

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k42-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bank	BSR<5:0>	addr<7:0>	PIC18(L)F24K42	PIC18(L)F25K42	Address addr<13:0>	
		00h	Access RAM	Access RAM	0000h 005Fh	
Bank 0	00 0000	FFh	GPR	GPR	0060h 00FFh	
Bank 1	00 0001	00h	GPR	GPR	0100h •	
		FFh 00h				
Bank 2	00 0010	FFh	GPR	GPR		
Bank 3	00 0011	00h FFh	GPR	GPR	• • 03FFh	
	00 0100	00h •			0400h	Virtual Bank
Banks 4 to 7		•		GPR	•	Access RAM
		FFh 00h	Unimplemented		07FFh 0800h	SFR
Banks 8 to 55	00 1000	•		Unimplemented	•	
0.000	11 0111	• FFh			• 37FFh	
Banks	11 1000	00h •			3800h •	
56 to 62	 11 1110	• • FFh	SFR	SFR	• • 3EFFh	
		00h			3F00h	1//
Bank 63	11 1111		SFR	SFR	3F5Fh 3F60h	ť /

FIGURE 4-4: DATA MEMORY MAP FOR PIC18(L)F24/25K42 DEVICES

Register Definitions: Status Registers 4.6

U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u		
_	TO	PD	Ν	OV	Z	DC	С		
pit 7							bit		
_egend:									
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'									
n = Value at PC	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN		
pit 7	Unimplemen	ted: Read as '	0'						
-	TO: Time-Out		-						
	•	wer-up or by e me-out occurre		RWDT or SLEE	₽ instruction				
	PD : Power-Do		eu						
	1 = Set at power-up or by execution of CLRWDT instruction								
	0 = Set by ex	ecution of the	SLEEP instruc	tion					
	N: Negative bit used for signed arithmetic (2's complement); indicates if the result is negative, (ALU MSb = 1).								
	1 = The resul								
	0 = The resul								
					nent); indicates	an overflow of	the 7-bit		
	-			7) to change st arithmetic oper					
	0 = No overfl		5 5 5						
	Z: Zero bit								
		lt of an arithme It of an arithme		eration is zero eration is not z	ero				
					F instructions)	1)			
	1 = A carry-o	ut from the 4th	low-order bit	of the result or					
		out from the 4							
				w, SUBWF instrubits of the result					
	0 = No carry-	out from the N	lost Significan	t bit of the resu	It occurred				

2: For Rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the Source register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON1		N	OSC<2:0>			NDIV<3:0>				
OSCCON2	—	С	OSC<2:0>			CDIV<3:0>				
OSCCON3	CSWHOLD	SOSCPWR		ORDY	NOSCR	_	_	_	110	
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	111	
OSCTUNE	_	—	TUN<5:0>						113	
OSCFRQ	—	—	— — FRQ<3:0>				3:0>		112	
OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	_	114	

 TABLE 9-3:
 SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 9-4:SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	—		FCMEN	_	CSWEN		_	CLKOUTEN	71
CONFIGT	7:0	—	F	RSTOSC<2:0	>	_	F	EXTOSC<2:0	>	1

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

15.1 Program Flash Memory

The Program Flash Memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed one byte at a time. A write to program memory or program memory erase is executed on blocks of n bytes at a time. Refer to Table 15-2 for write and erase block sizes. A Bulk Erase operation cannot be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

It is important to understand the PFM memory structure for erase and programming operations. Program memory word size is 16 bits wide. PFM is arranged in rows. A row is the minimum size that can be erased by user software. Refer to Table 15-2 for the row sizes for the these devices.

After a row has been erased, all or a portion of this row can be programmed. Data to be written into the program memory row is written to 8-bit wide data write latches by means of 6 address lines. These latches are not directly accessible, but may be loaded via sequential writes to the TABLAT register.

Note: To modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, the new data and retained data can be written into the write latches to reprogram the row of PFM. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations

	TABLE 15-2:	FLASH MEMORY ORGANIZATION BY DEVICE
--	-------------	-------------------------------------

Device	Row Erase Size (Words)	Write Latches (Words)	Program Flash Memory (Words)	Data Memory (Bytes)	
PIC18(L)F24K42	32	64	8192	256	
PIC18(L)F25K42	32	64	16384	200	

15.3.5 WRITE VERIFY

;

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 15-5: DATA EEPROM READ

Data	Memory Addres	s to read		
	CLRF	NVMCON1	;	Setup Data EEPROM Access
	MOVF	EE_ADDRL, W	;	
	MOVWF	NVMADRL	;	Setup Address
	BSF	NVMCON1, RD	;	Issue EE Read
	MOVF	NVMDAT, W	;	W = EE_DATA

EXAMPLE 15-6: DATA EEPROM WRITE

; Data Mem	ory Addres	s to write	9								
	CLRF	NVMCON1		;	Setup	Data	EEPROM	Acces	s		
	MOVF	EE_ADDRL,	W	;							
	MOVWF	NVMADRL		;	Setup	Addre	SS				
; Data Mem	ory Value	to write									
	MOVF	EE_DATA,	W	;							
	MOVWF	NVMDAT		;							
; Enable w	rites										
	BSF	NVMCON1,	WREN	;							
; Disable	interrupts										
	BCF	INTCON0,	GIE	;							
; Required	unlock se	quence									
	MOVLW	55h		;							
	MOVWF	NVMCON2		;							
	MOVLW	AAh		;							
	MOVWF	NVMCON2		;							
; Set WR b	it to begi	n write									
	BSF	NVMCON1,	WR	;							
; Enable II	TN										
	BSF	INTCON0,	GIE	;							
; Wait for	interrupt	, write do	one								
	SLEEP			;							
; Disable	writes										
	BCF	NVMCON1,	WREN	;							

15.3.6 OPERATION DURING CODE-PROTECT

Data EEPROM Memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

If the Data EEPROM is write-protected or if NVMADR points an invalid address location, the WR bit is cleared without any effect. WRERR is signaled in this scenario.

15.3.7 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the Data EEPROM Memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT).

The unlock sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

REGISTER 16-9: CRCXORH: CRC XOR HIGH BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
			Χ<′	5:8>					
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					

bit 7-0 X<15:8>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 16-10: CRCXORL: CRC XOR LOW BYTE REGISTER

'0' = Bit is cleared

R/W-x/x	U-1						
			X<7:1>				—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 X<7:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '1'

'1' = Bit is set

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
SLRx7	SLRx6	SLRx5	SLRx4	SLRx3	SLRx2	SLRx1	SLRx0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
-n/n = Value at	t POR and BOR	R/Value at all of	ther Resets					

REGISTER 18-7: SLRCONX: SLEW RATE CONTROL REGISTER

bit 7-0

- SLRx<7:0>: Slew Rate Control on Pins Rx<7:0>, respectively
 - 1 = Port pin slew rate is limited
 - 0 = Port pin slews at maximum rate

TABLE 18-7: SLEW RATE CONTROL REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0

20.6 Register Definitions: Interrupt-on-Change Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	
bit 7							bit 0	
•								
Legend:								
R = Readable bi	t	W = Writable bi	t	U = Unimplemented bit, read as '0'				
u = Bit is unchar	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clear	ed					

REGISTER 20-1: IOCxP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER EXAMPLE

bit 7-0

IOCxP<7:0>: Interrupt-on-Change Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a positive-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 20-2: IOCxN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER EXAMPLE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCxN7 | IOCxN6 | IOCxN5 | IOCxN4 | IOCxN3 | IOCxN2 | IOCxN1 | IOCxN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

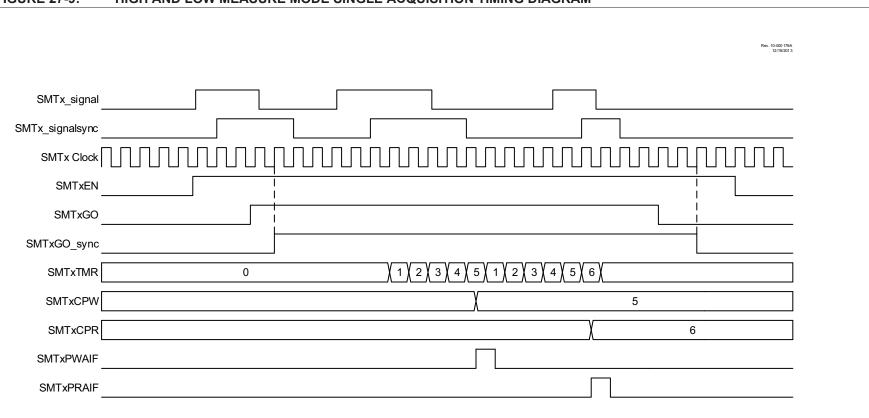
IOCxN<7:0>: Interrupt-on-Change Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a negative-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

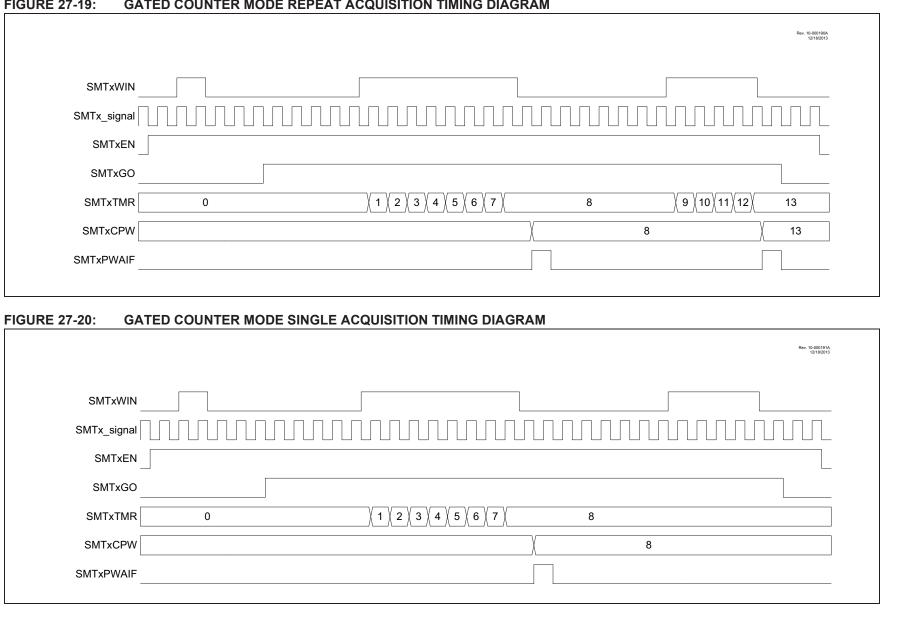
0 = Interrupt-on-Change disabled for the associated pin

REGISTER 20-3: IOCxF: INTERRUPT-ON-CHANGE FLAG REGISTER EXAMPLE

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCxF7 | IOCxF6 | IOCxF5 | IOCxF4 | IOCxF3 | IOCxF2 | IOCxF1 | IOCxF0 |
| bit 7 | | | | | | | bit 0 |


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0


IOCxF<7:0>: Interrupt-on-Change Flag bits

1 = A enabled change was detected on the associated pin. Set when IOCP[n] = 1 and a positive edge was detected on the IOCn pin, or when IOCN[n] = 1 and a negative edge was detected on the IOCn pin

0 = No change was detected, or the user cleared the detected change

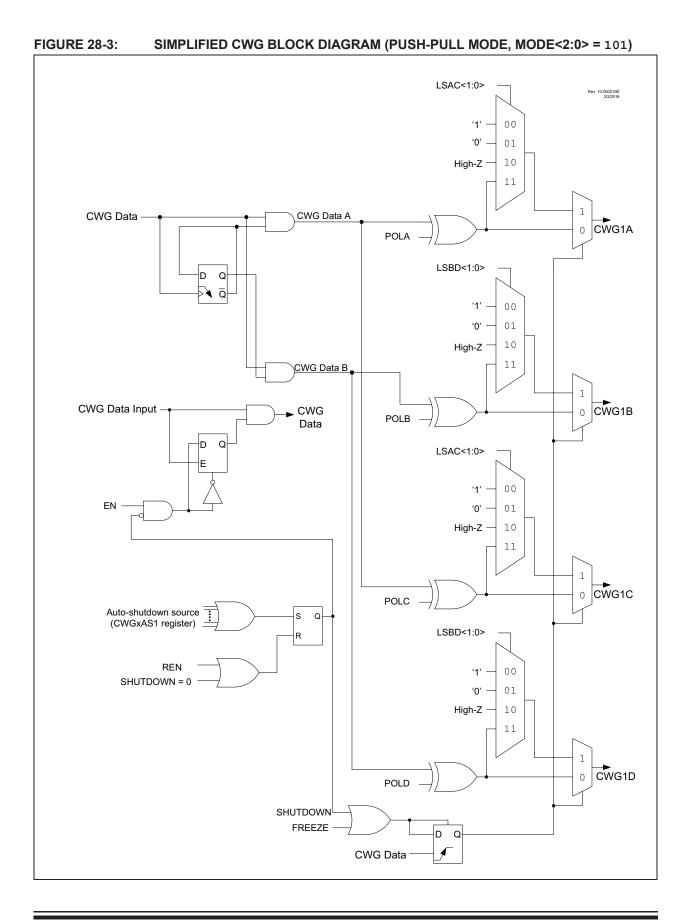


FIGURE 27-9: HIGH AND LOW MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

FIGURE 27-19: GATED COUNTER MODE REPEAT ACQUISITION TIMING DIAGRAM

Preliminary

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾		
bit 7			•				bit C		
Legend:									
R = Readable		W = Writable		U = Unimplemented bit, read as '0'					
u = Bit is uncl	0	x = Bit is unkr		-n/n = Value at POR and BOR/Value at all other Re					
'1' = Bit is set		'0' = Bit is cle	eared q = Value depends on condition						
b :+ 7		ring Data D bit							
bit 7		ring Data D bit							
bit 6		ring Data C bit							
bit 5		ring Data B bit							
bit 4		ring Data A bit							
bit 3		ing Enable bit D							
		output has the			th polarity contr	ol from POLD	bit		
		output is assigr		OVRD bit					
bit 2	STRC: Steer	ing Enable bit C	;(2)						
	1 = CWGxC	output has the	CWG data inp	ut waveform wi	th polarity contr	ol from POLC	bit		
	0 = CWGxC	output is assigr	ed to value of	OVRC bit					
bit 1	STRB: Steer	ing Enable bit E	3(2)						
	1 = CWGxB	output has the	CWG data inpu	ut waveform wi	th polarity contr	ol from POLB I	oit		
	0 = CWGxB	output is assign	ed to value of	OVRB bit					
bit 0	STRA: Steer	ing Enable bit A	(2)						
	1 = CWGxA	output has the	CWG data inpi	ut waveform wi	th polarity contr	ol from POLA I	oit		
	0 = CWGxA	output is assigr	ed to value of	OVRA bit					
Note 1: Th	e bits in this reg	gister apply only	when MODE	<2:0> = 00x (R	egister 28-1, St	eering modes)			
2. Th	ia hit ia daubla	hufforod when I	VODE - 2005 -	0.0.1					

REGISTER 28-5: CWGxSTR⁽¹⁾: CWG STEERING CONTROL REGISTER

2: This bit is double-buffered when MODE < 2:0 > = 0.01.

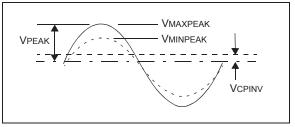
31.0 ZERO-CROSS DETECTION (ZCD) MODULE

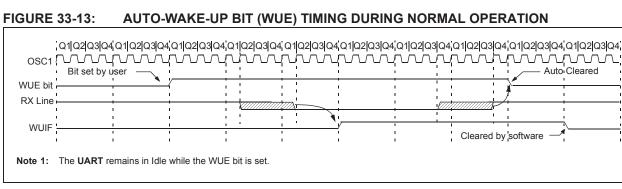
The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 31-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- Accurate long term time measurement
- Dimmer phase delayed drive
- Low EMI cycle switching


31.1 External Resistor Selection


The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 31-1 and Figure 31-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 31-1: EXTERNAL RESISTOR

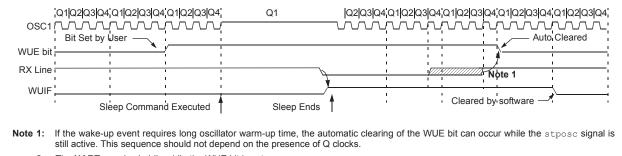

$$RSERIES = \frac{V_{PEAK}}{3 \times 10^{-4}}$$

FIGURE 31-1: EXTERNAL VOLTAGE

FIGURE 33-14: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

^{2:} The **UART** remains in Idle while the WUE bit is set.

33.18 Transmitting a Break

The UART module has the capability of sending either a fixed length Break period or a software timed Break period. The fixed length Break consists of a Start bit, followed by 12 '0' bits and a Stop bit. The software timed Break is generated by setting and clearing the BRKOVR bit in the UxCON1 register.

To send the fixed length Break, set the SENDB and TXEN bits in the UxCON0 register. The Break sequence is then initiated by a write to UxTXB. The timed Break will occur first, followed by the character written to UxTXB that initiated the Break. The initiating character is typically the Sync character of the LIN specification.

SENB is disabled in the LIN and DMX modes because those modes generate the Break sequence automatically.

The SENDB bit is automatically reset by hardware after the Break Stop bit is complete.

The TXMTIF bit in the UxERRIR register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 33-15 for the timing of the Break sequence.

33.19 Receiving a Break

The UART has counters to detect when the RX input remains in the space state for an extended period of time. When this happens, the RXBKIF bit in the UxERRIR register is set.

A Break is detected when the RX input remains in the space state for 11 bit periods for asynchronous and LIN modes, and 23 bit periods for DMX mode.

The user can select to receive the Break interrupt as soon as the Break is detected or at the end of the Break, when the RX input returns to the Idle state. When the RXBIMD bit in the UxCON1 is '1' then RXBKIF is set immediately upon Break detection. When RXBIMD is '0' then RXBKIF is set when the RX input returns to the Idle state.

33.20 UART Operation During Sleep

The UART ceases to operate during Sleep. The safe way to wake the device from Sleep by a serial operation is to use the Wake-on-Break feature of the UART. See Section 33.17.3, Auto-Wake-up on Break

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	_	_	—	P1<8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
hit 7 G	Unimalaman	ted. Dood oo f	<u>`</u>				
bit 7-6	Unimplemen	ted: Read as '	J				
bit 0	P1<8>: Most	Significant Bit	of Parameter	1			
	DMX mode:						
	Most Significa	int bit of numbe	r of bytes to tra	ansmit betwee	n Start Code and	d automatic Bre	eak generation
	DALI Control	Device mode:					
	Most Significa	int bit of idle tim	ie delay after v	which a Forwar	d Frame is sent.	Measured in h	nalf-bit periods
	DALI Control	<u>Gear mode</u> :					
	Most Significa	ant bit of delay	between the e	end of a Forwa	rd Frame and th	e start of the E	Back Frame
	Measured in h	nalf-bit periods					
	Other modes:						
	Not used						

REGISTER 33-12: UxP1H: UART PARAMETER 1 HIGH REGISTER

REGISTER 33-13: UxP1L: UART PARAMETER 1 LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | P1< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 P

P1<7:0>: Least Significant Bits of Parameter 1

DMX mode:

Least Significant Byte of number of bytes to transmit between Start Code and automatic Break generation

DALI Control Device mode:

Least Significant Byte of idle time delay after which a Forward Frame is sent. Measured in half-bit periods DALI Control Gear mode:

Least Significant Byte of delay between the end of a Forward Frame and the start of the Back Frame Measured in half-bit periods

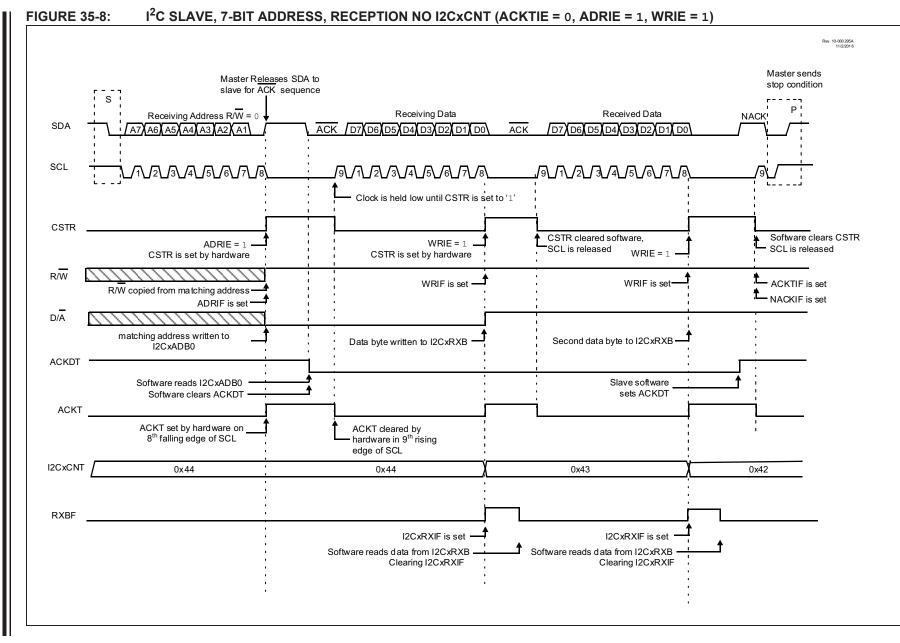
LIN mode:

PID to transmit (Only Least Significant 6 bits used) <u>Asynchronous Address mode:</u> Address to transmit (9th transmit bit automatically set to '1') <u>Other modes</u>: Not used

		R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	TXCH	K<7:0>			
					bit 0
W = Writat	ole bit	U = Unimplen	nented bit, read	as '0'	
x = Bit is u	nknown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'0' = Bit is	cleared				
	x = Bit is u	W = Writable bit x = Bit is unknown '0' = Bit is cleared	W = Writable bit U = Unimplen x = Bit is unknown -n/n = Value a	W = Writable bitU = Unimplemented bit, readx = Bit is unknown-n/n = Value at POR and BOI	W = Writable bitU = Unimplemented bit, read as '0'x = Bit is unknown-n/n = Value at POR and BOR/Value at all o

REGISTER 33-18: UxTXCHK: UART TRANSMIT CHECKSUM RESULT REGISTER

bit 7-0	TXCHK<7:0>: Checksum calculated from TX bytes				
	LIN mode and COEN = 1:				
	Sum of all transmitted bytes including PID				
	LIN mode and COEN = 0:				
	Sum of all transmitted bytes except PID				
	All other modes and COEN = 1:				
	Sum of all transmitted bytes since last clear				
	All other modes and COEN = 0:				
	Not used				


REGISTER 33-19 UXRXCHK: UART RECEIVE CHECKSUM RESULT REGISTER

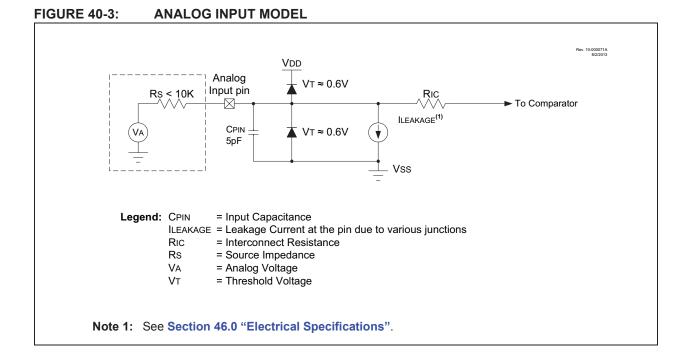
ILEOID I EIL 3	0-13. OXIV.					OTER			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
RXCHK<7:0>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0
RXCHK<7:0>: Checksum calculated from RX bytes
LIN mode and COEN = 1:
Sum of all received bytes including PID
LIN mode and COEN = 0:
Sum of all received bytes except PID
All other modes and COEN = 1:
Sum of all received bytes since last clear
All other modes and COEN = 0:
Not used

© 2016-2017 Microchip Technology Inc.

40.7 Comparator Response Time


The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 46-15 and Table 46-17 for more details.

40.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 40-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

 Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

PIC18(L)F24/25K42

Mnemonic,		Description	Cycles	16-	Bit Inst	ruction V	Vord	Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER INSTRUCTIONS									
ADDWF	f, d ,a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	
MOVF	f, d, a	Move f to WREG or f	1	0101	00da	ffff	ffff	Z, N	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	2, 3
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVFFL	f _s , f _d	Move f _s (source) to	3	0000	0000	0110	ffff	None	2
		g (full destination)		1111	ffff	ffff	ffgg		
		f _d (full destination)3rd word		1111	gggg	dddd	dddd		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
BYTE-ORIE	INTED S		I	1				1	
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	1
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)		010a	ffff	ffff	None	1
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)		000a	ffff	ffff	None	1
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)		11da	ffff	ffff	None	1
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)		11da	ffff	ffff	None	1
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)			ffff	ffff	None	1
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)		10da	ffff	ffff	None	1
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)		011a	ffff	ffff	None	1
BIT-ORIENTED FILE REGISTER INSTRUCTIONS									
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	
BTG	f, d, a	Bit Toggle f	1		bbba	ffff	ffff	None	
BIT-ORIENTED SKIP INSTRUCTIONS									
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	1
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)			ffff	ffff	None	1
		Bit Test f, Skip if Set	, ,						

TABLE 43-1: PIC18(L)F24/25K42 INSTRUCTION SET

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

CLR	WDT	Clear Wat	chdog	Time	r				
Synta	ax:	CLRWDT	CLRWDT						
Oper	ands:	None	None						
Operation:									
Statu	is Affected:	TO, PD							
Enco	oding:	0000	0000	000	0 (0100			
Description:		Watchdog scaler of the	CLRWDT instruction resets the Watchdog Timer. It also resets the post- scaler of the WDT. Status bits, TO and PD, are set.						
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3			Q4			
	Decode	No operation	Process Data		op	No peration			
	nple: Before Instruc WDT Cor After Instructio WDT Cor <u>WD</u> T Pos TO PD	unter = on unter =	? 00h 0 1 1						

COMF	Complem	ent f						
Syntax:	COMF f	COMF f {,d {,a}}						
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	d ∈ [0,1]						
Operation:	$(\overline{f}) \rightarrow dest$							
Status Affected:	N, Z							
Encoding:	0001	11da i	ffff	ffff				
	stored in W stored back If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode wher tion 43.2.3 Oriented Ir	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 43.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Process Data		Vrite to stination				
Example:	COMF	REG, 0,	0					
Before Instruc REG	tion = 13h							

Before Instruction						
REG	=	13h				
After Instruction						
REG	=	13h				
W	=	ECh				