

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k42-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

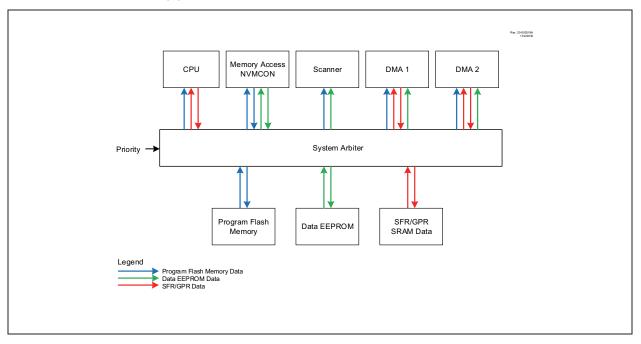
Table of Contents

1.0 Device Overview	40
 Device Overview	
3.0 PIC18 CPU	
4.0 Memory Organization	
5.0 Device Configuration	
6.0 Device Information Area	
7.0 Device Configuration Information	
8.0 Resets	
9.0 Oscillator Module (with Fail-Safe Clock Monitor)	
10.0 Reference Clock Output Module	
11.0 Interrupt Controller	
12.0 Power-Saving Operation Modes	
13.0 Windowed Watchdog Timer (WWDT)	
14.0 8x8 Hardware Multiplier	
15.0 Nonvolatile Memory (NVM) Control	
16.0 Cyclic Redundancy Check (CRC) Module with Memory Scanner	
17.0 Direct Memory Access (DMA)	
18.0 I/O Ports	
19.0 Peripheral Pin Select (PPS) Module	
20.0 Interrupt-on-Change	
21.0 Peripheral Module Disable (PMD)	
22.0 Timer0 Module	301
23.0 Timer1/3/5 Module with Gate Control	
24.0 Timer2/4/6 Module	
25.0 Capture/Compare/PWM Module	
26.0 Pulse-Width Modulation (PWM)	
27.0 Signal Measurement Timer (SMT)	
28.0 Complementary Waveform Generator (CWG) Module	
29.0 Configurable Logic Cell (CLC)	
30.0 Numerically Controlled Oscillator (NCO) Module	
31.0 Zero-Cross Detection (ZCD) Module	
32.0 Data Signal Modulator (DSM) Module	
33.0 Universal Asynchronous Receiver Transmitter (UART) With Protocol Support	477
34.0 Serial Peripheral Interface (SPI) Module	
35.0 I ² C Module	546
36.0 Fixed Voltage Reference (FVR)	599
37.0 Temperature Indicator Module	601
38.0 Analog-to-Digital Converter with Computation (ADC2) Module	
39.0 5-Bit Digital-to-Analog Converter (DAC) Module	642
40.0 Comparator Module	
41.0 High/Low-Voltage Detect (HLVD)	
42.0 In-Circuit Serial Programming™ (ICSP™)	
43.0 Instruction Set Summary	665
44.0 Register Summary	
45.0 Development Support	
46.0 Electrical Specifications	738
47.0 DC and AC Characteristics Graphs and Tables	767
48.0 Packaging Information	768
Appendix A: Revision History	781

3.1 System Arbitration

The System Arbiter resolves memory access between the System Level Selections (i.e., Main, Interrupt Service Routine) and Peripheral Selection (i.e., DMA and Scanner) based on user-assigned priorities. Each of the system level and peripheral selections has its own priority selection registers. Memory access priority is resolved using the number written to the corresponding Priority registers, 0 being the highest priority and 4 being the lowest priority. The Default priorities are listed in Table 3-1.

In case the user wants to change priorities then ensure that each Priority register is written with a unique value from 0 to 4.


TABLE 3-1: DEFAULT PRIORITIES

Sele	Priority register Reset value	
System Level	ISR	0
	MAIN	1

TABLE 3-1: DEFAULT PRIORITIES

Sel	Priority register Reset value	
Peripheral	DMA1	2
	DMA2	3
	SCANNER	4

FIGURE 3-2: PIC18(L)F24/25K42 SYSTEM ARBITER BLOCK DIAGRAM

© 2016-2017 Microchip Technology Inc.

11.3.2 NATURAL ORDER (HARDWARE) PRIORITY

When more than one interrupt with the same user specified priority level are requested, the priority conflict is resolved by using a method called "Natural Order Priority". Natural order priority is a fixed priority scheme that is based on the Interrupt Vector Table. Table 11-2 shows the natural order priority and the interrupt vector number assigned for each source.

TABLE 11-2:	INTERRUPT VECTOR
	PRIORITY TABLE

Vector Number	Interrupt Source] [Vector Number	Interrupt Source
0	Software Interrupt		42	DMA2SCNT
1	HLVD	1 [43	DMA2DCNT
2	OSF	1	44	DMA2OR
3	CSW	1 [45	DMA2A
4	NVM	1 [46	I2C2RX
5	SCAN	1 [47	I2C2TX
6	CRC	1 [48	12C2
7	IOC	1 [49	I2C2E
8	INT0	1 [50	U2RX
9	ZCD	1 [51	U2TX
10	AD	1 [52	U2E
11	ADT	1 [53	U2
12	C1		54	TMR3
13	SMT1		55	TMR3G
14	SMT1PRA	1 [56	TMR4
15	SMT1PWA		57	CCP2
16	DMA1SCNT		58	—
17	DMA1DCNT		59	CWG2
18	DMA10R		60	CLC2
19	DMA1A		61	INT2
20	SPI1RX		62	—
21	SPI1TX		63	—
22	SPI1		64	—
23	I2C1RX		65	—
24	I2C1TX		66	—
25	I2C1		67	—
26	I2C1E		68	—
27	U1RX		69	—
28	U1TX		70	TMR5
29	U1E		71	TMR5G
30	U1		72	TMR6
31	TMR0		73	CCP3
32	TMR1		74	CWG3
33	TMR1G		75	CLC3
34	TMR2		76	—
35	CCP1		77	—
36	—		78	—
37	NCO		79	—
38	CWG1		80	CCP4
39	CLC1		81	CLC4
40	INT1			
41	C2	J		

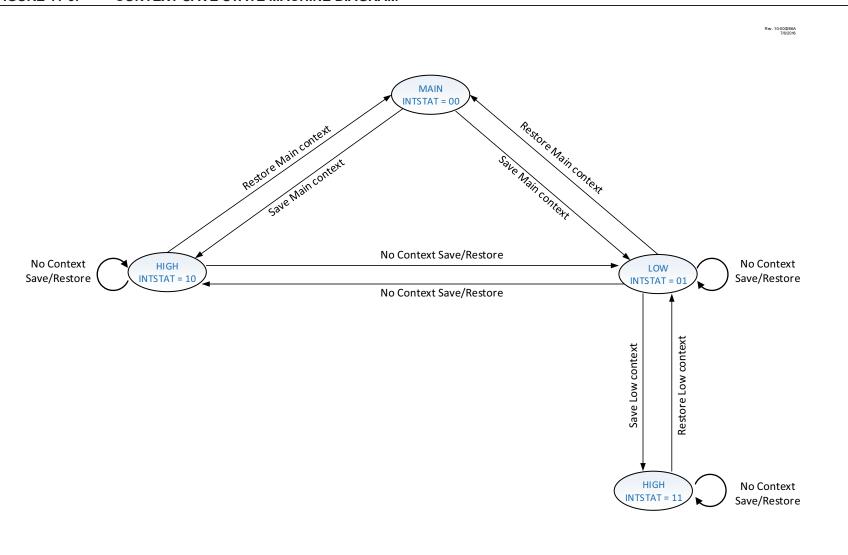
The natural order priority scheme has vector interrupt 0 as the highest priority and vector interrupt 81 as the lowest priority.

For example, when two concurrently occurring interrupt sources that are both designated high priority using the IPRx register will be resolved using the natural order priority (i.e., the interrupt with a lower corresponding vector number will preempt the interrupt with the higher vector number).

The ability for the user to assign every interrupt source to high or low priority levels means that the user program can give an interrupt with a low natural order priority a higher overall priority level.

11.4 Interrupt Operation

All pending interrupts are indicated by the flag bit being equal to a '1' in the PIRx register. All pending interrupts are resolved using the priority scheme explained in Section 11.3 "Interrupt Priority".


Once the interrupt source to be serviced is resolved, the program execution vectors to the resolved interrupt vector addresses, as explained in **Section 11.2 "Interrupt Vector Table (IVT)**". The vector number is also stored in the WREG register. Most of the flag bits are required to be cleared by the application software, but in some cases, device hardware clears the interrupt automatically. Some flag bits are read-only in the PIRx registers, these flags are a summary of the source interrupts and the corresponding interrupt flags of the source must be cleared.

A valid interrupt can be either a high or low priority interrupt when in main routine or a high priority interrupt when in low priority Interrupt Service Routine. Depending on order of interrupt requests received and their relative timing, the CPU will be in the state of execution indicated by the STAT bits of the INTCON1 register (Register 11-2).

The State machine shown in Figure 11-1 and the subsequent sections detail the execution of interrupts when received in different orders.

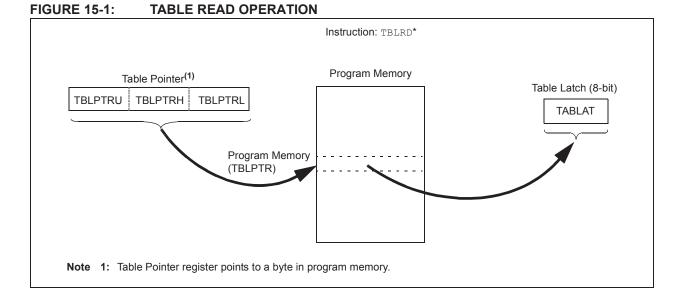
Note: The state of GIEH/L is not changed by the hardware when servicing an interrupt. The internal state machine is used to keep track of execution states. These bits can be manipulated in the user code resulting in transferring execution to the main routine and ignoring existing interrupts.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCIE	CRCIE	SCANIE	NVMIE	CSWIE	OSFIE	HLVDIE	SWIE
bit 7							bit
Lagandu							
Legend: R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
u = Bit is unc		x = Bit is unki			at POR and BO		ther Resets
'1' = Bit is set	•	'0' = Bit is cle					
bit 7	IOCIE: Interr	upt-on-Change	Enable bit				
	1 = Enabled						
	0 = Disabled						
bit 6		C Interrupt Enab	le bit				
	1 = Enabled 0 = Disabled						
bit 5		emory Scanner	Intorrunt Engh	lo hit			
DIL D	1 = Enabled	•	interrupt Enac				
	0 = Disabled						
bit 4	NVMIE: NVN	/I Interrupt Enat	ole bit				
	1 = Enabled	I					
	0 = Disabled	b					
bit 3		ck Switch Interro	upt Enable bit				
	1 = Enabled 0 = Disabled						
bit 2		llator Fail Interr	unt Enable hit				
	1 = Enabled						
	0 = Disabled						
bit 1	HLVDIE: HL	VD Interrupt En	able bit				
	1 = Enabled						
	0 = Disabled						
bit 0		are Interrupt Er	able bit				
	1 = Enabled 0 = Disabled						

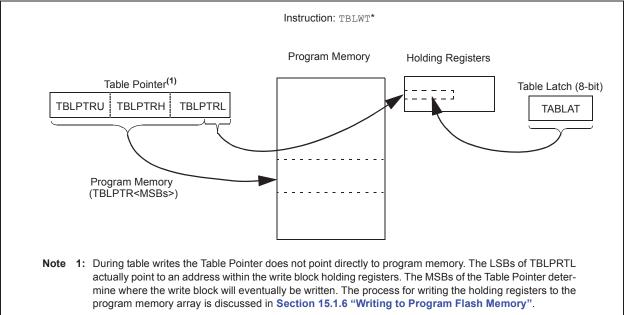
REGISTER 11-14: PIE0: PERIPHERAL INTERRUPT Enable Register 0

15.1.1 TABLE READS AND TABLE WRITES

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:


- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).


The table read operation retrieves one byte of data directly from program memory and places it into the TABLAT register. Figure 15-1 shows the operation of a table read.

The table write operation stores one byte of data from the TABLAT register into a write block holding register. The procedure to write the contents of the holding registers into program memory is detailed in **Section 15.1.6 "Writing to Program Flash Memory"**. Figure 15-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. Tables containing data, rather than program instructions, are not required to be word aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 15-2: TABLE WRITE OPERATION

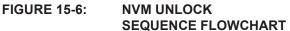
15.1.4 NVM UNLOCK SEQUENCE

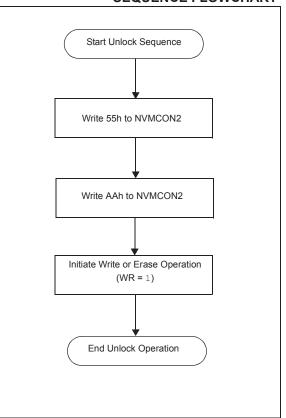
The unlock sequence is a mechanism that protects the NVM from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- PFM Row Erase
- Write of PFM write latches to PFM memory
- Write of PFM write latches to User IDs
- Write to Data EEPROM Memory
- Write to Configuration Words

The unlock sequence consists of the following steps and must be completed in order:

Write 55h to NVMCON2


EXAMPLE 15-2


- Write AAh to NMVCON2
- · Set the WR bit of NVMCON1

Once the WR bit is set, the processor will stall internal operations until the operation is complete and then resume with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

NVM LINI OCK SEQUENCE

EARIVIFLE 13-2.	INVINI UNLOCK SEQUENCE	•	
BCF	INTCON0,GIE	;	Recommended so sequence is not interrupted
BANKSEL	NVMCON1		
BSF	NVMCON1,WREN	;	Enable write/erase
MOVLW	55h	;	Load 55h
MOVWF	NVMCON2	;	Step 1: Load 55h into NVMCON2
MOVLW	AAh	;	Step 2: Load W with AAh
MOVWF	NVMCON2	;	Step 3: Load AAh into NVMCON2
BSF	INTCON1,WR	;	Step 4: Set WR bit to begin write/erase
BSF	INTCON0,GIE	;	Re-enable interrupts

- Note 1: Sequence begins when NVMCON2 is written; steps 1-4 must occur in the cycle-accurate order shown. If the timing of the steps 1 to 4 is corrupted by an interrupt or a debugger Halt, the action will not take place.
 - 2: Opcodes shown are illustrative; any instruction that has the indicated effect may be used.

22.8 Register Definitions: Timer0 Control

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN		OUT	MD16			S<3:0>	1011 0.0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit		mented bit, read		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		able bit ule is enabled ule is disabled			de		
bit 6	Unimplemen	ted: Read as '	כי				
bit 5	OUT :TMR0 O TMR0 output	utput bit (read- bit	only)				
bit 4	MD16: TMR0 1 = TMR0 is 0 = TMR0 is		16-Bit Timer S	elect bit			
bit 3-0	OUTPS<3:0> 1111 = 1:16 F 1110 = 1:15 F 1101 = 1:14 F 1100 = 1:13 F 1011 = 1:12 F 1010 = 1:11 F 1001 = 1:10 F 1000 = 1:9 PC 0111 = 1:8 PC 0110 = 1:7 PC 0101 = 1:6 PC 0101 = 1:6 PC 0101 = 1:2 PC 0011 = 1:2 PC 0001 = 1:2 PC	Postscaler Postscaler Postscaler Postscaler Postscaler Postscaler postscaler postscaler postscaler postscaler postscaler postscaler postscaler postscaler postscaler postscaler postscaler postscaler postscaler	t Postscaler (I	Divider) Select	bits		

REGISTER 22-1: T0CON0: TIMER0 CONTROL REGISTER 0

REGISTER 23-4: TxGATE: TIMERx GATE ISM REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	_	—			GSS<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **GSS<4:0>:** Timerx Gate Source Selection bits

GSS	Timer1	Timer3	Timer5
655	Gate Source	Gate Source	Gate Source
11111-11011	Reserved	Reserved	Reserved
11010	CLC4_out	CLC4_out	CLC4_out
11001	CLC3_out	CLC3_out	CLC3_out
11000	CLC2_out	CLC2_out	CLC2_out
10111	CLC1_out	CLC1_out	CLC1_out
10110	ZCDOUT	ZCDOUT	ZCDOUT
10101	CMP2OUT	CMP2OUT	CMP2OUT
10100	CMP1OUT	CMP1OUT	CMP1OUT
10011	NCO10UT	NCO10UT	NCO10UT
10010-10001	Reserved	Reserved	Reserved
10000	PWM8OUT	PWM8OUT	PWM8OUT
01111	PWM7OUT	PWM7OUT	PWM7OUT
01110	PWM6OUT	PWM6OUT	PWM6OUT
01101	PWM5OUT	PWM5OUT	PWM5OUT
01100	CCP4OUT	CCP4OUT	CCP4OUT
01011	CCP3OUT	CCP3OUT	CCP3OUT
01010	CCP2OUT	CCP2OUT	CCP2OUT
01001	CCP10UT	CCP1OUT	CCP10UT
01000	SMT1_match	SMT1_match	SMT1_match
00111	TMR6OUT (post-scaled)	TMR6OUT (post-scaled)	TMR6OUT (post-scaled)
00110	TMR5 overflow	TMR5 overflow	Reserved
00101	TMR4OUT (post-scaled)	TMR4OUT (post-scaled)	TMR4OUT (post-scaled)
00100	TMR3 overflow	Reserved	TMR3 overflow
00011	TMR2OUT (post-scaled)	TMR2OUT (post-scaled)	TMR2OUT (post-scaled)
00010	Reserved	TMR1 overflow	TMR1 overflow
00001	TMR0 overflow	TMR0 overflow	TMR0 overflow
00000	Pin selected by T1GPPS	Pin selected by T3GPPS	Pin selected by T5GPPS

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ON		CKPS<2:0>			OUTP	S<3:0>		
bit 7							bit	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, rea	d as '0'		
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardv	vare		
bit 7	ON: Timerx	On bit ⁽¹⁾						
	1 = Timerx i							
	0 = Timerx i	s off: all counter	s and state m	achines are res	set			
bit 6-4	CKPS<2:0>:	: Timerx-type Cl	ock Prescale	Select bits				
	111 = 1:128 Prescaler							
	110 = 1:64 Prescaler							
	101 = 1:32 Prescaler 100 = 1:16 Prescaler							
	011 = 1:8 Prescaler							
	011 - 1.6 Prescaler							
	001 = 1:2 P							
	000 = 1:1 P							
bit 3-0		>: Timerx Outpu	It Postscaler S	Select bits				
	1111 = 1:16							
	1110 = 1:15 Postscaler							
	1101 = 1:14							
	1100 = 1:13 1011 = 1:12							
	1010 = 1:11 Postscaler 1001 = 1:10 Postscaler							
	1000 = 1.9 Postscaler							
	0111 = 1:8 Postscaler							
	0110 = 1:7 Postscaler							
	0101 = 1:6							
	0100 = 1:5							
	0011 = 1:4 0010 = 1:3							
	0010 = 1.3 0001 = 1:2							
	0001 - 1.21 0000 = 1.11	031304161						

REGISTER 24-5: TxCON: TIMERx CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 24.5.1 "One-Shot Mode".

R/W-0/0	R/W-0/0 R/W-1/1		R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1		
C4TSEL<1:0>		C3TSEL<1:0>		C2TSEL<1:0>		C1TSE	L<1:0>		
bit 7							bit (
Legend:	1.11		1.11			1			
R = Readable		W = Writable			nented bit, read				
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7-6	10 = CCP4 is	s based off Tin s based off Tin s based off Tin	ner5 in Captur ner3 in Captur	s re/Compare mo re/Compare mo e/Compare mo	de and Timer4	in PWM mode			
bit 5-4	10 = CCP3 is	s based off Tin s based off Tin s based off Tin	ner5 in Captur ner3 in Captur	s re/Compare mo re/Compare mo re/Compare mo	de and Timer4	in PWM mode			
bit 3-2	11 = CCP2 is 10 = CCP2 is	C2TSEL<1:0>: CCP2 Timer Selection bits 11 = CCP2 is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode 10 = CCP2 is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode 01 = CCP2 is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode							
bit 1-0	00 = Reserved C1TSEL<1:0>: CCP1 Timer Selection bits 11 = CCP1 is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode 10 = CCP1 is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode 01 = CCP1 is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode 00 = Reserved								

REGISTER 25-2: CCPTMRS0: CCP TIMERS CONTROL REGISTER 0

27.6.10 GATED COUNTER MODE

This mode counts pulses on the SMT1_signal input, gated by the SMT1WIN input. It begins incrementing the timer upon seeing a rising edge of the SMT1WIN input and updates the SMT1CPW register upon a falling edge on the SMT1WIN input. See Figure 27-19 and Figure 27-20.

32.11 Register Definitions: Modulation Control

Long bit name prefixes for the Modulation peripheral is shown in Table 32-1. Refer to **Section 1.4.2.2 "Long Bit Names**" for more information.

TABLE 32-1:

Peripheral	Bit Name Prefix
MD1	MD1

REGISTER 32-1: MD1CON0: MODULATION CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT	OPOL	—	—	—	BIT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Modulator Module Enable bit
	 1 = Modulator module is enabled and mixing input signals 0 = Modulator module is disabled and has no output
bit 6	Unimplemented: Read as '0'
bit 5	OUT: Modulator Output bit
	Displays the current output value of the Modulator module. ⁽¹⁾
bit 4	OPOL: Modulator Output Polarity Select bit
	1 = Modulator output signal is inverted; idle high output
	0 = Modulator output signal is not inverted; idle low output
bit 3-1	Unimplemented: Read as '0'
bit 0	BIT: Allows software to manually set modulation source input to module ⁽²⁾
Note 1:	The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.

2: BIT must be selected as the modulation source in the MD1SRC register for this operation.

PIC18(L)F24/25K42

R-0/0	R-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
BUSY	SSFLT			_	SSET	TXR ⁽¹⁾	RXR ⁽¹⁾		
bit 7	ł	I				•	bit (
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
bit 7	BUSY: SPI M	/lodule Busy St	atus bit						
	1 = Data exc	hange is busy							
	0 = Data exc	hange is not ta	king place						
bit 6	SSFLT: SS(i	n) Fault Status	bit						
	If SSET = 0:								
	1 = SS(in) ei	nded the transa	iction unexped	ctedly, and the o	data byte being	received was I	ost		
	0 = SS(in) e	nded normally							
	If SSET = 1:								
	This bit is un	changed.							
bit 5-3	Unimpleme	nted: Read as	0'						
bit 2	SSET: Slave	Select Enable	bit						
	Master mode	<u>):</u>							
	1 = SS(out)	is driven to the	active state co	ontinuously					
	0 = SS(out) is driven to the active state while the transmit counter is not zero								
	Slave mode:								
	1 = SS(in) is ignored and data is clocked on all SCK(in) (as though SS = TRUE at all times)								
	 0 = SS(in) enables/disables data input and tri-states SDO if the TRIS bit associated with the SDO pir is set (see Table 30-2 for details) 								
bit 1	TXR: Transn	nit Data-Requir	ed Control bit ⁽	1)					
	1 = TxFIFO	data is required	l for a transfer						
	0 = TxFIFO	data is not requ	ired for a tran	sfer					
bit 0	RXR: Receiv	e FIFO Space-	Required Cor	trol bit ⁽¹⁾					
	1 = Data trar	nsfers are susp	ended if the R	xFIFO is full					
	0 = Received	d data is not sto	ored in the FIF	0					
	See Table 34-1 a pertaining to TXF			ter mode" and	Section 34.6 "	Slave Mode" fo	or more detail		
0.	This register abo		on to while a t	menefor is in ore			0 := ==+)		

2: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

PIC18(L)F24/25K42

REGISTER 34-12: SPIxTxB: SPI TRANSMIT BUFFER REGISTER

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
TXB7	TXB6	TXB5	TXB4	TXB3	TXB2	TXB1	TXB0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-0 **TXB<7:0>**: Transmit Buffer bits (write only)

If TXFIFO is not full:

Writing to this register adds the data to the top of the TXFIFO and increases the occupancy of the TXFIFO write pointer

If TXFIFO is full:

Writing to this register does not affect the data in the TXFIFO or the write pointer, and the TXWE bit of SPIxSTATUS will be set

REGISTER 34-13: SPIxCLK: SPI CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	CLKSEL3	CLKSEL2	CLKSEL1	CLKSEL0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CLKSEL<3:0>: SPI Clock Source Selection bits

1111-1001 **= Reserved**

- 1000 = SMT_match
- 0111 = TMR6_Postscaled
- 0110 = TMR4_Postscaled
- 0101 = TMR2_Postscaled
- 0100 = TMR0_overflow
- 0011 = CLKREF
- 0010 = MFINTOSC
- 0001 = HFINTOSC
- 0000 **= FOSC**

R-0/0	R-0/0	R-0/0	R/HS/HC-0/0	U-0	R-0/0	R-0/0	R-0/0
AOV	UTHR	LTHR	MATH	-		STAT<2:0>	
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit		mented bit, read		
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is cle	eared	HS/HC = Bit	is set/cleared b	y hardware	
bit 7	1 = ADC acc		verflow bit RR calculation ha ERR calculation				
bit 6		Module Greate	er-than Upper Th				
bit 5	LTHR : ADC N 1 = ERR <lth 0 = ERR≥LTH</lth 	4	nan Lower Thres	shold Flag bit			
bit 4	1 = Registers	ACC, FLTR,	utation Status bi UTH, LTH and th s have not chan	ne AOV bit are			lated
bit 3	Unimplemen	ted: Read as	'O'				
bit 2-0	111 = ADC n 110 = ADC n 101 = ADC n 100 = Not us 011 = ADC n 010 = ADC n	nodule is in 2 ⁿ nodule is in 2 ⁿ nodule is in 2 ⁿ ed nodule is in 1 ^{si} nodule is in 1 ^{si} nodule is in 1 ^{si}	Cycle Multistage d conversion sta d acquisition stage d precharge stage conversion stage acquisition stage precharge stage	ge ge ge ge			

REGISTER 38-5: ADSTAT: ADC STATUS REGISTER

Note 1: If CS = 1, and FOSC<FRC, these bits may be invalid.

41.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

The PIC18(L)F2x/4xK42 family of devices has a High/ Low-Voltage Detect module (HLVD). This is a programmable circuit that sets both a device voltage trip point and the direction of change from that point (positive going, negative going or both). If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution branches to the interrupt vector address and the software responds to the interrupt.

Complete control of the HLVD module is provided through the HLVDCON0 and HLVDCON1 register. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The module's block diagram is shown in Figure 41-1.

Since the HLVD can be software enabled through the EN bit, setting and clearing the enable bit does not produce a false HLVD event glitch. Each time the HLVD module is enabled, the circuitry requires some time to stabilize. The RDY bit (HLVDCON0<4>) is a read-only bit used to indicate when the band gap reference voltages are stable.

The module can only generate an interrupt after the module is turned ON and the band gap reference voltages are ready.

The INTH and INTL bits determine the overall operation of the module. When INTH is set, the module monitors for rises in VDD above the trip point set by the HLVDCON1 register. When INTL is set, the module monitors for drops in VDD below the trip point set by the HLVDCON1 register. When both the INTH and INTL bits are set, any changes above or below the trip point set by the HLVDCON1 register can be monitored.

The OUT bit can be read to determine if the voltage is greater than or less than the voltage level selected by the HLVDCON1 register.

PIC18(L)F24/25K42

MO\	/SS	Move Indexed to Indexed								
Synta	ax:	MOVSS [2	MOVSS [z _s], [z _d]							
Oper	ands:	$0 \le z_s \le 12^{-1}$	7							
		$0 \le z_d \le 12$	7							
Oper	ation:	((FSR2) + 2	$((FSR2) + z_S) \to ((FSR2) + z_d)$							
Statu	s Affected:	None	None							
Enco	ding:									
	ord (source)	1110	1011	1 z z z	z zzz _s					
2nd v	vord (dest.)	1111	XXXX	XZZZ	z zzz _d					
		registers ar 7-bit literal respectively registers ca the 4096-by (000h to FF The MOVSS PCL, TOSU destination If the result an indirect value return resultant de an indirect instruction	moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the instruction will execute as a NOP.							
Word		2								
Cycles:		2	2							
Q Cycle Activity:										
	Q1	Q2	Q3		Q4					
	Decode	Determine	Determ		Read					
		source addr	source a	addr	source reg					
	Decode	Determine Determine Writ								
		dest addr	dest ac	ddr	to dest reg					

Example:	MOVSS	[05h],	[06h]
Before Instruction FSR2 Contents	on =	80h	
of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	33h	

PUSHL		Store Literal at FSR2, Decrement FSR2							
Syntax:		PUSHL k							
Operand	s:	$0 \le k \le 255$							
Operatio	n:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2							
Status Af	fected:	None							
Encoding	g:	1111	1010	kkkk	kkkk				
·		is decreme	nted by 1 a tion allows	after the o s users to	FSR2. FSR2 operation. o push values				
Words:		1							
Cycles:		1							
Q Cycle	Activity	:							
	Q1	Q2		Q3	Q4				
Decode		Read '		ocess lata	Write to destination				
Example		PUSHL	08h						
		uction I:FSR2L ry (01ECh)	= =	01ECh 00h					

FSR2H:FSR2L = Memory (01ECh) = 01EBh 08h

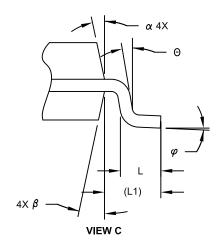
TABLE 46-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

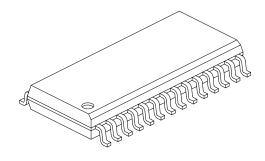
Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	_	_	μS			
RST02*	Tioz	I/O high-impedance from Reset detection	_		2	μS	\land		
RST03	TWDT	Watchdog Timer Time-out Period	_	16	_	ms	1:512 Prescaler		
RST04*	TPWRT	Power-up Timer Period	—	1 16 64	—	ms ms ms	PWRTS = 00 PWRTS = 01 PWRTS = 10		
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)	_	1024	_	Tosc			
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.7 2.55 2.3 2.3 1.8	2.85 2.7 2.45 2.45 1.9	3.0 2.85 2.6 2.6 2.05		BORV = 00 BORV = 01 BORV = 20 BORV = 11 (PIC18Fxxx) BORV = 11 (PIC18LFxxx)		
RST07	VBORHYS	Brown-out Reset Hysteresis	_	40	- \	μV			
RST08	TBORDC	Brown-out Reset Response Time	—	3		μs	\sim		
RST09	Vlpbor	Low-Power Brown-out Reset Voltage	1.8	1.9	2.2	\v v			

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.


2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.


TABLE 46-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Param. No.	Symbol	Characteristic	Min.	Typt	Max.	Units	Conditions
HLVD01	V _{DET}	Voltage Detection	$\overline{}$	1.90	$\rangle -$	V	HLVDSEL<3:0>=0000
		$\langle \rangle$		2.10	í —	V	HLVDSEL<3:0>=0001
		````	$\langle -\rangle$	2.25		V	HLVDSEL<3:0>=0010
			$\mathcal{F}$	2.50	_	V	HLVDSEL<3:0>=0011
		$\land$		2.60	_	V	HLVDSEL<3:0>=0100
			$\land$	2.75		V	HLVDSEL<3:0>=0101
		$\land$	$\overline{//}$	2.90	_	V	HLVDSEL<3:0>=0110
		$// \land$	/ –	3.15	_	V	HLVDSEL<3:0>=0111
			_	3.35		V	HLVDSEL<3:0>=1000
			_	3.60	_	V	HLVDSEL<3:0>=1001
		$\square$	_	3.75	_	V	HLVDSEL<3:0>=1010
	$/ \land$		_	4.00	_	V	HLVDSEL<3:0>=1011
			_	4.20	_	V	HLVDSEL<3:0>=1100
	$\overline{\langle}$		—	4.35	—	V	HLVDSEL<3:0>=1101
			_	4.65	_	V	HLVDSEL<3:0>=1110

# 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





	N	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2