
Microchip Technology - PIC18F24K42T-I/MV Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-UFQFN Exposed Pad

Supplier Device Package 28-UQFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k42t-i-mv

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f24k42t-i-mv-4387330
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F24/25K42

11.3.2 NATURAL ORDER (HARDWARE)

PRIORITY
When more than one interrupt with the same user
specified priority level are requested, the priority
conflict is resolved by using a method called “Natural
Order Priority”. Natural order priority is a fixed priority
scheme that is based on the Interrupt Vector Table.
Table 11-2 shows the natural order priority and the
interrupt vector number assigned for each source.

TABLE 11-2: INTERRUPT VECTOR
PRIORITY TABLE

The natural order priority scheme has vector interrupt 0
as the highest priority and vector interrupt 81 as the
lowest priority.

For example, when two concurrently occurring interrupt
sources that are both designated high priority using the
IPRx register will be resolved using the natural order
priority (i.e., the interrupt with a lower corresponding
vector number will preempt the interrupt with the higher
vector number).

The ability for the user to assign every interrupt source
to high or low priority levels means that the user
program can give an interrupt with a low natural order
priority a higher overall priority level.

11.4 Interrupt Operation
All pending interrupts are indicated by the flag bit being
equal to a ‘1’ in the PIRx register. All pending interrupts
are resolved using the priority scheme explained in
Section 11.3 “Interrupt Priority”.

Once the interrupt source to be serviced is resolved,
the program execution vectors to the resolved interrupt
vector addresses, as explained in Section
11.2 “Interrupt Vector Table (IVT)”. The vector
number is also stored in the WREG register. Most of
the flag bits are required to be cleared by the
application software, but in some cases, device
hardware clears the interrupt automatically. Some flag
bits are read-only in the PIRx registers, these flags are
a summary of the source interrupts and the
corresponding interrupt flags of the source must be
cleared.

A valid interrupt can be either a high or low priority
interrupt when in main routine or a high priority interrupt
when in low priority Interrupt Service Routine.
Depending on order of interrupt requests received and
their relative timing, the CPU will be in the state of
execution indicated by the STAT bits of the INTCON1
register (Register 11-2).

The State machine shown in Figure 11-1 and the
subsequent sections detail the execution of interrupts
when received in different orders.

Vector
Number

Interrupt
Source

Vector
Number

Interrupt
Source

0 Software Interrupt 42 DMA2SCNT
1 HLVD 43 DMA2DCNT
2 OSF 44 DMA2OR
3 CSW 45 DMA2A
4 NVM 46 I2C2RX
5 SCAN 47 I2C2TX
6 CRC 48 I2C2
7 IOC 49 I2C2E
8 INT0 50 U2RX
9 ZCD 51 U2TX
10 AD 52 U2E
11 ADT 53 U2
12 C1 54 TMR3
13 SMT1 55 TMR3G
14 SMT1PRA 56 TMR4
15 SMT1PWA 57 CCP2
16 DMA1SCNT 58 —
17 DMA1DCNT 59 CWG2
18 DMA1OR 60 CLC2
19 DMA1A 61 INT2
20 SPI1RX 62 —
21 SPI1TX 63 —
22 SPI1 64 —
23 I2C1RX 65 —
24 I2C1TX 66 —
25 I2C1 67 —
26 I2C1E 68 —
27 U1RX 69 —
28 U1TX 70 TMR5
29 U1E 71 TMR5G
30 U1 72 TMR6
31 TMR0 73 CCP3
32 TMR1 74 CWG3
33 TMR1G 75 CLC3
34 TMR2 76 —
35 CCP1 77 —
36 — 78 —
37 NCO 79 —
38 CWG1 80 CCP4
39 CLC1 81 CLC4
40 INT1
41 C2

Note: The state of GIEH/L is not changed by the
hardware when servicing an interrupt. The
internal state machine is used to keep
track of execution states. These bits can
be manipulated in the user code resulting
in transferring execution to the main
routine and ignoring existing interrupts.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 124

PIC18(L)F24/25K42
REGISTER 15-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

NVMCON2<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set
-n = Value at POR

bit 7-0 NVMCON2<7:0>:
Refer to Section 15.1.4 “NVM Unlock Sequence”.

Note 1: This register always reads zeros, regardless of data written.

Register 15-3: NVMADRL: Data EEPROM Memory Address Low
R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0

ADR<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set
-n = Value at POR

bit 7-0 ADR<7:0>: EEPROM Read Address bits

REGISTER 15-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH(1)

U-0 U-0 U-0 U-0 U-0 U-0 R/W-x/u R/W-x/u
— — — — — — ADR<9:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set
-n = Value at POR

bit 7-2 Unimplemented: Read as ‘0’
bit 1-0 ADR<9:8>: EEPROM Read Address bits

Note 1: The NVMADRH register is not implemented on PIC18(L)F24/25K42.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 215

PIC18(L)F24/25K42
REGISTER 16-11: SCANCON0: SCANNER ACCESS CONTROL REGISTER 0
R/W-0/0 R/W-0/0 R/W/HC-0/0 U-0 U-0 R/W-0/0 R/W-0/0 R-0/0

EN TRIGEN SGO — — MREG BURSTMD BUSY
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware

bit 7 EN: Scanner Enable bit(1)

1 = Scanner is enabled
0 = Scanner is disabled

bit 6 TRIGEN: Scanner Trigger Enable bit(2)

1 = Scanner trigger is enabled
0 = Scanner trigger is disabled
Refer Table 16-2.

bit 5 SGO: Scanner GO bit(3, 4)

1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is passed
to the CRC peripheral.

0 = Scanner operations will not occur
bit 4-3 Unimplemented: Read as ‘0’
bit 2 MREG: Scanner Memory Region Select bit(2)

1 = Scanner address points to Data EEPROM
0 = Scanner address points to Program Flash Memory

bit 1 BURSTMD: Scanner Burst Mode bit
1 = Memory access request to the CPU Arbiter is always true
0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger
Refer Table 16-2.

bit 0 BUSY: Scanner Busy Indicator bit
1 = Scanner cycle is in process
0 = Scanner cycle is compete (or never started)

Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content.
2: Scanner trigger selection can be set using the SCANTRIG register.
3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is not

occurring) or when CRCGO = 0 (CRCCON0 register).
4: CRCEN and CRCGO bits (CRCCON0 register) must be set before setting the SGO bit.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 226

PIC18(L)F24/25K42

REGISTER 17-6: DMAxSSAU – DMAx SOURCE START ADDRESS UPPER REGISTER

REGISTER 17-7: DMAxSPTRL – DMAx SOURCE POINTER LOW REGISTER

REGISTER 17-8: DMAxSPTRH – DMAx SOURCE POINTER HIGH REGISTER

U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — SSA<21:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR
and BOR/Value at all
other Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 7-0 SSA<21:16>: Source Start Address bits

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
SPTR<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and
BOR/Value at all other
Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 15-0 SPTR<7:0>: Current Source Address Pointer

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
SPTR<15:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and
BOR/Value at all other
Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 5-0 SPTR<15:8>: Current Source Address Pointer
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 255

PIC18(L)F24/25K42

FIGURE 25-4: SIMPLIFIED PWM BLOCK DIAGRAM

Rev. 10-000157D
9/13/2016

CCPRxH

Duty cycle registers

10-bit Latch(2)

(Not accessible by user)

Comparator

Comparator

T2PR

(1)T2TMR

TMR2 Module

CCPx

CCPx_out
To Peripherals

R

TRIS Control

R

S

Q

CCPRxL

set CCPxIF

CCPx_pset

ERS logic

Notes: 1. 8-bit timer is concatenated with two bits generated by Fosc or two bits of the internal prescaler to
 create 10-bit time-base.

2. The alignment of the 10 bits from the CCPR register is determined by the CCPxFMT bit.

PPS

RxyPPS
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 349

PIC18(L)F24/25K42
25.4.7 OPERATION IN SLEEP MODE
In Sleep mode, the T2TMR register will not increment
and the state of the module will not change. If the CCPx
pin is driving a value, it will continue to drive that value.
When the device wakes up, T2TMR will continue from
its previous state.

25.4.8 CHANGES IN SYSTEM CLOCK
FREQUENCY

The PWM frequency is derived from the system clock
frequency. Any changes in the system clock frequency
will result in changes to the PWM frequency. See Sec-
tion 9.0 “Oscillator Module (with Fail-Safe Clock
Monitor)” for additional details.

25.4.9 EFFECTS OF RESET
Any Reset will force all ports to Input mode and the
CCP registers to their Reset states.

TABLE 25-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)
PWM Frequency 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz

Timer Prescale 16 4 1 1 1 1
T2PR Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17
Maximum Resolution (bits) 10 10 10 8 7 6.6

TABLE 25-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)
PWM Frequency 1.22 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz

Timer Prescale 16 4 1 1 1 1
T2PR Value 0x65 0x65 0x65 0x19 0x0C 0x09
Maximum Resolution (bits) 8 8 8 6 5 5
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 352

PIC18(L)F24/25K42

27.6.2 GATED TIMER MODE
Gated Timer mode uses the SMTSIGx input to control
whether or not the SMT1TMR will increment. Upon a
falling edge of the external signal, the SMT1CPW
register will update to the current value of the
SMT1TMR. Example waveforms for both repeated and
single acquisitions are provided in Figure 27-4 and
Figure 27-5.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 369

PIC18(L)F24/25K42
REGISTER 29-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER
R/W-0/0 U-0 U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u

POL — — — G4POL G3POL G2POL G1POL
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 POL: CLCxOUT Output Polarity Control bit
1 = The output of the logic cell is inverted
0 = The output of the logic cell is not inverted

bit 6-4 Unimplemented: Read as ‘0’
bit 3 G4POL: Gate 3 Output Polarity Control bit

1 = The output of gate 3 is inverted when applied to the logic cell
0 = The output of gate 3 is not inverted

bit 2 G3POL: Gate 2 Output Polarity Control bit
1 = The output of gate 2 is inverted when applied to the logic cell
0 = The output of gate 2 is not inverted

bit 1 G2POL: Gate 1 Output Polarity Control bit
1 = The output of gate 1 is inverted when applied to the logic cell
0 = The output of gate 1 is not inverted

bit 0 G1POL: Gate 0 Output Polarity Control bit
1 = The output of gate 0 is inverted when applied to the logic cell
0 = The output of gate 0 is not inverted
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 444

PIC18(L)F24/25K42
REGISTER 33-2: UxCON1: UART CONTROL REGISTER 1
R/W-0/0 U-0 U-0 R/W/HC-0/0 R/W-0/0 U-0 R/W-0/0 R/W/HC-0/0

ON — — WUE RXBIMD — BRKOVR SENDB
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Hardware clear

bit 7 ON: Serial Port Enable bit
1 = Serial port enabled
0 = Serial port disabled (held in Reset)

bit 6-5 Unimplemented: Read as ‘0’
bit 4 WUE: Wake-up Enable bit

1 = Receiver is waiting for falling RX input edge which will set the UxIF bit. Cleared by hardware on
wake event. Also requires UxIE bit of PIEx to enable wake

0 = Receiver operates normally
bit 3 RXBIMD: Receive Break Interrupt Mode Select bit

1 = Set RXBKIF immediately when RX in has been low for the minimum Break time
0 = Set RXBKIF on rising RX input after RX in has been low for the minimum Break time

bit 2 Unimplemented: Read as ‘0’
bit 1 BRKOVR: Send Break Software Override bit

1 = TX output is forced to non-idle state
0 = TX output is driven by transmit shift register

bit 0 SENDB: Send Break Control bit(1)

1 = Output Break upon UxTXB write. Written byte follows Break. Bit is cleared by hardware.
0 = Break transmission completed or disabled

Note 1: This bit is read-only in LIN, DMX, and DALI modes.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 501

PIC18(L)F24/25K42
TABLE 33-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE UART

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page

UxCON0 BRGS ABDEN TXEN RXEN MODE<3:0> 500
UxCON1 ON — — WUE RXBIMD — BRKOVR SENDB 501
UxCON2 RUNOVF RXPOL STP<1:0> C0EN TXPOL FLO<1:0> 502
UxERRIR TXMTIF PERIF ABDOVF CERIF FERIF RXBKIF RXFOIF TXCIF 503
UxERRIE TXMTIE PERIE ABDOVE CERIE FERIE; RXBKIE RXFOIE TXCIE 504
UxUIR WUIF ABDIF — — — ABDIE — — 505
UxFIFO TXWRE STPMD TXBE TXBF RXIDL XON RXBE RXBF 506
UxBRGL BRG<7:0> 507
UxBRGH BRG<15:8> 507
UxRXB RXB<7:0> 508
UxTXB TXB<7:0> 508
UxP1H — — — — — — — P1<8> 509
UxP1L P1<7:0> 509
UxP2H — — — — — — — P2<8> 510
UxP2L P2<7:0> 510
UxP3H — — — — — — — P3<8> 511
UxP3L P3<7:0> 511
UxTXCHK TXCHK<7:0> 512
UxRXCHK RXCHK<7:0> 512
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the UART module.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 513

PIC18(L)F24/25K42

34.3.3 TRANSMIT AND RECEIVE FIFOS
The transmission and reception of data from the SPI
module is handled by two FIFOs, one for reception and
one for transmission (addressed by the SFRs SPIxRXB
and SPIxTXB, respectively.). The TXFIFO is written by
software and is read by the SPI module to shift the data
onto the SDO pin. The RXFIFO is written by the SPI
module as it shifts in the data from the SDI pin and is
read by software. Setting the CLRBF bit of
SPIxSTATUS resets the occupancy for both FIFOs,
emptying both buffers. The FIFOs are also reset by dis-
abling the SPI module.

The SPIxRXB register addresses the receive FIFO and
is read-only. Reading from this register will read from
the first FIFO location that was written to by hardware
and decrease the RXFIFO occupancy. If the FIFO is
empty, reading from this register will instead return a
value of zero and set the RXRE (Receive Buffer Read
Error) bit of the SPIxSTATUS register. The RXRE bit
must then be cleared in software in order to properly
reflect the status of the read error. When RXFIFO is full,
the RXBF bit of the SPIxSTATUS register will be set.
When the device receives data on the SDI pin, the
receive FIFO may be written to by hardware and the
occupancy increased, depending on the mode and
receiver settings, as summarized in Table 34-1.

The SPIxTXB register addresses the transmit FIFO
and is write-only. Writing to the register will write to the
first empty FIFO location and increase the occupancy.
If the FIFO is full, writing to this register will not affect
the data and will set the TXWE bit of the SPIxSTATUS
register. When the TXFIFO is empty, the TXBE bit of
SPIxSTATUS will be set. When a data transfer occurs,
data may be read from the first FIFO location written to
and the occupancy decreases, depending on mode
and transmitter settings, as summarized in Table 34-1
and Section 34.6.1 “Slave Mode Transmit options”.

34.3.4 LSB VS. MSB-FIRST OPERATION
Typically, SPI communication is output Most-
Significant bit first, but some devices/buses may not
conform to this standard. In this case, the LSBF bit may
be used to alter the order in which bits are shifted out
during the data exchange. In both Master and Slave
mode, the LSBF bit of SPIxCON0 controls if data is
shifted MSb or LSb first. Clearing the bit (default)
configures the data to transfer MSb first, which is
traditional SPI operation, while setting the bit
configures the data to transfer LSb first.

34.3.5 INPUT AND OUTPUT POLARITY
BITS

SPIxCON1 has three bits that control the polarity of the
SPI inputs and outputs. The SDIP bit controls the
polarity of the SDI input, the SDOP bit controls the
polarity of the SDO output, and the SSP bit controls the
polarity of both the slave SS input and the master SS
output. For all three bits, when the bit is clear, the input
or output is active-high, and when the bit is set, the
input or output is active-low. When the EN bit of
SPIxCON0 is cleared, SS(out) and SCK(out) both
revert to the inactive state dictated by their polarity bits.
The SDO output state when the EN bit of SPIxCON0 is
cleared is determined by several factors.

• When the associated TRIS bit for the SDO pin is
cleared, and the SPI goes Idle after a transmis-
sion, the SDO output will remain at the last bit
level. The SDO pin will revert to the Idle state if
EN is cleared.

• When the associated TRIS bit for the SDO pin is
set, behavior varies in Slave and Master mode.
- In Slave mode, the SDO pin tri-states when:
- Slave Select is inactive,
- the EN bit of SPIxCON0 is cleared, or when
- the TXR bit of SPIxCON2 is cleared.
- In Master mode, the SDO pin tri-states when

TXR = 0. When TXR = 1 and the SPI goes
Idle after a transmission, the SDO output will
remain at the last bit level. The SDO pin will
revert to the Idle state if EN is cleared.

Note: TXFIFO occupancy and RXFIFO
occupancy simply refer to the number of
bytes that are currently being stored in
each FIFO. These values are used in this
chapter to illustrate the function of these
FIFOs and are not directly accessible
through software.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 520

PIC18(L)F24/25K42

There are four main operations based on the direction
of the data being shared during I2C communication.

• Master Transmit (master is transmitting data to a
slave)

• Master Receive (master is receiving data from a
slave)

• Slave Transmit (slave is transmitting data to a
master)

• Slave Receive (slave is receiving data from the
master)

To begin any I2C communication, the master device
sends out a Start bit followed by the address byte of the
slave it intends to communicate with. This is followed
by a single Read/Write bit, which determines whether
the master intends to transmit to or receive data from
the slave device.

If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues to shift data in or out of the
slave until it terminates the message with a Stop.

Further details about the I2C module are discussed in
Section 35.3, I2C Mode Operation.

35.3 I2C Mode Operation
All I2C communication is 8-bit data and 1-bit
acknowledge and shifted out MSb first. The user can
control the interaction between the software and the
module using several control registers and interrupt
flags. Two pins, SDA and SCL, are exercised by the
module to communicate with other external I2C
devices.

35.3.1 DEFINITION OF I2C TERMINOLOGY
The I2C communication protocol terminologies are
defined for reference below in Table 35-1. These termi-
nologies are used throughout this document.
Table 35-1 has been adapted from the Phillips I2C
specification.

TABLE 35-1: I2C BUS TERMS
TERM Description

Transmitter The device which shifts data out onto
the bus

Receiver The device which shifts data in from the
bus

Master The device that initiates a transfer, gen-
erates clock signals and terminates a
transfer

Slave The device addressed by the master
Multi-master A bus with more than one device that

can initiate data transfers
Arbitration Procedure to ensure that only one mas-

ter at a time controls the bus. Winning
arbitration ensures that the message is
not corrupted

Synchronization Procedure to synchronize the clocks of
two or more devices on the bus.

Idle No master is controlling the bus, and
both SDA and SCL lines are high

Active Any time one or more master devices
are controlling the bus

Addressed Slave Slave device that has received a match-
ing address and is actively being
clocked by a master

Matching
Address

Address byte that is clocked into a
slave that matches the value stored in
I2CxADR

Write Request Slave receives a matching address with
R/W bit clear and is ready to clock in
data

Read Request Master sends an address byte with the
R/W bit set, indicating that it wishes to
clock data out of the Slave. This data is
the next and all following bytes until a
Restart or Stop.

Clock Stretching When a device on the bus holds SCL
low to stall communication

Bus Collision Any time the SDA line is sampled low
by the module while it is outputting and
expected high state.

Bus Timeout Any time the I2CBTOISM input transi-
tions high, the I2C module is reset and
the module goes Idle.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 548


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 556

PIC
18(L)F24/25K

42

FIG IE = 0)
Rev. 10-000 294A

11/2/201 6

D3 D2 D1 D0

5 6 7 8 9

P

Bus Master sends
stop condition

 Data

ve to Master

x01 0x00

 sends ACKCNT
for I2CxCNT = 0

 CSTR for NACK
WRIE = 0

WRIF is set

NACK

CNTIF is set

ACKTIF is set

yte written to
XB

NACKIF is set

RXIF set
URE 35-7: I2C SLAVE, 7-BIT ADDRESS, RECEPTION WITH I2CxCNT (ACKTIE = 1, ADRIE = 0, WR

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4SDA

SCL 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4

Software clears CSTR

S

ACK

Receive Address Receive Data Receive

From Sla

0x02 0x02 0I2CxCNT

Slave
value

CSTR

ACKTIE = 1SCIF is set ADIHE = 0
ACKTIE = 1

WRIE = 0
No

WRIF is set ACKTIF is setACKTIF is set R/W copied from matching address

matching address copied to
I2CxADB0

Data byte written to I2CxRXB Second data b
I2CxR

RXBF

Software reads I2CxRXB
clearing RXIF

Software clears CSTR

R/W= 0 ACK

D/A

R/W

ADRIF is set

RXIF set

PIC18(L)F24/25K42

38.2.6 AUTO-CONVERSION TRIGGER
The Auto-conversion Trigger allows periodic ADC
measurements without software intervention. When a
rising edge of the selected source occurs, the GO bit is
set by hardware.

The Auto-conversion Trigger source is selected by the
ADACT register.

Using the Auto-conversion Trigger does not assure
proper ADC timing. It is the user’s responsibility to
ensure that the ADC timing requirements are met. See
Register 38-33 for auto-conversion sources.

38.2.7 ADC CONVERSION PROCEDURE
(BASIC MODE)

This is an example procedure for using the ADC to
perform an Analog-to-Digital conversion:

1. Configure Port:
• Disable pin output driver (Refer to the TRISx

register)
• Configure pin as analog (Refer to the

ANSELx register)
2. Configure the ADC module:

• Select ADC conversion clock
• Select voltage reference

• Select ADC input channel
• Precharge and acquisition
• Turn on ADC module

3. Configure ADC interrupt (optional):
• Clear ADC interrupt flag
• Enable ADC interrupt
• Enable global interrupt (GIEL bit)(1)

4. If ADACQ = 0, software must wait the required
acquisition time(2).

5. Start conversion by setting the GO bit.
6. Wait for ADC conversion to complete by one of

the following:
• Polling the GO bit
• Polling the ADIF bit
• Waiting for the ADC interrupt (interrupts

enabled)
7. Read ADC Result.
8. Clear the ADC interrupt flag (required if interrupt

is enabled).

EXAMPLE 38-1: ADC CONVERSION

Note 1: The global interrupt can be disabled if the
user is attempting to wake-up from Sleep
and resume in-line code execution.

2: Refer to Section 38.3 “ADC Acquisi-
tion Requirements”.

/*This code block configures the ADC

for polling, VDD and VSS references, FRC

oscillator and AN0 input.

Conversion start & polling for completion

are included.

 */

void main() {

 //System Initialize

 initializeSystem();

 //Setup ADC

 ADCON0bits.FM = 1; //right justify

 ADCON0bits.CS = 1; //FRC Clock

 ADPCH = 0x00; //RA0 is Analog channel

 TRISAbits.TRISA0 = 1; //Set RA0 to input

 ANSELAbits.ANSELA0 = 1; //Set RA0 to analog

 ADCON0bits.ON = 1; //Turn ADC On

 while (1) {

 ADCON0bits.GO = 1; //Start conversion

 while (ADCON0bits.GO); //Wait for conversion done

 resultHigh = ADRESH; //Read result

 resultLow = ADRESL; //Read result

 }

}

 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 610

PIC18(L)F24/25K42
REGISTER 38-20: ADRESH: ADC RESULT REGISTER HIGH, FM = 1

U-0 U-0 U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u
— — — — ADRES<11:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Reserved
bit 3-0 ADRES<11:8>: ADC Sample Result bits. Upper four bits of 12-bit conversion result.

REGISTER 38-21: ADRESL: ADC RESULT REGISTER LOW, FM = 1

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ADRES<7:0>: ADC Result Register bits. Lower eight bits of 12-bit conversion result.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 633

PIC18(L)F24/25K42
REGISTER 38-29: ADERRH: ADC SETPOINT ERROR REGISTER HIGH
R-x R-x R-x R-x R-x R-x R-x R-x

ERR<15:8>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ERR<15:8>: ADC Setpoint Error MSB. Upper byte of ADC Setpoint Error. Setpoint Error calculation
is determined by ADCALC bits of ADCON3, see Register 31-1 for more details.

REGISTER 38-30: ADERRL: ADC SETPOINT ERROR LOW BYTE REGISTER
R-x R-x R-x R-x R-x R-x R-x R-x

ERR<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ERR<7:0>: ADC Setpoint Error LSB. Lower byte of ADC Setpoint Error calculation is determined by
ADCALC bits of ADCON3, see Register 31-1 for more details.

REGISTER 38-31: ADLTHH: ADC LOWER THRESHOLD HIGH BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

LTH<15:8>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 LTH<15:8>: ADC Lower Threshold MSB. LTH and UTH are compared with ERR to set the ADUTHR
and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by
the results of this comparison.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 637

PIC18(L)F24/25K42

40.3 Comparator Hysteresis
A selectable amount of separation voltage can be
added to the input pins of each comparator to provide a
hysteresis function to the overall operation. Hysteresis
is enabled by setting the HYS bit of the CMxCON0
register.

See Comparator Specifications in Table 46-15 for more
information.

40.3.1 COMPARATOR OUTPUT
SYNCHRONIZATION

The output from a comparator can be synchronized
with Timer1 by setting the SYNC bit of the CMxCON0
register.

Once enabled, the comparator output is latched on the
falling edge of the Timer1 source clock. If a prescaler is
used, the CxOUT bit is synchronized with the timer, so
that the software sees no ambiguity due to timing. See
the Comparator Block Diagram (Figure 40-2) and the
Timer1 Block Diagram (Figure 23-1) for more
information.

40.4 Comparator Interrupt
An interrupt can be generated for every rising or falling
edge of the comparator output.

When either edge detector is triggered and its associ-
ated enable bit is set (INTP and/or INTN bits of the
CMxCON1 register), the Corresponding Interrupt Flag
bit (CxIF bit of the respective PIR register) will be set.

To enable the interrupt, you must set the following bits:

• EN bit of the CMxCON0 register
• CxIE bit of the respective PIE register
• INTP bit of the CMxCON1 register (for a rising

edge detection)
• INTN bit of the CMxCON1 register (for a falling

edge detection)
• GIE bit of the INTCON0 register

The associated interrupt flag bit, CxIF bit of the
respective PIR register, must be cleared in software. If
another edge is detected while this flag is being
cleared, the flag will still be set at the end of the
sequence.

40.5 Comparator Positive Input
Selection

Configuring the PCH<2:0> bits of the CMxPCH register
directs an internal voltage reference or an analog pin to
the non-inverting input of the comparator:

• CxIN0+, CxIN1+ analog pin
• DAC output
• FVR (Fixed Voltage Reference)
• VSS (Ground)

See Section 36.0 “Fixed Voltage Reference (FVR)”
for more information on the Fixed Voltage Reference
module.

See Section 39.0 “5-Bit Digital-to-Analog Converter
(DAC) Module” for more information on the DAC input
signal.

Any time the comparator is disabled (EN = 0), all com-
parator inputs are disabled.

40.6 Comparator Negative Input
Selection

The NCH<2:0> bits of the CMxNCH register direct an
analog input pin and internal reference voltage or ana-
log ground to the inverting input of the comparator:

• CxIN0-, CxIN1-, CxIN2-, CxIN3- analog pin
• FVR (Fixed Voltage Reference)
• Analog Ground

Note: Although a comparator is disabled, an
interrupt can be generated by changing
the output polarity with the POL bit of the
CMxCON0 register, or by switching the
comparator on or off with the EN bit of the
CMxCON0 register.

Note: To use CxINy+ and CxINy- pins as analog
input, the appropriate bits must be set in
the ANSEL register and the correspond-
ing TRIS bits must also be set to disable
the output drivers.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 649

PIC18(L)F24/25K42
43.0 INSTRUCTION SET SUMMARY
PIC18(L)F2x/4xK42 devices incorporate the standard
set of PIC18 core instructions, as well as an extended
set of instructions, for the optimization of code that is
recursive or that utilizes a software stack. The extended
set is discussed later in this section.

43.1 Standard Instruction Set
The standard PIC18 instruction set adds many
enhancements to the previous PIC® MCU instruction
sets, while maintaining an easy migration from these
PIC® MCU instruction sets. Most instructions are a
single program memory word (16 bits), but there are
four instructions that require two-program memory
locations and two that require three-program memory
locations.

Each single-word instruction is a 16-bit word divided
into an opcode, which specifies the instruction type and
one or more operands, which further specify the
operation of the instruction.

The instruction set is highly orthogonal and is grouped
into four basic categories:

• Byte-oriented operations
• Bit-oriented operations
• Literal operations
• Control operations

The PIC18 instruction set summary in Table 43-2 lists
byte-oriented, bit-oriented, literal and control
operations. Table 43-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The destination of the result (specified by ‘d’)
3. The accessed memory (specified by ‘a’)

The file register designator ‘f’ specifies which file
register is to be used by the instruction. The destination
designator ‘d’ specifies where the result of the opera-
tion is to be placed. If ‘d’ is zero, the result is placed in
the WREG register. If ‘d’ is one, the result is placed in
the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The bit in the file register (specified by ‘b’)
3. The accessed memory (specified by ‘a’)

The bit field designator ‘b’ selects the number of the bit
affected by the operation, while the file register
designator ‘f’ represents the number of the file in which
the bit is located.

The literal instructions may use some of the following
operands:

• A literal value to be loaded into a file register
(specified by ‘k’)

• The desired FSR register to load the literal value
into (specified by ‘f’)

• No operand required
(specified by ‘—’)

The control instructions may use some of the following
operands:

• A program memory address (specified by ‘n’)
• The mode of the CALL or RETURN instructions

(specified by ‘s’)
• The mode of the table read and table write

instructions (specified by ‘m’)
• No operand required

(specified by ‘—’)

All instructions are a single word, except for four
double-word instructions. These instructions were
made double-word to contain the required information
in 32 bits. In the second word, the four MSbs are ‘1’s. If
this second word is executed as an instruction (by
itself), it will execute as a NOP.

All single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles, with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 s. If a conditional test is
true, or the program counter is changed as a result of
an instruction, the instruction execution time is 2 s.
Two-word branch instructions (if true) would take 3 s.

Figure 43-1 shows the general formats that the instruc-
tions can have. All examples use the convention ‘nnh’
to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 43-2,
lists the standard instructions recognized by the
Microchip Assembler (MPASMTM).

Section 43.1.1 “Standard Instruction Set” provides
a description of each instruction.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 665

PIC18(L)F24/25K42

2

9

3

0

8

7

4

4

0

9

9

3

0

8

7

4

4

0

9

9

3

0

8

7

4

4

0

9

7

6

0

9

9

9

8

8

1

2

0

9

8

7

6

6

6

ster
age
3F5Eh CCPTMRS0 C4TSEL C3TSEL C2TSEL C1TSEL 36

3F5Dh -
3F5Bh

— Unimplemented

3F5Ah CWG1STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 42

3F59h CWG1AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 43

3F58h CWG1AS0 SHUTDOWN REN LSBD LSAC — — 43

3F57h CWG1CON1 — — IN — POLD POLC POLB POLA 42

3F56h CWG1CON0 EN LD — — — MODE 42

3F55h CWG1DBF — — DBF 43

3F54h CWG1DBR — — DBR 43

3F53h CWG1ISM — — — — IS 43

3F52h CWG1CLK — — — — — — — CS 42

3F51h CWG2STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 42

3F50h CWG2AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 43

3F4Fh CWG2AS0 SHUTDOWN REN LSBD LSAC — — 43

3F4Eh CWG2CON1 — — IN — POLD POLC POLB POLA 42

3F4Dh CWG2CON0 EN LD — — — MODE 42

3F4Ch CWG2DBF — — DBF 43

3F4Bh CWG2DBR — — DBR 43

3F4Ah CWG2ISM — — — — IS 43

3F49h CWG2CLK — — — — — — — CS 42

3F48h CWG3STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 42

3F47h CWG3AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 43

3F46h CWG3AS0 SHUTDOWN REN LSBD LSAC — — 43

3F45h CWG3CON1 — — IN — POLD POLC POLB POLA 42

3F44h CWG3CON0 EN LD — — — MODE 42

3F43h CWG3DBF — — DBF 43

3F42h CWG3DBR — — DBR 43

3F41h CWG3ISM — — — — IS 43

3F40h CWG3CLK — — — — — — — CS 42

3F3Fh NCO1CLK PWS — CKS 45

3F3Eh NCO1CON EN — OUT POL — — — PFM 45

3F3Dh NCO1INCU INC 46

3F3Ch NCO1INCH INC 45

3F3Bh NCO1INCL INC 45

3F3Ah NCO1ACCU ACC 45

3F39h NCO1ACCH ACC 45

3F38h NCO1ACCL ACC 45

3F37h -
3F24h

— Unimplemented

3F23h SMT1WIN — — — WSEL 40

3F22h SMT1SIG — — — SSEL 40

3F21h SMT1CLK — — — — — CSEL 40

3F20h SMT1STAT CPRUP CPWUP RST — — TS WS AS 39

3F1Fh SMT1CON1 GO REPEAT — — MODE 39

3F1Eh SMT1CON0 EN — STP WPOL SPOL CPOL PS 39

3F1Dh SMT1PRU PR 40

3F1Ch SMT1PRH PR 40

3F1Bh SMT1PRL PR 40

TABLE 44-1: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Regi
on p

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: Not present in LF devices.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 722

PIC18(L)F24/25K42

45.2 MPLAB XC Compilers
The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set
• Support for fixed-point and floating-point data
• Command-line interface
• Rich directive set
• Flexible macro language
• MPLAB X IDE compatibility

45.3 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects
• User-defined macros to streamline

assembly code
• Conditional assembly for multipurpose

source files
• Directives that allow complete control over the

assembly process

45.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

45.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set
• Support for fixed-point and floating-point data
• Command-line interface
• Rich directive set
• Flexible macro language
• MPLAB X IDE compatibility
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 735

