

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k42-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 5	-6: CONFIG	SURATION	WORD 3H (3	0 0005h)			
U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—		WDTCCS<2:0	S<2:0> WDTCWS<2:03			:0>
bit 7					·		bit C
Legend:							
R = Readable	bit	W = Writab	le hit		mented hit	ead as '1'	
n = Value for l	blank dovico	$(1)^{2} = \text{Ritic}$	ne bit	0' = Bit is of	oarod	v – Ritic u	nknown
		I - DIL 15 5	el		eareu	x – Dit is ui	IKHOWH
bit 7-6	Unimplement	ed: Read as	'1'				
bit 5-3	WDTCCS<2:0	>: WDT Inpi	It Clock Selecto	r bits			
bit 2-0	This bit is igno <u>Otherwise:</u> 000 = WDT re 001 = WDT re 010 = WDT re 011 = Reserve 110 = Reserve 111 = Softward WDTCWS<2:0	ference cloci ference cloci ference cloci ference cloci ed (default to ed (default to e control P>: WDT Wir	k is the 31.0 kH k is the 31.25 kł k is SOSC LFINTOSC) LFINTOSC)	z LFINTOSC Hz HFINTOS((default value C (MFINTOS	∋) C)	
			Window	at POR		Software	Keyed
	WDTCWS	Value	Window De Percent of T	lay Windo ime Perce	w Opening nt of Time	Control of Window	Access Required?
	000	000	87.5		12.5		<u></u>
	001	001	75		25		

62.5

50

37.5

25

n/a

n/a

37.5

50

62.5

75

100

100

010

011

100

101

110

111

010

011

100

101

111

111

Yes

No

No

Yes

© 2016-2017 Microchip Technology Inc.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
WPUx7	WPUx6	WPUx5	WPUx4	WPUx3	WPUx2	WPUx1	WPUx0			
bit 7							bit 0			
Legend:										
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
-n/n = Value at POR and BOR/Value at all other Resets										

REGISTER 18-5: WPUx: WEAK PULL-UP REGISTER

bit 7-0

WPUx<7:0>: Weak Pull-up PORTx Control bits 1 = Weak Pull-up enabled

0 = Weak Pull-up disabled

TABLE 18-5: WEAK PULL-UP PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
WPUE	—	—	—	—	WPUE3 ⁽¹⁾	—	—	—

Note 1: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	267
PORTB	RB7 ⁽¹⁾	RB6 ⁽¹⁾	RB5	RB4	RB3	RB2	RB1	RB0	267
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	267
PORTE	_	_	_	_	RE3 ⁽²⁾	_	_	_	267
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	268
TRISB	TRISB7 ⁽³⁾	TRISB6 ⁽³⁾	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	268
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	268
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	269
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	269
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	269
ANSELA	ANSELA7	ANSELA6	ANSELA5	ANSELA4	ANSELA3	ANSELA2	ANSELA1	ANSELA0	270
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	270
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	270
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	271
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	271
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	271
WPUE	_	_	_	_	WPUE3 ⁽⁴⁾	_	_	_	271
ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	272
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	272
ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	272
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	273
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	273
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	273
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	274
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2 ⁽⁵⁾	INLVLB1 ⁽⁵⁾	INLVLB0	274
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽⁵⁾	INLVLC3 ⁽⁵⁾	INLVLC2	INLVLC1	INLVLC0	274
INLVLE	—	—	_	—	INLVLE3	—	_	—	274
RB1I2C	—	SLEW	PU<	:1:0>	—	—	TH<	1:0>	275
RB2I2C	—	SLEW	PU<	:1:0>	—	—	TH<	1:0>	275
RC3I2C	_	SLEW	PU<	:1:0>	_	_	TH<	1:0>	275
RC4I2C	—	SLEW	PU<	:1:0>	—	—	TH<	1:0>	275
CCDPA	CCDPA7	CCDPA6	CCDPA5	CCDPA4	CCDPA3	CCDPA2	CCDPA1	CCDPA0	277
CCDPB	CCDPB7	CCDPB6	CCDPB5	CCDPB4	CCDPB3	CCDPB2	CCDPB1	CCDPB0	277
CCDPC	CCDPC7	CCDPC6	CCDPC5	CCDPC4	CCDPC3	CCDPC2	CCDPC1	CCDPC0	277
CCDNA	CCDNA7	CCDNA6	CCDNA5	CCDNA4	CCDNA3	CCDNA2	CCDNA1	CCDNA0	278
CCDNB	CCDNB7	CCDNB6	CCDNB5	CCDNB4	CCDNB3	CCDNB2	CCDNB1	CCDNB0	278
CCDNC	CCDNC7	CCDNC6	CCDNC5	CCDNC4	CCDNC3	CCDNC2	CCDNC1	CCDNC0	278

TABLE 18-12: SUMMARY OF REGISTERS ASSOCIATED WITH I/O

Legend: - = unimplemented location, read as '0'. Shaded cells are not used by I/O Ports.

Bits RB6 and RB7 read '1' while in Debug mode. Note 1:

2: 3:

Bits PORTE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled). Bits RB6 and RB7 read '1' while in Debug mode. If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected. Pins read the I²C ST inputs when I²C is enabled via RxyI2C. 4:

5:

FIGURE 24-2: TIMER2 CLOCK SOURCE BLOCK DIAGRAM

24.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-Shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 24-1 lists the options.

In all modes the T2TMR count register is incremented on the rising edge of the clock signal from the programmable prescaler. When T2TMR equals T2PR then a high level is output to the postscaler counter. T2TMR is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a T2TMR count Reset. In gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the T2TMR count is reset on either the level or edge from the external source.

The T2TMR and T2PR registers are both directly readable and writable. The T2TMR register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the T2TMR register
- · a write to the TxCON register
- any device Reset
- · External Reset Source event that resets the timer.

Note: T2TMR is not cleared when TxCON is written.

24.1.1 FREE RUNNING PERIOD MODE

The value of T2TMR is compared to that of the Period register, T2PR, on each clock cycle. When the two values match, the comparator resets the value of T2TMR to 00h on the next cycle and increments the

output postscaler counter. When the postscaler count equals the value in the OUTPS bits of the TxCON register then a one clock period wide pulse occurs on the T2TMR_postscaled output, and the postscaler count is cleared.

24.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when T2TMR matches PR2 and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

24.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

24.2 Timer2 Output

The Timer2 module's primary output is T2TMR_postscaled, which pulses for a single T2TMR_clk period when the postscaler counter matches the value in the OUTPS bits of the TxCON register. The T2PR postscaler is incremented each time the T2TMR value matches the T2PR value. this signal can be selected as an input to several other input modules.

Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual T2TMR value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 25.0 "Capture/Compare/PWM Module"** for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 24.5 "Operation Examples"** for examples of how the varying Timer2 modes affect CCP PWM output.

24.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4, and Timer6 with the T2RST, T4RST, and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE bits of the T2HLT register. Edge Triggered modes require six Timer clock periods between external triggers. Level Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR>	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 24-3: TxTMR: TIMERx COUNTER REGISTER

bit 7-0 TMRx<7:0>: Timerx Counter bits

REGISTER 24-4: TxPR: TIMERx PERIOD REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PRx< | :7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PRx<7:0>:** Timerx Period Register bits

FIGURE 27-17:

PIC18(L)F24/25K42

R/W/HC-0/0	R/W/HC-0/0	R/W/HC-0/0	U-0	U-0	R-0/0	R-0/0	R-0/0				
CPRUP	CPWUP	RST	—	—	TS	WS	AS				
bit 7	·	·	·	·		·	bit 0				
Legend:	Legend:										
HC = Bit is cleared by hardware HS = Bit is set by hardware											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condi	tion					
bit 7 CPRUP: SMT Manual Period Buffer Update bit 1 = Request update to SMT1PRx registers 0 = SMT1PRx registers update is complete											
bit 6	CPWUP: SM ¹ 1 = Request 0 0 = SMT1CP ¹	T Manual Pulse update to SMT W registers up	e Width Buffer 1CPW register date is comple	Update bit s te							
bit 5	RST: SMT Ma 1 = Request F 0 = SMT1TM	anual Timer Re Reset to SMT1 R registers upo	set bit TMR registers late is complet	e							
bit 4-3	Unimplemen	ted: Read as '	0'								
bit 2	<pre>vit 2 TS: GO Value Status bit 1 = SMT timer is incrementing 0 = SMT timer is not incrementing</pre>										
bit 1	WS: SMT1WI 1 = SMT wind 0 = SMT wind	IN Value Status low is open low is closed	s bit								
bit 0	AS: SMT_sig 1 = SMT acqu 0 = SMT acqu	nal Value Statu uisition is in pro uisition is not ir	s bit ogress oprogress								

REGISTER 27-3: SMT1STAT: SMT STATUS REGISTER

28.3 Clock Source

The clock source is used to drive the dead-band timing circuits. The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC

When the HFINTOSC is selected, the HFINTOSC will be kept running during Sleep. Therefore, CWG modes requiring dead band can operate in Sleep, provided that the CWG data input is also active during Sleep. The clock sources are selected using the CS bit of the CWGxCLKCON register (Register 28-3). The system clock Fosc, is disabled in Sleep and thus dead-band control cannot be used.

28.4 Selectable Input Sources

The CWG generates the output waveforms from the following input sources:

- Pin selected by CWGxPPS
- CCP1/2/3/4 output
- PWM5/6/7/8 output
- NCO1 output
- CMP1/2 output
- DSM output
- CLC1/2/3/4 output

The input sources are selected using the IS<4:0> bits in the CWGxISM register (Register 28-4).

28.5 Output Control

28.5.1 CWG OUTPUTS

Each CWG output can be routed to a Peripheral Pin Select (PPS) output via the RxyPPS register (see Section 19.0 "Peripheral Pin Select (PPS) Module").

28.5.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLy bits of the CWGxCON1. Auto-shutdown and steering options are unaffected by polarity.

28.6 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers, respectively.

28.6.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 28-2.

28.6.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWGxCON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWGxA and CWGxC signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWGxB or CWGxD, depending on the direction of the change) will experience a delay dictated by the dead-band counters.

REGISTER 28-3: CWGxCLK: CWGx CLOCK INPUT SELECTION REGISTER II-0 II-0 II-0 II-0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

bit 0 CS: CWG Clock Source Selection Select bits

CS	CWG1	CWG2	CWG3
1	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾
0	Fosc	Fosc	Fosc

Note 1: HFINTOSC remains operating during Sleep.

REGISTER 30-8: NCO1INCU: NCO1 INCREMENT REGISTER – UPPER BYTE⁽¹⁾

			-		-	-			
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
INC<19:6>									
bit 7							bit 0		

Legend:

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 INC<19:16>: NCO1 Increment, Upper Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

TABLE 30-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
NCO1CON	N1EN	—	N1OUT	N1POL	—	—	_	N1PFM	456
NCO1CLK		N1PWS<2:0)>	—	—	N	457		
NCO1ACCL	NCO1ACC<7:0>							458	
NCO1ACCH	NCO1ACC<15:8>							458	
NCO1ACCU	—	_	_	_		NCO1ACC	<19:16>		459
NCO1INCL				NCO1INC<	7:0>				459
NCO1INCH				NCO1INC<	15:8>				459
NCO1INCU	_	_	—	—		NCO1INC	<19:16>		460

Legend: – = unimplemented read as '0'. Shaded cells are not used for NCO module.

33.21 Register Definitions: UART Control

Long bit name prefixes for the UART peripherals are shown in Table 33-3. Refer to **Section 1.4** "**Register and Bit naming conventions**" for more information.

TABLE 33-3:

Peripheral	Bit Name Prefix
UART 1	U1
UART 2	U2

REGISTER 33-1: UxCON0: UART CONTROL REGISTER 0

R/W-0/0	R/W/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
BRGS	ABDEN	TXEN	RXEN		MODE	<3:0>	
bit 7							bit 0

W = Writable bit	U = Unimplemented bit, read as '0'
x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'0' = Bit is cleared	HC = Hardware clear
	W = Writable bit x = Bit is unknown '0' = Bit is cleared

bit 7	 BRGS: Baud rate Generator Speed Select bit 1 = Baud rate generator is high speed with 4 baud clocks per bit 0 = Baud rate generator is normal speed with 16 baud clocks per bit
bit 6	 ABDEN: Auto-baud Detect Enable bit⁽³⁾ 1 = Auto-baud is enabled. Receiver is waiting for Sync character (0x55) 0 = Auto-baud is not enabled or auto-baud is complete
bit 5	 TXEN: Transmit Enable Control bit⁽²⁾ 1 = Transmit is enabled. TX output pin drive is forced on when transmission is active, and controlled by PORT TRIS control when transmission is idle. 0 = Transmit is disabled. TX output pin drive is controlled by PORT TRIS control
bit 4	RXEN: Receive Enable Control bit ⁽²⁾ 1 = Receiver is enabled 0 = Receiver is disabled
bit 3-0	MODE<3:0>: UART Mode Select bits ⁽¹⁾ 1111 = Reserved 1100 = Reserved 1101 = Reserved 1100 = LIN Master/Slave mode ⁽⁴⁾ 1011 = LIN Slave-Only mode ⁽⁴⁾ 1010 = DMX mode ⁽⁴⁾ 1001 = DALI Control Gear mode ⁽⁴⁾ 1000 = DALI Control Device mode ⁽⁴⁾ 1011 = Reserved 0110 = Reserved 0110 = Reserved 0101 = Reserved 0100 = Asynchronous 9-bit UART Address mode. 9th bit: 1 = address, 0 = data 0011 = Asynchronous 8-bit UART mode with 9th bit even parity 0010 = Asynchronous 8-bit UART mode with 9th bit odd parity 0011 = Asynchronous 8-bit UART mode
Note 1: 2: 3:	Changing the UART MODE while ON = 1 may cause unexpected results. Clearing TXEN or RXEN will not clear the corresponding buffers. Use TXBE or RXBE to clear the buffers. ABDEN is read-only when MODE>'1001'. When MODE='100x' and ABDEN = 1, then auto-baud is determined from

Start bit.

4: UART1 only.

34.0 SERIAL PERIPHERAL INTERFACE (SPI) MODULE

34.1 SPI Module Overview

The SPI (Serial Peripheral Interface) module is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device is controlled through a Chip Select known as Slave Select. Example slave devices include serial EEPROMs, shift registers, display drivers, A/D converters, or another PIC[®] device.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data IN (SDI)
- Slave Select (SS)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Polarity and Edge Select
- SDI, SDO, and SS Polarity Control
- Separate Transmit and Receive Enables
- Slave Select Synchronization
- Daisy-chain connection of slave devices
- Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities

Figure 34-1 shows the block diagram of the SPI module.

34.2 SPI REGISTERS

- SPI Interrupt Flag Register (SPIxINTF)
- SPI Interrupt Enable Register (SPIxINTE)
- SPI Byte Count High and Low Registers (SPIxTCTH/L)
- SPI Bit Count Register (SPIxTWIDTH)
- SPI Baud Rate Register (SPIxBAUD)
- SPI Control Register 0 (SPIxCON0)
- SPI Control Register 1 (SPIxCON1)
- SPI Control Register 2 (SPIxCON2)
- SPI FIFO Status Register (SPIxSTATUS)
- SPI Receiver Buffer Register (SPIxRB)
- SPI Transmit Buffer Register (SPIxTB)
- SPI Clock Select Register (SPIxCLKSEL)

SPIxCON0, SPIxCON1, and SPIxCON2 are control registers for the SPI module.

SPIxSTATUS contains several Status bits that indicate the status of both the SPI module and the receive and transmit FIFOs.

SPIxBAUD and SPIxCLKSEL control the baud rate generator of the SPI module when in Master mode. The SPIxCLKSEL selects the clock source that is used. The SPIxBAUD configures the clock divider used on that clock. More information on the baud rate generator is available in Section 34.5.6 "Master Mode SPI Clock Configuration"."

SPIxTxB and SPIxRxB are the transmit and receive buffer registers used to send and receive data on the SPI bus. They both offer indirect access to shift registers that are used for shifting the data in and out. Both registers access the two-byte FIFOs, allowing for multiple transmissions/receptions to be stored between software transfers the data.

The SPIxTCTH:L register pair either count or control the number of bits or bytes in a data transfer. When BMODE = 1, the SPIxTCT value signifies bytes and the SPIxTWIDTH value signifies the number of bits in a byte. When BMODE = 0, the SPIxTCT value is concatenated with the SPIxTWIDTH register to signify bits. In Master Receive-only mode (TXR = 0 and RXR = 1), the data transfer is initiated by writing SPIxTCT with the desired bit or byte value to transfer. In Master Transmit mode (TXR = 1), the data transfer is initiated by writing the SPIxTxB register, in which case the SPIxTCT is a down counter for the bits or bytes transferred.

The SPIxINTF and SPIxINTE are the flags and enables, respectively, for SPI-specific interrupts. They are tied to the SPIxIF flag and SPIxIE enable in the PIR and PIE registers, which is triggered when any interrupt contained in the SPIxINTF/SPIxINTE registers is triggered. The PIR/PIE registers also contain SPIxTXIF/SPIxTXIE bits, which are the interrupt flag and enable for the SPI Transmit Interrupt, as well as the SPIxRXIF/SPIxRXIE bits, which are the interrupt flag and enable for the SPI Receive Interrupt.

PIC18(L)F24/25K42

R-0/0	R-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
BUSY	SSFLT	_	_		SSET	TXR ⁽¹⁾	RXR ⁽¹⁾		
bit 7						•	bit C		
Legend:	1.1. I.M.		1.11						
R = Reada	DIE DIT	vv = vvritable	DIT	U = Unimple	mented bit, read	as '0'			
bit 7	BUSY: SPI M	odule Busy St	atus bit						
	1 = Data exch	ange is busy							
	0 = Data exch	ange is not ta	king place						
bit 6	SSFLT: SS(in)) Fault Status	bit						
	If SSET = 0:								
	1 = SS(in) end	ded the transa	iction unexpec	tedly, and the	data byte being	received was lo	ost		
	0 = SS(in) ended normally								
	If SSET = 1:								
	This bit is unc	hanged.							
bit 5-3	Unimplement	ted: Read as	0'						
bit 2	SSET: Slave Select Enable bit								
	Master mode:								
	1 = SS(out) is driven to the active state continuously								
	0 = SS(out) is driven to the active state while the transmit counter is not zero								
	Slave mode:								
	1 = SS(in) is ignored and data is clocked on all SCK(in) (as though SS = TRUE at all times)								
	0 = SS(in) ena is set (see Tat	ables/disables ble 30-2 for de	data input and tails)	d tri-states SD	O if the TRIS bit	associated wit	h the SDO pin		
bit 1	TXR: Transmi	t Data-Requir	ed Control bit ⁽¹)					
	1 = TxFIFO da	ata is required	for a transfer						
	0 = TxFIFO da	ata is not requ	ired for a trans	sfer					
bit 0	RXR: Receive	FIFO Space-	Required Cont	trol bit ⁽¹⁾					
	1 = Data trans	sfers are susp	ended if the R	kFIFO is full					
	0 = Received	data is not sto	ored in the FIF	С					
Note 1:	See Table 34-1 as pertaining to TXR	well as Section and RXR fund	on 34.5 "Mast ction.	er mode" and	Section 34.6 "S	Slave Mode" fo	or more details		

2: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

Rev. 10-000 293A 11/2/201 6 Bus Master sends stop condition From Slave to Master Matching Received Address loaded into I2CxADB0 - - -R/W = 0 -Start Receiving Data Receiving Data ACK = Stop SDA ACK / D7 / D6 / D5 / D4 / D3 / D2 / D1 / D0 \ ACK / D7 / D6 / D5 / D4 / D3 / D2 / D1) A7 A6 A5 A4 A3 A2 A1 D0 / SCL <u>/</u>9\ /1 CSTR SCIE = 0 ADRIE = 0 WRIE = 0 WRIE = 0CSTR is not held low ACKTIE = 0-ACKTIE = 0 ACKTIE = 0 SMA SCIF is set PCIF is set R/W ACKTIF is set - ACKTIF is set WRIF is set-WRIF is set -ACKTIF is set R/W c opied from matching address -ADRIF is set-NACKIF is set D/A Matching address written to I2CxADB0 0x02 0x02 0x01 I2CxCNT 0x00 Slave sends ACKCNT value for I2CxCNT = 0 CNTIF is set RXBF

RXIF set

Software reads I2CxRXB clearing RXIF RXIF set-

FIG

FIGURE 35-6: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (ACKTIE = 0, ADRIE = 0, WRIE = 0)

FIGURE 35-9: I²C SLAVE, 7-BIT ADDRESS, TRANSMISSION

IC18(L)F24/25K42

45.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

45.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

45.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

45.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A