

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k42t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 1-1: DEVICE FEATURES

Features	PIC18(L)F24K42	PIC18(L)F25K42		
Program Memory (Bytes)	16384	32768		
Program Memory (Instructions)	8192	16384		
Data Memory (Bytes)	1024	2048		
Data EEPROM Memory (Bytes)	256	256		
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,E ⁽¹⁾		
Capture/Compare/PWM Modules (CCP)	4	4		
10-Bit Pulse-Width Modulator (PWM)	4	4		
12-Bit Analog-to-Digital Module (ADC ²) with Computation Accelerator	5 internal 24 external	5 internal 24 external		
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN		
Timers (16-/8-bit)	4	/3		
Serial Communications	2 UART, 2	2 I ² C, 1 SPI		
Enhanced Complementary Waveform Generator (ECWG)		3		
Zero-Cross Detect (ZCD)	1			
Data Signal Modulator (DSM)		1		
Signal Measurement Timer (SMT)	1			
5-Bit Digital-to-Analog Converter (DAC)	1			
Numerically Controlled Oscillator (NCO)	1			
Comparator Module	2			
Direct Memory Access (DMA)	2			
Configurable Logic Cell (CLC)	4			
Peripheral Pin Select (PPS)	Yes			
Peripheral Module Disable (PMD)	Y	es		
16-bit CRC with Scanner	Y	es		
Programmable High/Low-Voltage Detect (HLVD)	Y	es		
Programmable Brown-out Reset (BOR)	Y	es		
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Overflow, Stack Underflow (PWRT, OST),			
Instruction Set	81 Instr 87 with Extended Ins	ructions; struction Set enabled		
Operating Frequency	64	MHz		

Note 1: PORTE contains the single RE3 input-only pin.

9.3.2 CLOCK SWITCH AND SLEEP

If OSCCON1 is written with a new value and the device is put to Sleep before the switch completes, the switch will not take place and the device will enter Sleep mode.

When the device wakes from Sleep and the CSWHOLD bit is clear, the device will wake with the 'new' clock active, and the Clock Switch Interrupt flag bit (CSWIF) will be set.

When the device wakes from Sleep and the CSWHOLD bit is set, the device will wake with the 'old' clock active and the new clock will be requested again.

2: The assertion of NOSCR is hidden from the user because it appears only for the duration of the switch.

FIGURE 9-7: CLOCK SWITCH (CSWHOLD = 1)

R/W/HS-0/0	0 R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
SMT1PWAI	F SMT1PRAIF	SMT1IF	C1IF	ADTIF	ADIF	ZCDIF	INT0IF
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	HS = Bit is se	et in hardware		
bit 7	SMT1PWAIF:	SMT1 Pulse V	Vidth Acquisiti	on Interrupt FI	ag bit		
	1 = Interrupt	has occurred (must be cleare	ed by software)		
h:# 0		event has not o					
DILO	SMITPRAIF:	SMIT Period	Acquisition int	errupt Flag bit	`		
	1 = Interrupt	event has not o	nust be cleare	ed by software	•)		
bit 5	SMT1IF: SMT	1 Interrupt Fla	a bit				
	1 = Interrupt	has occurred (must be cleare	ed by software)		
	0 = Interrupt	event has not o	occurred		,		
bit 4	C1IF: CMP1 I	nterrupt Flag b	it				
	1 = Interrupt	has occurred (must be cleare	ed by software)		
	0 = Interrupt	event has not o	occurred				
bit 3	ADTIF: ADC	Threshold Inter	rupt Flag bit				
	1 = Interrupt	has occurred (must be cleare	ed by software			
hit 0		torrupt Elog bit					
DIL Z	1 = Interrunt	has occurred (must he clear	ad hy software)		
	0 = Interrupt	event has not o	occurred	Su by Soltware			
bit 1	ZCDIF: ZCD I	nterrupt Flag b	oit				
	1 = Interrupt	has occurred (must be cleare	ed by software)		
	0 = Interrupt	event has not o	occurred				
bit 0	INT0IF: Extern	nal Interrupt 0	Interrupt Flag	bit			
	1 = Interrupt 0 = Interrupt	has occurred (event has not o	must be cleare	ed by software)		
Note: Ir e p	nterrupt flag bits g nable bit, or the g rior to enabling ar	get set when a lobal enable bi n interrupt.	n interrupt cor t. User softwar	ndition occurs, re should ensu	regardless of t re the appropria	he state of its of its of its of the state of its of the state of the	corresponding j bits are clear

REGISTER 11-4: PIR1: PERIPHERAL INTERRUPT Request Register 1

12.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. Low-Power Brown-Out Reset (LPBOR), if enabled
- 4. POR Reset
- 5. Windowed Watchdog Timer, if enabled
- 6. All interrupt sources except clock switch interrupt can wake-up the part.

The first five events will cause a device Reset. The last one event is considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section** "".

When the SLEEP instruction is being executed, the next instruction (PC + 2) is prefetched. For the device to wake-up through an interrupt event, the corresponding Interrupt Enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

Upon a wake from a Sleep event, the core will wait for a combination of three conditions before beginning execution. The conditions are:

- · PFM Ready
- COSC-Selected Oscillator Ready
- BOR Ready (unless BOR is disabled)

12.2.2 WAKE-UP USING INTERRUPTS

When any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared
- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

18.0 I/O PORTS

The PIC18(L)F24/25K42 devices have four I/O ports - PORTA, PORTB, PORTC and PORTE. Each port has ten registers to control the operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate control)
- ODCONx registers (open-drain control)
- CCDPx and CCDNx registers (current-controlled positive/negative)

Outside of registers to control bits of all the ports, the two following registers are also present:

- CCDCON register (current-controlled)
- RxyI2C (I²C pad control)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSELx bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 18-1.

FIGURE 18-1: GENERIC I/O PORT OPERATION

18.1 Current-Controlled Mode

Current-Controlled mode allows output currents to be regulated for both high-side and low-side drivers. All source and sink drivers for each port pin will operate at the specified current, when enabled individually by the Current-Controlled Enable registers.

Note:	Current-Control mode is available regard-
	less of which peripheral drives the output.

The Current-Controlled Configuration (CCDCON) register enables the Current-Controlled mode for all ports and sets the current levels.

Note: Setting CCDEN = 1 increases the device VDDIO current requirement by a fixed amount regardless of how many CCDPx[n] or CCDNx[n] bits are set.

The Current-Controlled Enable registers enable each individual port pin's positive-going (CCDPx) or negative-going (CCDNx) output driver.

20.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F2x/4xK42 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- · Individual pin interrupt flags

Figure 20-1 is a block diagram of the IOC module.

20.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

20.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

20.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIRO register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

20.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 20-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOV	LW 01	xff	
XOR	WF IC	CAF,	W
AND	WF IC	CAF,	F

20.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0
CWG3MD	CWG2MD	CWG1MD	—	_	—	_	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	CWG3MD: Dis	sable CWG3 Mo	dule bit				
	1 = CWG3 m	odule disabled					
	0 = CWG3 mc	odule enabled					
bit 6	CWG2MD: Dis	sable CWG2 Mo	dule bit				
	1 = CWG2mc	odule disabled					
bit 5			dule bit				
DIL O	1 = CWG1 m	odule disabled					
	0 = CWG1 m	odule enabled					
bit 4-0	Unimplement	ed: Read as '0'					

REGISTER 21-5: PMD4: PMD CONTROL REGISTER 4

23.6.2 TIMER1/3/5 GATE SOURCE SELECTION

The gate source for Timer1/3/5 can be selected using the GSS<4:0> bits of the TMRxGATE register (Register 23-4). The polarity selection for the gate source is controlled by the TxGPOL bit of the TxGCON register (Register 23-2).

Any of the above mentioned signals can be used to trigger the gate. The output of the CMPx can be synchronized to the Timer1/3/5 clock or left asynchronous. For more information see Section 40.3.1 "Comparator Output Synchronization".

23.6.3 TIMER1/3/5 GATE TOGGLE MODE

When Timer1/3/5 Gate Toggle mode is enabled, it is possible to measure the duration between every rising and falling edge of the gate signal.

The Timer1/3/5 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 23-5 for timing details.

Timer1/3/5 Gate Toggle mode is enabled by setting the GTM bit of the TxGCON register. When the GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

23.6.4 TIMER1/3/5 GATE SINGLE-PULSE MODE

When Timer1/3/5 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1/3/5 Gate Single-Pulse mode is first enabled by setting the GSPM bit in the TxGCON register. Next, the GGO/DONE bit in the TxGCON register must be set. The Timer1/3/5 will be fully enabled on the next incrementing edge of the gate signal. On the next trailing edge of the pulse, the GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1/3/5 until the GGO/DONE bit is once again set in software.

Clearing the TxGSPM bit of the TxGCON register will also clear the GGO/DONE bit. See Figure 23-6 for timing details.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the period on the Timer1/3/5 gate source to be measured. See Figure 23-7 for timing details.

23.6.5 TIMER1/3/5 GATE VALUE STATUS

When Timer1/3/5 Gate Value Status is utilized, it is possible to read the most current level of the gate signal. The value is stored in the GVAL bit in the TxGCON register. The GVAL bit is valid even when the Timer1/3/5 gate is not enabled (GE bit is cleared).

23.6.6 TIMER1/3/5 GATE EVENT INTERRUPT

When Timer1/3/5 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of GVAL occurs, the TMRxGIF flag bit in the respective PIR register will be set. If the TMRxGIE bit in the respective PIE register is set, then an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Timer1/3/5 gate is not enabled (GE bit is cleared).

For more information on selecting high or low priority status for the Timer1/3/5 Gate Event Interrupt see **Section 11.0 "Interrupt Controller"**.

27.0 SIGNAL MEASUREMENT TIMER (SMT)

The SMT is a 24-bit counter with advanced clock and gating logic, which can be configured for measuring a variety of digital signal parameters such as pulse width, frequency and duty cycle, and the time difference between edges on two signals. The device has only one SMT module implemented.

Features of the SMT include:

- 24-bit timer/counter
 - Three 8-bit registers (SMT1L/H/U)
 - Readable and writable
- Optional 16-bit operating mode
- Two 24-bit measurement capture registers
- One 24-bit period match register
- Multi-mode operation, including relative timing measurement
- Interrupt on period match
- Multiple clock, gate and signal sources
- · Interrupt on acquisition complete
- · Ability to read current input values

R/W/HC-0/0	R/W/HC-0/0	R/W/HC-0/0	U-0	U-0	R-0/0	R-0/0	R-0/0	
CPRUP	CPWUP	RST	—	—	TS	WS	AS	
bit 7	·	·	·	·		·	bit 0	
Legend:								
HC = Bit is cle	ared by hardwa	are		HS = Bit is se	et by hardware			
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condi	tion		
bit 7	bit 7 CPRUP: SMT Manual Period Buffer Update bit 1 = Request update to SMT1PRx registers 0 = SMT1PRx registers update is complete							
bit 6	CPWUP: SM ¹ 1 = Request 0 0 = SMT1CP ¹	T Manual Pulse update to SMT W registers up	e Width Buffer 1CPW register date is comple	Update bit s te				
bit 5	RST: SMT Ma 1 = Request F 0 = SMT1TM	anual Timer Re Reset to SMT1 R registers upo	set bit TMR registers late is complet	e				
bit 4-3	Unimplemen	ted: Read as '	0'					
bit 2	TS: GO Value 1 = SMT time 0 = SMT time	e Status bit r is incrementi r is not increm	ng enting					
bit 1	WS: SMT1WI 1 = SMT wind 0 = SMT wind	IN Value Status low is open low is closed	s bit					
bit 0	AS: SMT_sig 1 = SMT acqu 0 = SMT acqu	nal Value Statu uisition is in pro uisition is not ir	s bit ogress oprogress					

REGISTER 27-3: SMT1STAT: SMT STATUS REGISTER

REGISTER 27-13: SMT1CPWL: SMT CAPTURED PULSE WIDTH REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT10	CPW<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unknow	/n	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 SMT1CPW<7:0>: Significant bits of the SMT PW Latch - Low Byte

REGISTER 27-14: SMT1CPWH: SMT CAPTURED PULSE WIDTH REGISTER – HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	
			SMT1CF	PW<15:8>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets				

'1' = Bit is set '0' = Bit is cleared

bit 7-0 SMT1CPW<15:8>: Significant bits of the SMT PW Latch - High Byte

REGISTER 27-15: SMT1CPWU: SMT CAPTURED PULSE WIDTH REGISTER – UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x		
SMT1CPW<23:16>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1CPW<23:16>: Significant bits of the SMT PW Latch - Upper Byte

© 2016-2017 Microchip Technology Inc.

REGISTER 29-3: CLCxSEL0: GENERIC CLCx DATA 0 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
—	—		D1S<5:0>							
bit 7							bit 0			
Legend:										
R = Roadable bit		M = M/ritable bit		II - I Inimplomon	tod hit road on 'O'					

1' = Bit is set	'0' = Bit is cleared	
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
		0 - Onimplemented bit, read as 0

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D1S<5:0>: CLCx Data1 Input Selection bits See Table 29-1.

REGISTER 29-4: CLCxSEL1: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			D25	6<5:0>		
bit 7							bit 0

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets	
'1' = Bit is set '0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D2S<5:0>: CLCx Data 2 Input Selection bits See Table 29-1.

REGISTER 29-	5: CLCX	SELZ: GENERI	C CLCX L	JATA 2 SELE	CI REGISTE	۲	
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			D3S	8<5:0>		
bit 7		-					bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ted bit, read as '0'		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at P	OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared					

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D3S<5:0>: CLCx Data 3 Input Selection bits See Table 29-1.

REGISTER 29-6: CLCxSEL3: GENERIC CLCx DATA 3 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			D49	6<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ted bit, read as '0'		
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at P	OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared					

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D4S<5:0>: CLCx Data 4 Input Selection bits See Table 29-1.

		MD1CARH	MD1CARL			
CH<4:0>		Connection	CL<4:0>		Connection	
01001	9	PWM6 OUT	01001	9	PWM6 OUT	
01000	8	PWM5 OUT	01000	8	PWM5 OUT	
00111	7	CCP4 OUT	00111	7	CCP4 OUT	
00110	6	CCP3 OUT	00110	6	CCP3 OUT	
00101	5	CCP2 OUT	00101	5	CCP2 OUT	
00100	4	CCP1 OUT	00100	4	CCP1 OUT	
00011	3	CLKREF output	00011	3	CLKREF output	
00010	2	HFINTOSC	00010	2	HFINTOSC	
00001	1	FOSC (system clock)	00001	1	FOSC (system clock)	
00000	0	Pin selected by MD1CARHPPS	00000	0	Pin selected by MD1CARLPPS	

TABLE 32-2: MD1CARH/MD1CARL SELECTION MUX CONNECTIONS (CONTINUED)

REGISTER 32-5: MD1SRC: MODULATION SOURCE CONTROL REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			MS<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 MS<4:0>: Modulator Source Selection bits⁽¹⁾ See Table 32-3 for signal list

Note 1: Unused selections provide a zero as the input value.

R/W/S-0/	0 R/W-0/0	R/W/S/C-1/1	R/S/C-0/0	R/S/C-1/1	S/C-1/1	R/W/S/C-1/1	R/S/C-0/0
TXWRE	STPMD	TXBE	TXBF	RXIDL	XON	RXBE	RXBF
bit 7							bit 0
F							
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is ur	nchanged	x = Bit is unkn	iown	-n/n = Value	at POR and BO	R/Value at all ot	her Resets
'1' = Bit is s	set	'0' = Bit is clea	ared	S = Hardwar	e set	C = Hardware	clear
bit 7	TXWRE: Tra	nsmit Write Erro	or Status bit (N	Nust be cleare	d by software)		
	LIN Master n	<u>node</u> :					
	1 = UXP1LV	vas written whei	n a master pro	ocess was acti	ve		
	1 = UxTXB	<u>oue</u> . was written whe	n UxP2 = ∩ o	r more than U	xP2 bytes have	been written to	UxTXR since
	last Brea	ak					
	Address Dete	<u>ect mode</u> :					
	1 = UxP1L v	vas written befo	re the previou	is data in UxP	1L was transferi	red to TX shifter	
	All modes:						
	1 = A new b	yte was written		en the output H	-IFO was tuli		
bit 6	STPMD: Stor	Bit Detection	Node bit				
bit o	1 = Assert U	IxRXIF at end o	f last Stop bit	or end of first	Stop bit when S	TP = 11	
	0 = Assert U	IxRXIF in middle	e of first Stop	bit			
bit 5	TXBE: Trans	mit Buffer Empt	y Status bit				
	1 = Transmit	t buffer is empty	. Setting this	bit will clear the	e transmit buffe	r and output shif	t register.
bit 1		mit Ruffor Full S	npty. Soltware	e cannot clear	this dit.		
DIL 4	1 = Transmit	thill Buildi Full S thuffer is full	DIALUS DIL				
	0 = Transmit	t buffer is not ful	I				
bit 3	RXIDL: Rece	eive Pin Idle Sta	tus bit				
	1 = Receive	pin is in Idle sta	ite				
	0 = UART is	receiving Start,	Stop, Data, A	Auto-baud, or E	Break		
bit 2	XON: Softwa	re Flow Control	Transmit Ena	able Status bit			
	1 = Transmit	tter is enabled					
hit 1		ive Buffer Empt	v Status hit				
	1 = Receive	buffer is empty	Setting this h	oit will clear the	RX buffer(1)		
	0 = Receive	buffer is not em	pty. Software	cannot clear t	his bit.		
bit 0	RXBF: Rece	ive Buffer Full S	tatus bit				
	1 = Receive	buffer is full					
	0 = Receive	buffer is not full					
Note 1:	The BSF instructic transmit shift regis	on should not be ster when the U	e used to set F xTXB register	RXBE because is empty. Inste	e doing so will cl ead, use the MO	lear a byte pend	ing in the with a '0' in

REGISTER 33-7: UxFIFO: UART FIFO STATUS REGISTER

© 2016-2017 Microchip Technology Inc.

the TXBE bit location.

38.7 **Register Definitions: ADC Control**

REGISTE	R 38-1: ADCC	INU: ADC CC	INTROL REG	JISTER 0			
R/W-0/	0 R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0
ON	CONT	-	CS	-	FM	-	GO
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is ι	unchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all	l other Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HC = Bit is cl	eared by hardw	/are	
bit 7	ON: ADC Ena	able bit					
	1 = ADC is er	nabled					
	0 = ADC is di	sabled					
bit 6	CONT: ADC	Continuous Op	peration Enable	e bit			
	1 = GO is ref	triggered upon	completion of	each conversion	on trigger until A	ADTIF is set (i	if ADSOI is set)
	0 = ADC is c	leared upon c	ompletion of ea	ach conversion	trigger		
bit 5	Unimplemen	ted: Read as	·0'				
bit 4	CS: ADC Clo	ck Selection b	it				
	1 = Clock su	pplied from FF	RC dedicated o	scillator			
	0 = Clock su	pplied by Fose	c, divided acco	rding to ADCLI	K register		
bit 3	Unimplemen	ted: Read as	·0'				
bit 2	FM: ADC res	ults Format/ali	gnment Select	ion			
	1 = ADRES	and PREV dat	a are right-just	ified			
	0 = ADRES	and PREV dat	a are left-justifi	ed, zero-filled			
bit 1	Unimplemen	ted: Read as	ʻ0'				
bit 0	GO: ADC Co	nversion Statu	s bit ⁽¹⁾				
	1 = ADC cor	iversion cycle	In progress. S	Setting this bit	starts an ADC	conversion c	ycle. The bit is
	0 = ADC con	version comple	eted/not in proc	aress			
Note 1:	This bit requires C	N bit to be set		-			
2:	If cleared by softw	are while a co	nversion is in p	progress, the re	sults of the con	version up to	this point will

be transfered to ADRES and the state machine will be reset, but the ADIF interrupt flag bit will not be set;

. .

filter and threshold operations will not be performed.

PIC18(L)F24/25K42

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADLTHH	LTH<15:8>								
ADLTHL				LTH	<7:0>				638
ADUTHH				UTH<	:15:8>				638
ADUTHL				UTH	<7:0>				638
ADERRL				ERR<	:15:8>				637
ADACT	— — — — ADACT<4:0>						623		
ADCP	CPON	_	_	_	_	_	_	CPRDY	640

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

PIC18(L)F24/25K42

SUBFWB	Subtract f from W with borrow	SUBLW	Subtract W from literal
Syntax:	SUBFWB f {,d {,a}}	Syntax:	SUBLW k
Operands:	$0 \leq f \leq 255$	Operands:	$0 \le k \le 255$
	$d \in [0,1]$	Operation:	$k-(W)\toW$
Operation:	$a \in [0, 1]$	Status Affected:	N, OV, C, DC, Z
Statua Affectad:	$(W) - (I) - (C) \rightarrow dest$	Encoding:	0000 1000 kkkk kkkk
Encoding	N, OV, C, DC, Z	Description	W is subtracted from the 8-bit
Description:	Subtract register 'f' and CARRY flag		literal 'k'. The result is placed in W.
2000	(borrow) from W (2's complement	Words:	1
	method). If 'd' is '0', the result is stored	Cycles:	1
	register 'f' (default).	Q Cycle Activity:	02 02 04
	If 'a' is '0', the Access Bank is	Q1	Q2 Q3 Q4
	selected. If 'a' is '1', the BSR is used to select the GPR bank	Decode	literal 'k' Data
	If 'a' is '0' and the extended instruction	Example 1	SUBLW 02b
	set is enabled, this instruction	Before Instruc	tion
	Addressing mode whenever	W	= 01h
	$f \le 95$ (5Fh). See Section	After Instructio	n e e e e e e e e e e e e e e e e e e e
	43.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal	W	= 01h = 1 : result is positive
	Offset Mode" for details.	Z	= 0
Words:	1	N Everyte 2:	
Cycles:	1	Example 2:	SUBLW U2h
Q Cycle Activity:		Before Instruc W	= 02h
Q1	Q2 Q3 Q4	C After Instructio	= ?
Decode	Read Process Write to	W	= 00h
	register f Data destination	Z	= 1 ; result is zero = 1
Example 1:	SUBFWB REG, 1, 0	Ν	= 0
REG	= 3	Example 3:	SUBLW 02h
W C	= 2 = 1	Before Instruc W	tion = 03h
After Instructio		C	= ?
W	= FF = 2	After Instructio	on = FFh ; (2's complement)
C Z	= 0 = 0	C Z	= 0 ; result is negative
N	= 1 ; result is negative	Ň	= 1
Example 2:	SUBFWB REG, 0, 0		
REG	= 2		
W C	= 5 = 1		
After Instructio			
W	= 3		
Z	= 1 = 0		
N	= 0 ; result is positive		
Example 3: Before Instruct	SUBFWB REG, 1, 0		
REG	= 1		
VV C	= 2 = 0		
After Instructio			
W	= 2		
C Z	= 1 = 1 ; result is zero		
Ν	= 0		

TABLE 46-14: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD20	Tad	ADC Clock Period	1		9	μS	Using Fosc as the ADC clock source ADOCS = 0
AD21				2	_	μS	Using FRC as the ADC clock source ADOCS = 1
AD22	Тслу	Conversion Time ⁽¹⁾		13+3 Tcy	_	Tad	Set of GO/DONE bit to Clear of GO/DONE bit to Clear of GO/
AD23	TACQ	Acquisition Time	_	2	-	μS	
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	_	_		μS	Fosc-based clock source FRC-based clock source

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Does not apply for the ADCRC oscillator.

FIGURE 46-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

