:0>: Comparator Inverting Input Channel Select bits

111 = VSS
110 = FVR_Buffer2
101 = NCH not connected
100 = NCH not connected
011 = CxIN3-
010 = CxIN2-
001 = CxIN1-
000 = CxIN0-
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 653

PIC18(L)F24/25K42
42.0 IN-CIRCUIT SERIAL
PROGRAMMING™ (ICSP™)

ICSP™ programming allows customers to manufacture
circuit boards with unprogrammed devices. Programming
can be done after the assembly process, allowing the
device to be programmed with the most recent firmware
or a custom firmware. Five pins are needed for ICSP™
programming:
• ICSPCLK
• ICSPDAT
• MCLR/VPP

• VDD

• VSS

In Program/Verify mode the program memory, User IDs
and the Configuration Words are programmed through
serial communications. The ICSPDAT pin is a
bidirectional I/O used for transferring the serial data
and the ICSPCLK pin is the clock input. For more
information on ICSP™ refer to the
“PIC18(L)F24/25K42 Memory Programming
Specification” (DS40001836).

42.1 High-Voltage Programming Entry
Mode

The device is placed into High-Voltage Programming
Entry mode by holding the ICSPCLK and ICSPDAT
pins low then raising the voltage on MCLR/VPP to VIHH.

42.2 Low-Voltage Programming Entry
Mode

The Low-Voltage Programming Entry mode allows the
PIC® Flash MCUs to be programmed using VDD only,
without high voltage. When the LVP bit of Configuration
Words is set to ‘1’, the low-voltage ICSP™
programming entry is enabled. To disable the
Low-Voltage ICSP mode, the LVP bit must be
programmed to ‘0’.

Entry into the Low-Voltage Programming Entry mode
requires the following steps:

1. MCLR is brought to VIL.
2. A 32-bit key sequence is presented on

ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, MCLR must be
held at VIL for as long as Program/Verify mode is to be
maintained.

If low-voltage programming is enabled (LVP = 1), the
MCLR Reset function is automatically enabled and
cannot be disabled. See Section 8.5 “MCLR” for more
information.

The LVP bit can only be reprogrammed to ‘0’ by using
the High-Voltage Programming mode.

42.3 Common Programming Interfaces
Connection to a target device is typically done through
an ICSP™ header. A commonly found connector on
development tools is the RJ-11 in the 6P6C (6-pin,
6-connector) configuration. See Figure 42-1.

FIGURE 42-1: ICD RJ-11 STYLE
CONNECTOR INTERFACE

Another connector often found in use with the PICkit™
programmers is a standard 6-pin header with 0.1 inch
spacing. Refer to Figure 42-2.

For additional interface recommendations, refer to your
specific device programmer manual prior to PCB
design.

It is recommended that isolation devices be used to
separate the programming pins from other circuitry.
The type of isolation is highly dependent on the specific
application and may include devices such as resistors,
diodes, or even jumpers. See Figure 42-3 for more
information.

1

2

3

4

5

6

Target

Bottom Side
PC BoardVPP/MCLR VSS

ICSPCLK
VDD

ICSPDAT
NC

Pin Description*

1 = VPP/MCLR

2 = VDD Target

3 = VSS (ground)

4 = ICSPDAT

5 = ICSPCLK

6 = No Connect
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 663

PIC18(L)F24/25K42

SUBWF Subtract W from f

Syntax: SUBWF f {,d {,a}}

Operands: 0 f 255
d  [0,1]
a  [0,1]

Operation: (f) – (W) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 11da ffff ffff

Description: Subtract W from register ‘f’ (2’s
complement method). If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section
43.2.3 “Byte-Oriented and Bit-Ori-
ented Instructions in Indexed Literal
Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: SUBWF REG, 1, 0

Before Instruction
REG = 3
W = 2
C = ?

After Instruction
REG = 1
W = 2
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBWF REG, 0, 0

Before Instruction
REG = 2
W = 2
C = ?

After Instruction
REG = 2
W = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBWF REG, 1, 0

Before Instruction
REG = 1
W = 2
C = ?

After Instruction
REG = FFh ;(2’s complement)
W = 2
C = 0 ; result is negative
Z = 0
N = 1

SUBWFB Subtract W from f with Borrow

Syntax: SUBWFB f {,d {,a}}
Operands: 0  f  255

d  [0,1]
a  [0,1]

Operation: (f) – (W) – (C) dest
Status Affected: N, OV, C, DC, Z
Encoding: 0101 10da ffff ffff

Description: Subtract W and the CARRY flag
(borrow) from register ‘f’ (2’s comple-
ment method). If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 43.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1
Cycles: 1
Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
Write to

destination

Example 1: SUBWFB REG, 1, 0

Before Instruction
REG = 19h (0001 1001)
W = 0Dh (0000 1101)
C = 1

After Instruction
REG = 0Ch (0000 1100)
W = 0Dh (0000 1101)
C = 1
Z = 0
N = 0 ; result is positive

Example 2: SUBWFB REG, 0, 0

Before Instruction
REG = 1Bh (0001 1011)
W = 1Ah (0001 1010)
C = 0

After Instruction
REG = 1Bh (0001 1011)
W = 00h
C = 1
Z = 1 ; result is zero
N = 0

Example 3: SUBWFB REG, 1, 0

Before Instruction
REG = 03h (0000 0011)
W = 0Eh (0000 1110)
C = 1

After Instruction
REG = F5h (1111 0101)

; [2’s comp]
W = 0Eh (0000 1110)
C = 0
Z = 0
N = 1 ; result is negative
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 704

