

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k42-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

eXtreme Low-Power (XLP) Features

- Sleep mode: 60 nA @ 1.8V, typical
- Watchdog Timer: 720 nA @ 1.8V, typical
- Secondary Oscillator: 580 nA @ 32 kHz
- Operating Current:
 - 4 uA @ 32 kHz, 1.8V, typical
 - 45 uA/MHz @ 1.8V, typical

Digital Peripherals

- Three 8-Bit Timers (TMR2/4/6) with Hardware Limit Timer (HLT)
- Four 16-Bit Timers (TMR0/1/3/5)
- Four Configurable Logic Cell (CLC):
- Integrated combinational and sequential logic
- Three Complementary Waveform Generators (CWGs):
 - Rising and falling edge dead-band control
 - Full-bridge, half-bridge, 1-channel drive
 - Multiple signal sources
- Programmable dead band
- Fault-shutdown input
- Four Capture/Compare/PWM (CCP) modules
- Four 10-bit Pulse Width Modulators (PWMs)
- Numerically Controlled Oscillator (NCO):
- Generates true linear frequency control and increased frequency resolution
- Input Clock: 0 Hz < fNCO < 32 MHz
- Resolution: fNCO/220
- DSM: Data Signal Modulator
 - Multiplex two carrier clocks, with glitch prevention feature
 - Multiple sources for each carrier
- Programmable CRC with Memory Scan:
 - Reliable data/program memory monitoring for fail-safe operation (e.g., Class B)
 - Calculate CRC over any portion of program memory
- Two UART Modules:
 - Modules are Asynchronous, RS-232, RS-485 compatibility.
 - One of the UART modules supports LIN Master and Slave, DMX mode, DALI Gear and Device protocols
 - Automatic and user-timed BREAK period generation
 - DMA Compatible
 - Automatic checksums
 - Programmable 1, 1.5, and 2 stop bits
 - Wake-up on BREAK reception
 - Automatic and user-timed BREAK period generation

- One SPI module:
 - Configurable length bytes
 - Arbitrary length data packets
 - Receive-without-transmit option
 - Transmit-without-receive option
 - Transfer byte counter
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
- Two I²C modules, SMBus, PMBus™ compatible:
 - Dedicated Address, Transmit and Receive buffers
 - Bus Collision Detection with arbitration
 - Bus time-out detection and handling
 - Multi-Master mode
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
 - I²C, SMBus, 2.0 and SMBus 3.0, and 1.8V input level selections
- Device I/O Port Features:
 - 25 I/O pins (PIC18(L)F24/25/26/27K42)
 - 36 I/O pins (PIC18(L)F45/46/47K42)
 - 44 I/O pins (PIC18(L)F55/56/57K42)
 - One input only pin
 - Individually programmable I/O direction, open-drain, slew rate, weak pull-up control
 - High-current source/sink for direct LED drive
 - Interrupt-on-change
 - Three External Interrupt Pins
- Peripheral Pin Select (PPS):
- Enables pin mapping of digital I/O
- Hardware Limit Timer (HLT):
 - Hardware monitoring and Fault detection
- Signal Measurement Timer (SMT):
 - 24-bit timer/counter with prescaler

4.4.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 4.2.4 "Program Counter").

Figure 4-3 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-3 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 43.0 "Instruction set.

4.4.4 MULTI-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LFSR and two three-word instructions: MOVFL and MOVSFL. In all cases, the second and the third word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 4-4 shows how this works.

FIGURE 4-3: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program M	emory			000000h
	Byte Locati	ons \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
Instruction 4:	MOVFFL	123h, 456h	00h	60h	000012h
			F4h	8Ch	000014h
			F4h	56h	000016h
					000018h
					00001Ah

R DEV8

bit 8

bit 0

5.5 Device ID and Revision ID

The 16-bit device ID word is located at 3F FFFEh and the 16-bit revision ID is located at 3F FFFCh. These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision ID and Configuration Words. Refer to **15.0** "Nonvolatile Memory (NVM) Control" for more information on accessing these locations.

5.6 Register Definitions: Device ID and Revision ID

REGIS	TER 5-1	0: DEVICE	ID: DEVICE	ID REGIST	ER			
	R	R	R	R	R	R	R	
DE	V15	DEV14	DEV13	DEV12	DEV11	DEV10	DEV9	
bit 15								

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0

Legend:		

bit 7

R = Readable bit	'1' = Bit is set	0' = Bit is cleared	x = Bit is unknown

bit 15-0 DEV<15:0>: Device ID bits

Device	Device ID
PIC18F24K42	6CA0h
PIC18F25K42	6C80h
PIC18LF24K42	6DE0h
PIC18LF25K42	6DC0h

© 2016-2017 Microchip Technology Inc.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	_
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EXTOEN: Ext	ternal Oscillato	r Manual Requ	lest Enable bit			
	1 = EXTOS(C is explicitly e	nabled, operat	ing as specified	d by FEXTOSC	,	
			bled by reques	sting peripheral	•.		
bit 6		NIOSC Oscilla	tor Manual Re	quest Enable b	oit Sealles OOOFD		-)
	1 = HFINTO 0 = HFINTO	SC is explicitly	nabled by requ	esting as specifies	ral	Q (Register 9-)
bit 5	MFOEN: MF	INTOSC (500	kHz/31.25 kHz	z) Oscillator M	lanual Reques	t Enable bit (Derived from
	HFINTOSC)			,			
	1 = MFINTC	OSC is explicitly	enabled				
	0 = MFINTC	SC could be e	nabled by requ	uesting periphe	ral		
bit 4	LFOEN: LFIN	ITOSC (31 kHz	 Oscillator Ma 	anual Request	Enable bit		
	1 = LFINTO	SC is explicitly	enabled				
	0 = LFINIO	SC could be er	habled by requ	esting peripher	al		
bit 3	SOSCEN: Se	condary Oscilla	ator Manual Re	equest Enable	bit		
	1 = Seconda 0 = Seconda	ary Oscillator is	explicitly enaited and the enable	oled, operating	as specified by	SUSCOWR	
bit 2		Coscillator Ma	nual Request I	Enable bit	gpenpheral		
Dit Z	1 = ADC oscillations	cillator is explic	itly enabled				
	0 = ADC osci	cillator could be	e enabled by re	equesting perip	heral		
bit 1-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-7: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

15.1.6.1 Program Flash Memory Write Sequence

The sequence of events for programming an internal program memory location should be:

- 1. Read appropriate number of bytes into RAM. Refer to Table 15-2 for Write latch size.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- Write the n-byte block into the holding registers with auto-increment. Refer to Table 10-2 for Write latch size.
- 7. Set REG<1:0> bits to point to program memory.
- 8. Clear FREE bit and set WREN bit in NVMCON1 register.
- 9. Disable interrupts.
- 10. Execute the unlock sequence (see Section 15.1.4 "NVM Unlock Sequence").
- 11. WR bit is set in NVMCON1 register.
- 12. The CPU will stall for the duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 15-4.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

		i	_ 1	r	t
Source Module	Source Register(s)	Destination Module	Destination Register(s)	DCHxSIRQ	Comment
Signal Measure- ment Timer	SMTxCPW[U:H:L]	GPR	GPR[x,y,z]	SMTxPWAIF	Store Captured Pulse-width values
(SMT)	SMTxCPR[U:H:L]			SMTxPRAIF	Store Captured Period values
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x,y]	TMR0	TMR0[H:L]	TMR0IF	Use as a Timer0 reload for custom 16-bit value
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x]	TMR0	PR0	ANY	Update TMR0 fre- quency based on a specific trigger
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x,y]	TMR1	TMR1[H:L]	TMR1IF	Use as a Timer1 reload for custom 16-bit value
TMR1	TMR1[H:L]	GPR	GPR[x,y]	TMR1GIF	Use TMR1 Gate interrupt flag to read data out of TMR1 register
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x]	TMR2	PR2	TMR2IF	
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x,y,z]	TMR2 CCP or PWM	PR2 CCPR[H:L] or PWMDC[H:L]	ANY	Frequency genera- tor with 50% duty cycle look up table
CCP	CCPR[H:L]	GPR	GPR[x,y]	CCPxIF	Move data from CCP 16b Capture
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x,y]	CCP	CCPR[H:L]	ANY	Load Compare value or PWM values into the CCP
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY [x,y,z,u,v,w]	CCPx CCPy CCPz	CCPxR[H:L] CCPyR[H:L] CCPzR[H:L]	ANY	Update multiple PWM values at the same time e.g. 3-phase motor control
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x,y,z]	NCO	NCOxINC[U:H:L]	ANY	Frequency Genera- tor look up table
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x]	DAC	DACxCON0	ANY	Update DAC values
GPR/SFR/ Program Flash/ Data EEPROM	MEMORY[x]	OSCTUNE	OSCTUNE	ANY	Automated Fre- quency dithering

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
SLRx7	SLRx6	SLRx5	SLRx4	SLRx3	SLRx2	SLRx1	SLRx0	
bit 7	•	•		•			bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
'1' = Bit is set	set '0' = Bit is cleared x =			x = Bit is unknown				
-n/n = Value at POR and BOR/Value at all other Resets								

REGISTER 18-7: SLRCONX: SLEW RATE CONTROL REGISTER

bit 7-0

- SLRx<7:0>: Slew Rate Control on Pins Rx<7:0>, respectively
 - 1 = Port pin slew rate is limited
 - 0 = Port pin slews at maximum rate

TABLE 18-7: SLEW RATE CONTROL REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0

23.6 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the count can be enabled and disabled using Timer1/3/5 gate circuitry. This is also referred to as Timer1/3/5 gate enable.

Timer1/3/5 gate can also be driven by multiple selectable sources.

23.6.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by setting the TMRxGE bit of the TxGCON register. The polarity of the Timer1/3/5 Gate Enable mode is configured using the TxGPOL bit of the TxGCON register.

When Timer1/3/5 Gate Enable mode is enabled, Timer1/3/5 will increment on the rising edge of the Timer1/3/5 clock source. When Timer1/3/5 Gate signal is inactive, the timer will not increment and hold the current count. See Figure 23-4 for timing details.

TABLE 23-2:	TIMER1/3/5 GATE ENABLE
	SELECTIONS

TMRxCLK	TxGPOL	TxG	Timer1/3/5 Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
\uparrow	0	0	Counts

27.6.2 GATED TIMER MODE

Gated Timer mode uses the SMTSIGx input to control whether or not the SMT1TMR will increment. Upon a falling edge of the external signal, the SMT1CPW register will update to the current value of the SMT1TMR. Example waveforms for both repeated and single acquisitions are provided in Figure 27-4 and Figure 27-5.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	G4D4T: Gate	e 3 Data 4 True	(non-inverted) bit			
	1 = CLCIN3	(true) is gated	nto CLCx Gat	te 3			
	0 = CLCIN3	(true) is not ga	ted into CLCx	Gate 3			
bit 6	G4D4N: Gate	e 3 Data 4 Neg	ated (inverted) bit			
	1 = CLCIN3 0 = CLCIN3	(inverted) is ga (inverted) is no	ted into CLCx t gated into C	LCx Gate 3			
bit 5	G4D3T: Gate	3 Data 3 True	(non-inverted) bit			
	1 = CLCIN2	(true) is gated	nto CLCx Gat	te 3			
	0 = CLCIN2	(true) is not ga	ted into CLCx	Gate 3			
bit 4	G4D3N: Gate	e 3 Data 3 Neg	ated (inverted) bit			
	1 = CLCIN2 $0 = CLCIN2$	(inverted) is ga	ted into CLCx t gated into C	Gate 3			
bit 3	G4D2T: Gate	a 3 Data 2 True	(non-inverted) bit			
Sit C	1 = CLCIN1	(true) is gated	nto CLCx Gat	te 3			
	0 = CLCIN1	(true) is not ga	ed into CLCx	Gate 3			
bit 2	G4D2N: Gate	e 3 Data 2 Neg	ated (inverted) bit			
	1 = CLCIN1	(inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCIN1	(inverted) is no	t gated into C	LCx Gate 3			
bit 1	G4D1T: Gate	e 4 Data 1 True	(non-inverted) bit			
	1 = CLCINO	(true) is gated	nto CLCx Gat	te 3			
hit 0		(lifue) is not ga	ed Into CLCX	Gale 3			
		(inverted) is as	ted into CLCv) DIL Cate 3			
	0 = CLCINO	(inverted) is ga	t gated into CLCX	LCx Gate 3			
		(- <u>-</u>				

REGISTER 29-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

	_								
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	RXFOIE	TXCIE		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	TXMTIE: Tra	nsmit Shift Reg	ister Empty Ir	nterrupt Enable	bit				
	1 = Interrupt	enabled							
	0 = Interrupt	not enabled							
bit 6	PERIE: Parity	y Error Interrup	Enable bit						
	\perp = Interrupt	not enabled							
bit 5	ABDOVE: A	uto-baud Detec	t Overflow Int	errupt Enable b	pit				
	1 = Interrupt enabled								
	0 = Interrupt	not enabled							
bit 4	CERIE: Chec	cksum Error Inte	errupt Enable	bit					
	1 = Interrupt	enabled							
hit 2		not enabled	unt Enchlo hit						
DIL 3			upt Enable bi	L					
	0 = Interrupt	not enabled							
bit 2	RXBKIE: Bre	eak Reception I	nterrupt Enab	le bit					
	1 = Interrupt	enabled	·						
	0 = Interrupt	not enabled							
bit 1	RXFOIE: Red	ceive FIFO Ove	erflow Interrup	t Enable bit					
	1 = Interrupt	enabled							
	0 = Interrupt	not enabled		. 1.11					
U JIQ		smit Collision In	iterrupt Enabl	e dit					
	$\perp = interrupt$ 0 = Interrupt	not enabled							

REGISTER 33-5: UXERRIE: UART ERROR INTERRUPT ENABLE REGISTER

34.8.3.1 Shift Register Empty Interrupt

The Shift Register Empty interrupt flag and enable are the SRMTIF and SRMTIE bits respectively. This interrupt is only available in master mode and triggers when a data transfer completes and conditions are not present to start a new transfer, as dictated by the TXR and RXR bits (see Table 34-1 for conditions for starting a new Master mode data transfer with different TXR/ RXR settings). This interrupt will be triggered at the end of the last full bit period, after SCK has been low for one 1/2-baud period. See Figure 30-13 for more details of the timing of this interrupt as well as other interrupts. This bit will not clear itself when the conditions for starting a new transfer occur, and must be cleared in software.

34.8.3.2 Transfer Counter is Zero Interrupt

The Transfer Counter is zero interrupt flag and enable are the TCZIF and TCZIE bits, respectively. This interrupt will trigger when the transfer counter (defined by BMODE, SPIxTCTH/L and SPIxTWIDTH) decrements from one to zero. See Figure 30-13 for more details on the timing of this interrupt as well as other interrupts. This bit must be cleared in software. Note: The TCZIF flag only indicates that the transfer counter has decremented from one to zero, and may not indicate that the entire data transfer process is complete. Either poll the BUSY bit of SPIxCON2 and wait for it to be cleared or use the Shift Register Empty Interrupt (SRMTIF) to determine if a data transfer is fully complete.

34.8.3.3 Start of Slave Select and End of Slave Select Interrupts

The start of slave select interrupt flag and enable are the SOSIF and SOSIE bits, respectively, and the end of slave select interrupt flag and enable are similarly designated by the EOSIF and EOSIE bits. These interrupts trigger at the leading and trailing edges of the slave select input. Note that the interrupts are active in both master and slave mode, and will trigger on transitions of the slave select input regardless of which mode the SPI is in. In Master mode, PPS should be used to route the slave select input to the same pin as the slave select output, allowing these interrupts to trigger on changes to the slave select output. Also note that in slave mode, changing the SSET bit can trigger these interrupts, as it changes the effective input value of slave select. Both SOSIF and EOSIF must be cleared in software

FIGURE 34-14: TRANSFER AND SLAVE SELECT INTERRUPT TIMINGS

PIC18(L)F24/25K42

R-0/0	R-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
BUSY	SSFLT	_	_		SSET	TXR ⁽¹⁾	RXR ⁽¹⁾		
bit 7						•	bit C		
Legend:	1.1. I.M.		1.11						
R = Reada	DIE DIT	vv = vvritable	DIT	U = Unimple	mented bit, read	as '0'			
bit 7	BUSY: SPI M	odule Busy St	atus bit						
	1 = Data exch	ange is busy							
	0 = Data exch	ange is not ta	king place						
bit 6	SSFLT: SS(in)) Fault Status	bit						
	If SSET = 0:								
	1 = SS(in) end	ded the transa	iction unexpec	tedly, and the	data byte being	received was lo	ost		
	0 = SS(in) end	ded normally							
	If SSET = 1:								
	This bit is unc	hanged.							
bit 5-3	Unimplement	ted: Read as	0'						
bit 2	SSET: Slave S	Select Enable	bit						
	Master mode:								
	1 = SS(out) is	driven to the	active state co	ntinuously					
	0 = SS(out) is	driven to the	active state wh	nile the transm	it counter is not	zero			
	Slave mode:								
	1 = SS(in) is i	gnored and da	ata is clocked o	on all SCK(in)	(as though SS =	TRUE at all tir	mes)		
	0 = SS(in) ena is set (see Tat	ables/disables ble 30-2 for de	data input and tails)	d tri-states SD	O if the TRIS bit	associated wit	h the SDO pin		
bit 1	TXR: Transmi	t Data-Requir	ed Control bit ⁽¹)					
	1 = TxFIFO da	ata is required	for a transfer						
	0 = TxFIFO da	ata is not requ	ired for a trans	sfer					
bit 0	RXR: Receive	FIFO Space-	Required Cont	trol bit ⁽¹⁾					
	1 = Data transfers are suspended if the RxFIFO is full								
	0 = Received	data is not sto	ored in the FIF	С					
Note 1:	See Table 34-1 as pertaining to TXR	well as Section and RXR fund	on 34.5 "Mast ction.	er mode" and	Section 34.6 "S	Slave Mode" fo	or more details		

2: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

35.3.2 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent by the receiver. After the 8th falling edge of the SCL line, the device transmitting data on the SDA line releases control of that pin to an input, and reads in an acknowledge value on the next clock pulse. The clock signal is provided by the master. Data is valid to change while the SCL line is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define Start and Stop conditions on the bus which are explained further in the chapter.

35.3.3 SDA AND SCL PINS

The user must configure these pins as open drain inputs. This is done by setting the appropriate TRIS and ODCON bits. The user may also select the input threshold, slew-rate and internal pull-up settings using the RxyI2C control registers (Register 35-18).

35.3.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT<1:0> bits of the I2CxCON2 register. Hold time is the time SDA is held valid after the falling edge of SCL. These bits are used to set the hold time of 30/100/300 ns. A longer hold time setting may help on buses with large capacitance.

35.3.5 START CONDITION

The I²C specification defines a Start condition as a transition of SDA line from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 35-3 shows waveforms for Start conditions. Master hardware waits for the BFRE bit of I2CxSTAT0 to be set, before asserting a Start condition on the SCL and SDA lines. If two masters assert a start at the same time, a collision will occur during the addressing phase.

35.3.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low to high while the SCL line is high. Figure 35-3 shows waveforms for Stop conditions.

Note: At least one SCL low time must appear before a Stop is valid. Therefore if the SDA line goes low then high again while the SCL line is high, only the Start condition is detected.

FIGURE 35-3: START AND STOP CONDITIONS

FIGURE 35-20:

PIC18(L)F24/25K42

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			CS<	<5:0>		
bit 7							bit 0
I							
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	nented bit, rea	d as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7-6	Unimplem	ented: Read as '	0'				
bit 5-0	CS<5:0>: A	ADC Conversion	Clock Select b	oits			
	111111 = F	Fosc/128					
	111110 = F	Fosc/126					
111101 = Fosc/124							
	•						
	•						
	•						
	000000 = F	Fosc/2					

REGISTER 38-6: ADCLK: ADC CLOCK SELECTION REGISTER

REGISTER 38-7: ADREF: ADC REFERENCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	NREF	—	—	PREF	<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	NREF: ADC Negative Voltage Reference Selection bit 1 = VREF- is connected to external VREF- 0 = VREF- is connected to VSS
bit 3-2	Unimplemented: Read as '0'
bit 1-0	PREF: ADC Positive Voltage Reference Selection bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module 10 = VREF+ is connected to external VREF+ 01 = Reserved 00 = VREF+ is connected to VDD

PIC18LF24/25K42 Standard Operating Conditions (unless othe				less otherwise stated)					
PIC18F2									
Param.	aram.					11	Conditions		
No.	Symbol	Device Characteristics	Min.	тур.т	r wax.	Units	Vdd	Note	
D100	IDD _{XT4}	XT = 4 MHz	-	560	1000	μΑ	3.0V	\wedge	
D100	IDD _{XT4}	XT = 4 MHz	—	730	1100	μΑ	3.0V		
D100A	IDD _{XT4}	XT = 4 MHz	—	370	—	μΑ	3.0V	PMØ 's all ⊥'s	
D100A	IDD _{XT4}	XT = 4 MHz	—	590	—	μΑ	3.0V	PMD's all <u>1's</u>	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	2.2	3.7	mA	3.0V	\frown \bigcirc	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	2.3	3.8	mA	3.0V		
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.4	—	mA	∕3.0√	PMD's all 1's	
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.4	—	mA	3.0V	PM D's all 1's	
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	8.0	11.1	mA	3.0	\langle	
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	8.0	11.2/	mA/	3.0V	\searrow	
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	4.8	$-\langle$	Am	3.0V	PMD's all 1's	
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	4.8	_ `	mA	73.0V	₽MD's all 1's	
D103	IDD _{HSPLL64}	HS+PLL = 64 MHz	—	8.0	11.1	mA	/3.0V		
D103	IDD _{HSPLL64}	HS+PLL = 64 MHz	—	8.0	11.2	mA	∖3.0V		
D103A	IDD _{HSPLL64}	HS+PLL = 64 MHz		4.8	$\langle - \rangle$	mA	3.0V	PMD's all 1's	
D103A	IDD _{HSPLL64}	HS+PLL = 64 MHz	$\left \left.\right\rangle$	4.8	7	mA	3.0V	PMD's all 1's	
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz		1.8		-mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	\neq	1.8	~	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.8	Ķ.	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.9	—	mA	3.0V		

TABLE 46-2: SUPPLY CURRENT (IDD)^(1,2,4)

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. † Note 1:

The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low (MCLR = VDD WDT disabled. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. $IDD_{DOZE} = [IDD_{IDLE}^*(N-1)/N] + IDD_{HFO} T6/N where N = QOZE Ratio (Register 12-2).$ 2:

- 3:
- PMD bits are all in the default state, no modules are disabled. 4:

48.0 PACKAGING INFORMATION

Package Marking Information

	Y Y WW NNN (e3)	Week code (week of January 1 is week '01') Alphanumeric traceability code					
	*	This package is Pb-free. The Pb-free JEDEC designator ($\textcircled{e3}$) can be found on the outer packaging for this package.					
Note:	In the events be carrie	ent the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available					

characters for customer-specific information.

APPENDIX A: REVISION HISTORY

Revision A (11/2016)

Initial release of this document.

Revision B (2/2017)

Updated all Summary of Associated Registers; added Register Summary chapter; Removed Appendix B; Other minor corrections.