
Microchip Technology - PIC18F25K42-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k42-e-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f25k42-e-so-4402964
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F24/25K42

3.1 System Arbitration
The System Arbiter resolves memory access between
the System Level Selections (i.e., Main, Interrupt Ser-
vice Routine) and Peripheral Selection (i.e., DMA and
Scanner) based on user-assigned priorities. Each of
the system level and peripheral selections has its own
priority selection registers. Memory access priority is
resolved using the number written to the corresponding
Priority registers, 0 being the highest priority and 4
being the lowest priority. The Default priorities are listed
in Table 3-1.

In case the user wants to change priorities then ensure
that each Priority register is written with a unique value
from 0 to 4.

FIGURE 3-2: PIC18(L)F24/25K42 SYSTEM ARBITER BLOCK DIAGRAM

TABLE 3-1: DEFAULT PRIORITIES

Selection Priority register
Reset value

System Level ISR 0
MAIN 1

Peripheral DMA1 2
DMA2 3

SCANNER 4

TABLE 3-1: DEFAULT PRIORITIES

Selection Priority register
Reset value

Rev. 20-000318A
11/2/2016

Data EEPROM SFR/GPR
SRAM Data

Program Flash
Memory

CPU Memory Access
NVMCON Scanner DMA 1

Priority

Program Flash Memory Data
Data EEPROM Data
SFR/GPR Data

Legend

System Arbiter

DMA 2
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 19

PIC18(L)F24/25K42
TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CPU

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on
page

ISRPR — — — — — ISRPR2 ISRPR1 ISRPR0 21

MAINPR — — — — — MAINPR2 MAINPR1 MAINPR0 21

DMA1PR — — — — — DMA1PR2 DMA1PR1 DMA1PR0 21

DMA2PR — — — — — DMA2PR2 DMA2PR1 DMA2PR0 22

SCANPR — — — — — SCANPR2 SCANPR1 SCANPR0 22

PRLOCK — — — — — — — PRLOCKED 22

Legend: — = Unimplemented location, read as ‘0’.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 23

PIC18(L)F24/25K42

4.5.2 ACCESS BANK
While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.

To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of
memory (00h-5Fh) in Bank 0 and the last 160 bytes of
memory (60h-FFh) in Bank 63. The lower half is known
as the “Access RAM” and is composed of GPRs. This
upper half is also where some of the SFRs of the device
are mapped. These two areas are mapped
contiguously in the Access Bank and can be addressed
in a linear fashion by an 8-bit address (Figure 4-4).

The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0’,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely.

Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle, without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient and
switching of variables.

The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 4.8.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.

4.5.3 GENERAL PURPOSE REGISTER
FILE

PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 0000h) and grow upwards towards the bottom
of the SFR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.

4.5.4 SPECIAL FUNCTION REGISTERS
The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (3FFFh) and extend downward to occupy
Bank 56 through 63 (3800h to 3FFFh). A list of these
registers is given in Table 4-3 to Table 4-10.
The SFRs can be classified into two sets: those
associated with the “core” device functionality (ALU,
Resets and interrupts) and those related to the
peripheral functions. The Reset and Interrupt registers
are described in their respective chapters, while the
ALU’s STATUS register is described later in this
section. Registers related to the operation of a
peripheral feature are described in the chapter for that
peripheral.
The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR
locations are unimplemented and read as ‘0’s.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 38

PIC18(L)F24/25K42

REGISTER 11-2: INTCON1: INTERRUPT CONTROL REGISTER 1
R-0/0 R-0/0 U-0 U-0 U-0 U-0 U-0 U-0

STAT<1:0> — — — — — —

bit 7 bit 0

Legend:
HC = Bit is cleared by hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-6 STAT<1:0>: Interrupt State Status bits
11 =High priority ISR executing, high priority interrupt was received while a low priority ISR was

executing
10 =High priority ISR executing, high priority interrupt was received in main routine
01 =Low priority ISR executing, low priority interrupt was received in main routine
00 =Main routine executing

bit 5-0 Unimplemented: Read as ‘0’
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 141

PIC18(L)F24/25K42
REGISTER 11-11: PIR8: PERIPHERAL INTERRUPT REGISTER 8
R/W/HS-0/0 R/W/HS-0/0 U-0 U-0 U-0 U-0 U-0 U-0
TMR5GIF TMR5IF — — — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS = Bit is set in hardware

bit 7 TMR5GIF: TMR5 Gate Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 6 TMR5IF: TMR5 Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 5-0 Unimplemented: Read as ‘0’
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding

enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear
prior to enabling an interrupt.

REGISTER 11-12: PIR9: PERIPHERAL INTERRUPT REGISTER 9
U-0 U-0 U-0 U-0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0
— — — — CLC3IF CWG3IF CCP3IF TMR6IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Unimplemented: Read as ‘0’
bit 3 CLC3IF: CLC3 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 2 CWG3IF: CWG3 Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 1 CCP3IF: CCP3 Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 0 TMR6IF: TMR6 Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding
enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear
prior to enabling an interrupt.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 150

PIC18(L)F24/25K42
REGISTER 13-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY)
R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0

PSCNT<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PSCNT<7:0>: Prescale Select Low Byte bits(1)

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the
WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during
normal operation.

REGISTER 13-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY)
R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0

PSCNT<15:8>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PSCNT<15:8>: Prescale Select High Byte bits(1)

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the
WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during
normal operation.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 188

PIC18(L)F24/25K42
REGISTER 13-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)
R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0

WDTTMR<4:0> STATE PSCNT<17:16>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

bit 2 STATE: WDT Armed Status bit
1 = WDT is armed
0 = WDT is not armed

bit 1-0 PSCNT<17:16>: Prescale Select Upper Byte bits(1)

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the
WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during
normal operation.

WINDOW
WDT Window State

Open Percent
Closed Open

111 N/A 00000-11111 100
110 00000-00011 00100-11111 87.5
101 00000-00111 01000-11111 75
100 00000-01011 01100-11111 62.5
011 00000-01111 10000-11111 50
010 00000-10011 10100-11111 37.5
001 00000-10111 11000-11111 25
000 00000-11011 11100-11111 12.5
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 189

PIC18(L)F24/25K42

Example 14-3 shows the sequence to do a 16 x 16
unsigned multiplication. Equation 14-1 shows the
algorithm that is used. The 32-bit result is stored in four
registers (RES<3:0>).

EQUATION 14-1: 16 x 16 UNSIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 14-3: 16 x 16 UNSIGNED
MULTIPLY ROUTINE

Example 14-4 shows the sequence to do a 16 x 16
signed multiply. Equation 14-2 shows the algorithm
used. The 32-bit result is stored in four registers
(RES<3:0>). To account for the sign bits of the argu-
ments, the MSb for each argument pair is tested and
the appropriate subtractions are done.

EQUATION 14-2: 16 x 16 SIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 14-4: 16 x 16 SIGNED
MULTIPLY ROUTINE

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L) +
(-1  ARG2H<7>  ARG1H:ARG1L  216) +
(-1  ARG1H<7>  ARG2H:ARG2L  216)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg?
BRA SIGN_ARG1 ; no, check ARG1
MOVF ARG1L, W ;
SUBWF RES2 ;
MOVF ARG1H, W ;
SUBWFB RES3

;
SIGN_ARG1

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVF ARG2L, W ;
SUBWF RES2 ;
MOVF ARG2H, W ;
SUBWFB RES3

;
CONT_CODE

:

 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 192

PIC18(L)F24/25K42

FIGURE 15-7: PFM ROW ERASE

FLOWCHART
15.1.6 WRITING TO PROGRAM FLASH

MEMORY
The programming write block size is described in
Table 15-2. Word or byte programming is not
supported. Table writes are used internally to load the
holding registers needed to program the memory. There
are only as many holding registers as there are bytes in
a write block. Refer to Table 15-2 for write latch size.

Since the table latch (TABLAT) is only a single byte, the
TBLWT instruction needs to be executed multiple times
for each programming operation. The write protection
state is ignored for this operation. All of the table write
operations will essentially be short writes because only
the holding registers are written. NVMIF is not affected
while writing to the holding registers.

After all the holding registers have been written, the
programming operation of that block of memory is
started by configuring the NVMCON1 register for a
program memory write and performing the long write
sequence.

If the PFM address in the TBLPTR is write-protected or
if TBLPTR points to an invalid location, the WR bit is
cleared without any effect and the WREER is signaled.

The long write is necessary for programming the
program memory. CPU operation is suspended during
a long write cycle and resumes when the operation is
complete. The long write operation completes in one
instruction cycle. When complete, WR is cleared in
hardware and NVMIF is set and an interrupt will occur if
NVMIE is also set. The latched data is reset to all ‘1s’.
WREN is not changed.

The internal programming timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range of
the device.

Unlock Sequence
(Figure 15-6)

End Erase Operation

Select Memory:
PFM (NVMREGS<1:0> = 10)

Disable Write/Erase Operation
(WREN = 0)

Load Table Pointer register with
address of the block being erased

Start Erase Operation

CPU stalls while Erase operation
completes (2 ms typical)

Select Erase Operation
(FREE = 1)

Disable Interrupts
(GIE = 0)

Enable Interrupts
(GIE = 1)

Enable Write/Erase Operation
(WREN = 1)

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 203

PIC18(L)F24/25K42

15.3.5 WRITE VERIFY
Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit.

EXAMPLE 15-5: DATA EEPROM READ

EXAMPLE 15-6: DATA EEPROM WRITE

15.3.6 OPERATION DURING CODE-
PROTECT

Data EEPROM Memory has its own code-protect bits
in Configuration Words. External read and write
operations are disabled if code protection is enabled.

If the Data EEPROM is write-protected or if NVMADR
points an invalid address location, the WR bit is cleared
without any effect. WRERR is signaled in this scenario.

15.3.7 PROTECTION AGAINST SPURIOUS
WRITE

There are conditions when the user may not want to
write to the Data EEPROM Memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM are blocked
during the Power-up Timer period (TPWRT).

The unlock sequence and the WREN bit together help
prevent an accidental write during brown-out, power
glitch or software malfunction.

; Data Memory Address to read

CLRF NVMCON1 ; Setup Data EEPROM Access

MOVF EE_ADDRL, W ;

MOVWF NVMADRL ; Setup Address

BSF NVMCON1, RD ; Issue EE Read

MOVF NVMDAT, W ; W = EE_DATA

; Data Memory Address to write

CLRF NVMCON1 ; Setup Data EEPROM Access

MOVF EE_ADDRL, W ;

MOVWF NVMADRL ; Setup Address

; Data Memory Value to write

MOVF EE_DATA, W ;

MOVWF NVMDAT ;

; Enable writes

BSF NVMCON1, WREN ;

; Disable interrupts

BCF INTCON0, GIE ;

; Required unlock sequence

MOVLW 55h ;

MOVWF NVMCON2 ;

MOVLW AAh ;

MOVWF NVMCON2 ;

; Set WR bit to begin write

BSF NVMCON1, WR ;

; Enable INT

BSF INTCON0, GIE ;

; Wait for interrupt, write done

SLEEP ;

; Disable writes

BCF NVMCON1, WREN ;
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 212

PIC18(L)F24/25K42

17.9.5 OVERRUN INTERRUPT
The Overrun Interrupt flag is set if the DMA receives a
trigger to start a new message before the current mes-
sage is completed.

FIGURE 17-9: OVERRUN INTERRUPT

Rev. 10-000275E
8/11/2016

Instruction
Clock

EN

DMAxSSZ 0x2

DMAxSSA 0x100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Source Hardware
Trigger

SIRQEN

DGO

DMAxSPTR 0x100

DMAxDPTR 0x200

DMAxSCNT 2

DMAxDCNT 4

0x101

0x201

1

3

0x100

0x202

2

2

0x101

0x203

1

1

0x100

0x200

2

4

SR(1) DW(2)SR(1) DW(2)IDLEDMA STATE IDLE SR(1) DW(2)SR(1) DW(2) IDLE

DMAxSCNTIF

DMAxDCNTIF

DMAxDSZ 0x20

DMAxDSA 0x200

DMAxCON1bits.SMA = 01

DMAxORIF

Note 1: SR - Source Read

2: DW - Destination Write
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 246

PIC18(L)F24/25K42

REGISTER 17-12: DMAxSCNTL – DMAx SOURCE COUNT LOW REGISTER

REGISTER 17-13: DMAxSCNTH – DMAx SOURCE COUNT HIGH REGISTER

REGISTER 17-14: DMAxDSAL – DMAx DESTINATION START ADDRESS LOW REGISTER

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
SCNT<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and
BOR/Value at all other
Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 7-0 SCNT<7:0>: Current Source Byte Count

U-0 U-0 U-0 U-0 R-0 R-0 R-0 R-0
— — — — SCNT<11:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR
and BOR/Value at all
other Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 7-4 Unimplemented: Read as ‘0’
bit 3-0 SCNT<11:8>: Current Source Byte Count

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
DSA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and
BOR/Value at all other
Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 7-0 DSA<7:0>: Destination Start Address bits
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 257

PIC18(L)F24/25K42
28.0 COMPLEMENTARY
WAVEFORM GENERATOR
(CWG) MODULE

The Complementary Waveform Generator (CWG)
produces half-bridge, full-bridge, and steering of PWM
waveforms. It is backwards compatible with previous
CCP functions. The PIC18(L)F2x/4xK42 family has
three instances of the CWG module.

Each of the CWG modules has the following features:

• Six operating modes:
- Synchronous Steering mode
- Asynchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse
- Half-Bridge mode
- Push-Pull mode

• Output polarity control
• Output steering
• Independent 6-bit rising and falling event dead-

band timers
- Clocked dead band
- Independent rising and falling dead-band

enables
• Auto-shutdown control with:

- Selectable shutdown sources
- Auto-restart option
- Auto-shutdown pin override control

28.1 Fundamental Operation
The CWG generates two output waveforms from the
selected input source.

The off-to-on transition of each output can be delayed
from the on-to-off transition of the other output, thereby,
creating a time delay immediately where neither output
is driven. This is referred to as dead time and is covered
in Section 28.6 “Dead-Band Control”.

It may be necessary to guard against the possibility of
circuit faults or a feedback event arriving too late or not
at all. In this case, the active drive must be terminated
before the Fault condition causes damage. This is
referred to as auto-shutdown and is covered in Section
28.10 “Auto-Shutdown”.

28.2 Operating Modes
The CWG module can operate in six different modes,
as specified by the MODE<2:0> bits of the
CWGxCON0 register:

• Half-Bridge mode
• Push-Pull mode
• Asynchronous Steering mode
• Synchronous Steering mode
• Full-Bridge mode, Forward
• Full-Bridge mode, Reverse

All modes accept a single pulse data input, and
provide up to four outputs as described in the following
sections.

All modes include auto-shutdown control as described
in Section 28.10 “Auto-Shutdown”

28.2.1 HALF-BRIDGE MODE
In Half-Bridge mode, two output signals are generated
as true and inverted versions of the input as illustrated
in Figure 28-2. A non-overlap (dead-band) time is
inserted between the two outputs as described in Sec-
tion 28.6 “Dead-Band Control”. The output steering
feature cannot be used in this mode. A basic block dia-
gram of this mode is shown in Figure 28-1.

The unused outputs CWGxC and CWGxD drive similar
signals as CWGxA and CWGxB, with polarity inde-
pendently controlled by the POLC and POLD bits of the
CWGxCON1 register, respectively.

Note: Except as noted for Full-bridge mode
(Section 28.2.3 “Full-Bridge Modes”),
mode changes should only be performed
while EN = 0 (Register 28-1).
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 408

PIC18(L)F24/25K42

FIGURE 28-4: CWGx PUSH-PULL MODE OPERATION

28.2.3 FULL-BRIDGE MODES
In Forward and Reverse Full-Bridge modes, three
outputs drive static values while the fourth is modulated
by the input data signal. The mode selection may be
toggled between forward and reverse by toggling the
MODE<0> bit of the CWGxCON0 while keeping
MODE<2:1> static, without disabling the CWG module.
When connected as shown in Figure 28-5, the outputs
are appropriate for a full-bridge motor driver. Each
CWG output signal has independent polarity control, so
the circuit can be adapted to high-active and low-active
drivers. A simplified block diagram for the Full-Bridge
modes is shown in Figure 28-6.

FIGURE 28-5: EXAMPLE OF FULL-BRIDGE APPLICATION

CWG1
clock

CWG1A

CWG1B

Input
source

Rev. 10-000263A
12/8/2015

CWG1A

CWG1B

CWG1C

CWG1D

FET
Driver

FET
Driver

FET
Driver

FET
Driver

VDD

QA QC

QB QD

LOAD
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 412

PIC18(L)F24/25K42

TABLE 29-1: CLCx DATA INPUT

SELECTION
DyS<5:0>

Value CLCx Input Source

111111 [63] Reserved
.

.

.

110100 [52] Reserved
110011 [51] CWG3B_out
110010 [50] CWG3A_out
110001 [49] CWG2B_out
110000 [48] CWG2A_out
101111 [47] CWG1B_out
101110 [46] CWG1A_out
101101 [45] SPI1_ss_out
101100 [44] SPI1_sck_out
101011 [43] SPI1_sdo_out
101010 [42] Reserved
101001 [41] UART2_tx_out
101000 [40] UART1_tx_out
100111 [39] CLC4_out
100110 [38] CLC3_out
100101 [37] CLC2_out
100100 [36] CLC1_out
100011 [35] DSM1_out
100010 [34] IOC_flag
100001 [33] ZCD_out
100000 [32] CMP2_out
011111 [31] CMP1_out
011110 [30] NCO1_out
011101 [29] Reserved
011100 [28] Reserved
011011 [27] PWM8_out
011010 [26] PWM7_out
011001 [25] PWM6_out
011000 [24] PWM5_out
010111 [23] CCP4_out
010110 [22] CCP3_out
010101 [21] CCP2_out
010100 [20] CCP1 _out
010011 [19] SMT1_out
010010 [18] TMR6_out
010001 [17] TMR5 _overflow
010000 [16] TMR4 _out
001111 [15] TMR3 _overflow

001110 [14] TMR2 _out
001101 [13] TMR1 _overflow
001100 [12] TMR0 _overflow
001011 [11] CLKR _out
001010 [10] ADCRC.clc_adc_clk
001001 [9] SOSC
001000 [8] MFINTOSC (32 kHz)
000111 [7] MFINTOSC (500 kHz)
000110 [6] LFINTOSC
000101 [5] HFINTOSC
000100 [4] FOSC
000011 [3] CLCIN3PPS
000010 [2] CLCIN2PPS
000001 [1] CLCIN1PPS
000000 [0] CLCIN0PPS

TABLE 29-1: CLCx DATA INPUT SELECTION
(CONTINUED)

DyS<5:0>
Value CLCx Input Source
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 438

PIC18(L)F24/25K42

34.6 Slave Mode

34.6.1 SLAVE MODE TRANSMIT OPTIONS
The SDO output of the SPI module in Slave mode is
controlled by the TXR bit of SPIxCON2, the TRIS bit
associated with the SDO pin, the Slave Select input,
and the current state of the TXFIFO. This control is
summarized in Table 34-2. In this table, TRISxn refers
to the bit in the TRIS register corresponding to the pin
that SDO has been assigned with PPS, TXR is the
Transmit Data Required Control bit of SPIxCON2, SS
is the state of the Slave Select input, and TXBE is the
TXFIFO Buffer Empty bit of SPIxSTATUS.

34.6.1.1 SDO Drive/Tri-state
The TRIS bit associated with the SDO pin controls
whether the SDO pin will tri-state. When this TRIS bit is
cleared, the pin will always be driving to a level, even
when the SPI module is inactive. When the SPI module
is inactive (either due to the master not clocking the
SCK line or the SS being false), the SDO pin will be
driven to the value of the LAT bit associated with the

SDO pin. When the SPI module is active, its output is
determined by both TXR and whether there is data in
the TXFIFO.

When the TRIS bit associated with the SDO pin is set,
the pin will only have an output level driven to it when
TXR = 1 and the slave select input is true. In all other
cases, the pin will be tri-stated.

34.6.1.2 SDO Output Data
The TXR bit controls the nature of the data that is
transmitted in Slave mode. When TXR is set,
transmitted data is taken from the TXFIFO. If the FIFO
is empty, the most recently received data will be
transmitted and the TXUIF flag will be set to indicate
that a transmit FIFO underflow has occurred.

When TXR is cleared, the data will be taken from the
TXFIFO, and the TXFIFO occupancy will not decrease.
If the TXFIFO is empty, the most recently received data
will be transmitted, and the TXUIF bit will not be set.
However, if the TRIS bit associated with the SDO pin is
set, clearing the TXR bit will cause the SPI module to
not output any data to the SDO pin.

TABLE 34-2: SLAVE MODE TRANSMIT
TRISxn(1) TXR SS TXBE SDO State

0 0 FALSE 0 Drives state determined by LATxn(2)

0 0 FALSE 1 Drives state determined by LATxn(2)

0 0 TRUE 0 Outputs the oldest byte in the TXFIFO
Does not remove data from the TXFIFO

0 0 TRUE 1 Outputs the most recently received byte

0 1 FALSE 0 Drives state determined by LATxn(2)

0 1 FALSE 1 Drives state determined by LATxn(2)

0 1 TRUE 0 Outputs the oldest byte in the TXFIFO
Removes transmitted byte from the TXFIFO
Decrements occupancy of TXFIFO

0 1 TRUE 1 Outputs the most recently received byte
Sets the TXUIF bit of SPIxINTF

1 0 FALSE 0 Tri-stated

1 0 FALSE 1 Tri-stated

1 0 TRUE 0 Tri-stated

1 0 TRUE 1 Tri-stated

1 1 FALSE 0 Tri-stated

1 1 FALSE 1 Tri-stated

1 1 TRUE 0 Outputs the oldest byte in the TXFIFO
Removes transmitted byte from the TXFIFO
Decrements occupancy of TXFIFO

1 1 TRUE 1 Outputs the most recently received byte
Sets the TXUIF bit of SPIxINTF

Note 1: TRISxn is the bit in the TRISx register corresponding to the pin that SDO has been assigned with PPS.
2: LATxn is the bit in the LATx register corresponding to the pin that SDO has been assigned with PPS.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 530

PIC18(L)F24/25K42

REGISTER 34-12: SPIxTxB: SPI TRANSMIT BUFFER REGISTER

REGISTER 34-13: SPIxCLK: SPI CLOCK SELECTION REGISTER

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0
TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1 TXB0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

bit 7-0 TXB<7:0>: Transmit Buffer bits (write only)

If TXFIFO is not full:

Writing to this register adds the data to the top of the TXFIFO and increases the occupancy of the
TXFIFO write pointer

If TXFIFO is full:

Writing to this register does not affect the data in the TXFIFO or the write pointer, and the TXWE bit of
SPIxSTATUS will be set

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — — — CLKSEL3 CLKSEL2 CLKSEL1 CLKSEL0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

bit 7-4 Unimplemented: Read as ‘0’
bit 3-0 CLKSEL<3:0>: SPI Clock Source Selection bits

1111-1001 = Reserved
1000 = SMT_match
0111 = TMR6_Postscaled
0110 = TMR4_Postscaled
0101 = TMR2_Postscaled
0100 = TMR0_overflow
0011 = CLKREF
0010 = MFINTOSC
0001 = HFINTOSC
0000 = FOSC
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 544

PIC18(L)F24/25K42

REGISTER 38-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0
PPOL IPEN GPOL — — — — DSEN

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 PPOL: Precharge Polarity bit
If PRE>0x00:

Otherwise:
The bit is ignored

bit 6 IPEN: A/D Inverted Precharge Enable bit
If DSEN = 1
1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the

first cycle
0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL
Otherwise:
The bit is ignored

bit 5 GPOL: Guard Ring Polarity Selection bit
1 = ADC guard Ring outputs start as digital high during Precharge stage
0 = ADC guard Ring outputs start as digital low during Precharge stage

bit 4-1 Unimplemented: Read as ‘0’
bit 0 DSEN: Double-sample enable bit

1 = Two conversions are performed on each trigger. Data from the first conversion appears in PREV
0 = One conversion is performed for each trigger

PPOL
Action During 1st Precharge Stage

External (selected analog I/O pin) Internal (AD sampling capacitor)

1 Connected to VDD CHOLD connected to VSS

0 Connected to VSS CHOLD connected to VDD
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 622

PIC18(L)F24/25K42

REGISTER 39-2: DAC1CON1: DAC DATA REGISTER
U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — — DATA<4:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 DATA<4:0>: Data Input Register for DAC bits

TABLE 39-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page

DAC1CON0 EN — OE1 OE2 PSS<1:0> — NSS 644
DAC1CON1 — — — DATA<4:0> 645
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used with the DAC module.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 645

PIC18(L)F24/25K42
43.0 INSTRUCTION SET SUMMARY
PIC18(L)F2x/4xK42 devices incorporate the standard
set of PIC18 core instructions, as well as an extended
set of instructions, for the optimization of code that is
recursive or that utilizes a software stack. The extended
set is discussed later in this section.

43.1 Standard Instruction Set
The standard PIC18 instruction set adds many
enhancements to the previous PIC® MCU instruction
sets, while maintaining an easy migration from these
PIC® MCU instruction sets. Most instructions are a
single program memory word (16 bits), but there are
four instructions that require two-program memory
locations and two that require three-program memory
locations.

Each single-word instruction is a 16-bit word divided
into an opcode, which specifies the instruction type and
one or more operands, which further specify the
operation of the instruction.

The instruction set is highly orthogonal and is grouped
into four basic categories:

• Byte-oriented operations
• Bit-oriented operations
• Literal operations
• Control operations

The PIC18 instruction set summary in Table 43-2 lists
byte-oriented, bit-oriented, literal and control
operations. Table 43-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The destination of the result (specified by ‘d’)
3. The accessed memory (specified by ‘a’)

The file register designator ‘f’ specifies which file
register is to be used by the instruction. The destination
designator ‘d’ specifies where the result of the opera-
tion is to be placed. If ‘d’ is zero, the result is placed in
the WREG register. If ‘d’ is one, the result is placed in
the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The bit in the file register (specified by ‘b’)
3. The accessed memory (specified by ‘a’)

The bit field designator ‘b’ selects the number of the bit
affected by the operation, while the file register
designator ‘f’ represents the number of the file in which
the bit is located.

The literal instructions may use some of the following
operands:

• A literal value to be loaded into a file register
(specified by ‘k’)

• The desired FSR register to load the literal value
into (specified by ‘f’)

• No operand required
(specified by ‘—’)

The control instructions may use some of the following
operands:

• A program memory address (specified by ‘n’)
• The mode of the CALL or RETURN instructions

(specified by ‘s’)
• The mode of the table read and table write

instructions (specified by ‘m’)
• No operand required

(specified by ‘—’)

All instructions are a single word, except for four
double-word instructions. These instructions were
made double-word to contain the required information
in 32 bits. In the second word, the four MSbs are ‘1’s. If
this second word is executed as an instruction (by
itself), it will execute as a NOP.

All single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles, with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 s. If a conditional test is
true, or the program counter is changed as a result of
an instruction, the instruction execution time is 2 s.
Two-word branch instructions (if true) would take 3 s.

Figure 43-1 shows the general formats that the instruc-
tions can have. All examples use the convention ‘nnh’
to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 43-2,
lists the standard instructions recognized by the
Microchip Assembler (MPASMTM).

Section 43.1.1 “Standard Instruction Set” provides
a description of each instruction.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 665

