

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k42-i-ml

Email: info@E-XFL.COM

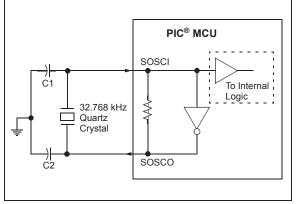
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0 Device Overview	40
 Device Overview	
3.0 PIC18 CPU	
4.0 Memory Organization	
5.0 Device Configuration	
6.0 Device Information Area	
7.0 Device Configuration Information	
8.0 Resets	
9.0 Oscillator Module (with Fail-Safe Clock Monitor)	
10.0 Reference Clock Output Module	
11.0 Interrupt Controller	
12.0 Power-Saving Operation Modes	
13.0 Windowed Watchdog Timer (WWDT)	
14.0 8x8 Hardware Multiplier	
15.0 Nonvolatile Memory (NVM) Control	
16.0 Cyclic Redundancy Check (CRC) Module with Memory Scanner	
17.0 Direct Memory Access (DMA)	
18.0 I/O Ports	
19.0 Peripheral Pin Select (PPS) Module	
20.0 Interrupt-on-Change	
21.0 Peripheral Module Disable (PMD)	
22.0 Timer0 Module	301
23.0 Timer1/3/5 Module with Gate Control	
24.0 Timer2/4/6 Module	
25.0 Capture/Compare/PWM Module	
26.0 Pulse-Width Modulation (PWM)	
27.0 Signal Measurement Timer (SMT)	
28.0 Complementary Waveform Generator (CWG) Module	
29.0 Configurable Logic Cell (CLC)	
30.0 Numerically Controlled Oscillator (NCO) Module	
31.0 Zero-Cross Detection (ZCD) Module	
32.0 Data Signal Modulator (DSM) Module	
33.0 Universal Asynchronous Receiver Transmitter (UART) With Protocol Support	477
34.0 Serial Peripheral Interface (SPI) Module	
35.0 I ² C Module	546
36.0 Fixed Voltage Reference (FVR)	599
37.0 Temperature Indicator Module	601
38.0 Analog-to-Digital Converter with Computation (ADC2) Module	
39.0 5-Bit Digital-to-Analog Converter (DAC) Module	642
40.0 Comparator Module	
41.0 High/Low-Voltage Detect (HLVD)	
42.0 In-Circuit Serial Programming™ (ICSP™)	
43.0 Instruction Set Summary	665
44.0 Register Summary	
45.0 Development Support	
46.0 Electrical Specifications	738
47.0 DC and AC Characteristics Graphs and Tables	767
48.0 Packaging Information	768
Appendix A: Revision History	781

PIC18(L)F24/25K42

R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
XINST	_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV-	<1:0> ⁽¹⁾
bit 7			•				bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '1'	
-n = Value fo	or blank device	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7		instruction set	and Indexed	t Addressing mod Addressing mod		(Legacy mode	9)
bit 6	Unimplement	ed: Read as '1	,				
bit 5	DEBUG : Debu 1 = Backgrour	nd debugger is	disabled				
L:1	0 = Backgroun			- Enchla hit			
bit 4	STVREN: Stac 1 = Stack over 0 = Stack over	rflow or underf	ow will cause	a Reset			
bit 3		K bit can be clea	red and set on	le bit ly once; PPS re repeatedly (sub			clear/set cycl
bit 2	ZCDDIS : Zero 1 = ZCD is dis 0 = ZCD is alv	abled; ZCD ca		by setting the 2	CDSEN bit of	the ZCDCON I	register
bit 1-0	BORV<1:0>: E <u>PIC18FXXK42</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou <u>PIC18LFXXK4</u>	Devices: ut Reset Voltag ut Reset Voltag ut Reset Voltag ut Reset Voltag 2 Device:	e (VBOR) is se e (VBOR) is se e (VBOR) is se e (VBOR) is se	et to 2.45V et to 2.45V et to 2.7V et to 2.85V			
	11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou	ut Reset Voltag ut Reset Voltag	e (VBOR) is se e (VBOR) is se	et to 2.45V et to 2.7V			


- debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
 - 2: A higher voltage setting is recommended for operation at or above 16 MHz.

9.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching. Refer to **Section 9.3 "Clock Switching"** for more information.

Two power modes are available for the secondary oscillator. These modes are selected with the SOSCPWR (OSCCON3<6>). Clearing this bit selects the lower Crystal Gain mode which provides lowest microcontroller power consumption. Setting this bit enables a higher Gain mode to support faster crystal start-up or crystals with higher ESR.

FIGURE 9-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for PIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1					
TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP					
bit 7	•	•					bit (
Legend:						(0)						
R = Readable		W = Writable			nented bit, reac							
u = Bit is unc	•	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all o	other Resets					
'1' = Bit is se	t	'0' = Bit is cle	ared									
bit 7		ID0 Interrupt Dr	ority bit									
	TMR0IP: TMR0 Interrupt Priority bit 1 = High priority											
	0 = Low priority											
bit 6	U1IP: UART1 Interrupt Priority bit											
	1 = High priority											
	0 = Low price	ority										
bit 5		T1 Framing Err	or Interrupt Pr	iority bit								
	1 = High priority											
L-11-A	 0 = Low priority U1TXIP: UART1 Transmit Interrupt Priority bit 											
bit 4			iterrupt Priority	y Dit								
	1 = High priority 0 = Low priority											
bit 3	U1RXIP: UART1 Receive Interrupt Priority bit											
	1 = High priority											
	0 = Low priority											
bit 2	I2C1EIP: I ² C1 Error Interrupt Priority bit											
	1 = High priority											
	0 = Low price											
bit 1		Interrupt Priori	ty bit									
	1 = High prid0 = Low prid											
bit 0		² C1 Transmit Int	errunt Priority	bit								
	1 = High pri		Shaper noney									
	0 = Low price											

REGISTER 11-28: IPR3: PERIPHERAL INTERRUPT Priority REGISTER 3

15.3.5 WRITE VERIFY

;

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 15-5: DATA EEPROM READ

Data	Memory Addres	s to read		
	CLRF	NVMCON1	;	Setup Data EEPROM Access
	MOVF	EE_ADDRL, W	;	
	MOVWF	NVMADRL	;	Setup Address
	BSF	NVMCON1, RD	;	Issue EE Read
	MOVF	NVMDAT, W	;	W = EE_DATA

EXAMPLE 15-6: DATA EEPROM WRITE

; Data Mem	ory Addres	s to write	9								
	CLRF	NVMCON1		;	Setup	Data	EEPROM	Acces	s		
	MOVF	EE_ADDRL,	W	;							
	MOVWF	NVMADRL		;	Setup	Addre	SS				
; Data Mem	ory Value	to write									
	MOVF	EE_DATA,	W	;							
	MOVWF	NVMDAT		;							
; Enable w	rites										
	BSF	NVMCON1,	WREN	;							
; Disable	interrupts										
	BCF	INTCON0,	GIE	;							
; Required	unlock se	quence									
	MOVLW	55h		;							
	MOVWF	NVMCON2		;							
	MOVLW	AAh		;							
	MOVWF	NVMCON2		;							
; Set WR b	it to begi	n write									
	BSF	NVMCON1,	WR	;							
; Enable II	TN										
	BSF	INTCON0,	GIE	;							
; Wait for	interrupt	, write do	one								
	SLEEP			;							
; Disable	writes										
	BCF	NVMCON1,	WREN	;							

15.3.6 OPERATION DURING CODE-PROTECT

Data EEPROM Memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

If the Data EEPROM is write-protected or if NVMADR points an invalid address location, the WR bit is cleared without any effect. WRERR is signaled in this scenario.

15.3.7 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the Data EEPROM Memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT).

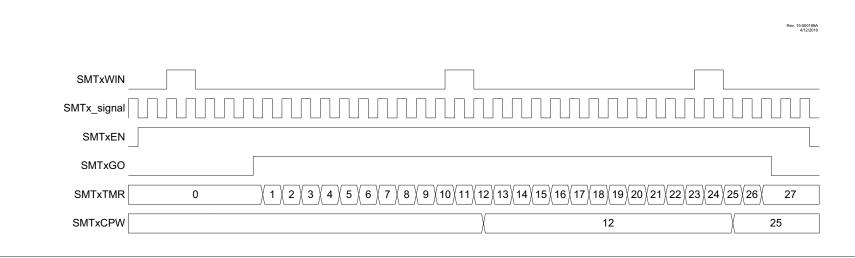
The unlock sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LATx7	LATx6	LATx5	LATx4	LATx3	LATx2	LATx1	LATx0	
bit 7				-		•	bit 0	
Legend:								
R = Readable	= Readable bit W = Writable bit		U = Unimpler					
'1' = Bit is set	1' = Bit is set '0' = Bit is cleared			x = Bit is unknown				
-n/n = Value a	t POR and BOI	R/Value at all of	ther Resets					

REGISTER 18-3: LATx: LATx REGISTER⁽¹⁾

bit 7-0 LATx<7:0>: Rx7:Rx0 Output Latch Value bits

Note 1: Writes to LATx are equivalent with writes to the corresponding PORTx register. Reads from LATx register return register values, not I/O pin values.


TABLE 18-3: LAT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0

27.6.9 COUNTER MODE

This mode increments the timer on each pulse of the SMT1_signal input. This mode is asynchronous to the SMT clock and uses the SMT1_signal as a time source. The SMT1CPW register will be updated with the current SMT1TMR value on the rising edge of the SMT1WIN input. See Figure 27-18.

FIGURE 27-18: COUNTER MODE TIMING DIAGRAM

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMT1F	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable t	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other			
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 27-16: SMT1PRL: SMT PERIOD REGISTER – LOW BYTE

bit 7-0 SMT1PR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 27-17: SMT1PRH: SMT PERIOD REGISTER – HIGH BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1			
SMT1PR<15:8>										
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'				

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1PR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 27-18: SMT1PRU: SMT PERIOD REGISTER – UPPER BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1			
SMT1PR<23:16>										
bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1PR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

© 2016-2017 Microchip Technology Inc.

28.7 Rising Edge and Reverse Dead Band

In Half-Bridge mode, the rising edge dead band delays the turn-on of the CWGxA output after the rising edge of the CWG data input. In Full-Bridge mode, the reverse dead-band delay is only inserted when changing directions from Forward mode to Reverse mode, and only the modulated output CWGxB is affected.

The CWGxDBR register determines the duration of the dead-band interval on the rising edge of the input source signal. This duration is from 0 to 64 periods of the CWG clock.

Dead band is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWGxDBR register value is double-buffered. When EN = 0 (Register 28-1), the buffer is loaded when CWGxDBR is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input, after the LD bit (Register 28-1) is set. Refer to Figure 28-12 for an example.

28.8 Falling Edge and Forward Dead Band

In Half-Bridge mode, the falling edge dead band delays the turn-on of the CWGxB output at the falling edge of the CWG data input. In Full-Bridge mode, the forward dead-band delay is only inserted when changing directions from Reverse mode to Forward mode, and only the modulated output CWGxD is affected.

The CWGxDBF register determines the duration of the dead-band interval on the falling edge of the input source signal. This duration is from zero to 64 periods of CWG clock.

Dead-band delay is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWGxDBF register value is double-buffered. When EN = 0 (Register 28-1), the buffer is loaded when CWGxDBF is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input after the LD (Register 28-1) is set. Refer to Figure 28-13 for an example.

28.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 28-14.

28.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

28.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWGxAS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event. The SHUTDOWN bit indicates when a shutdown condition exists. The bit may be set or cleared in software or by hardware.

28.10.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the specified override levels without software delay. The override levels are selected by the LSBD<1:0> and LSAC<1:0> bits of the CWGxAS0 register (Register). Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Pin selected by CWGxPPS
- Timer2 post-scaled output
- Timer4 post-scaled output
- Timer6 post-scaled output
- · Comparator 1 output
- · Comparator 2 output
- CLC2 output

Shutdown input sources are individually enabled by the ASxE bits of the CWGxAS1 register (Register 28-7).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

28.10.1.3 Pin Override Levels

The levels driven to the CWG outputs during an autoshutdown event are controlled by the LSBD<1:0> and LSAC<1:0> bits of the CWGxAS0 register (Register). The LSBD<1:0> bits control CWGxB/D output levels, while the LSAC<1:0> bits control the CWGxA/C output levels.

28.10.1.4 Auto-Shutdown Interrupts

When an auto-shutdown event occurs, either by software or hardware setting SHUTDOWN, the CWGxIF flag bit of the PIR7 register is set (Register 9-5).

28.11 Auto-Shutdown Restart

After an auto-shutdown event has occurred, there are two ways to resume operation:

- Software controlled
- Auto-restart

In either case, the shut-down source must be cleared before the restart can take place. That is, either the shutdown condition must be removed, or the corresponding ASxE bit must be cleared.

28.11.1 SOFTWARE-CONTROLLED RESTART

If the REN bit of the CWGxAS0 register is clear (REN = 0), the CWG module must be restarted after an auto-shutdown event through software.

Once all auto-shutdown sources are removed, the software must clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

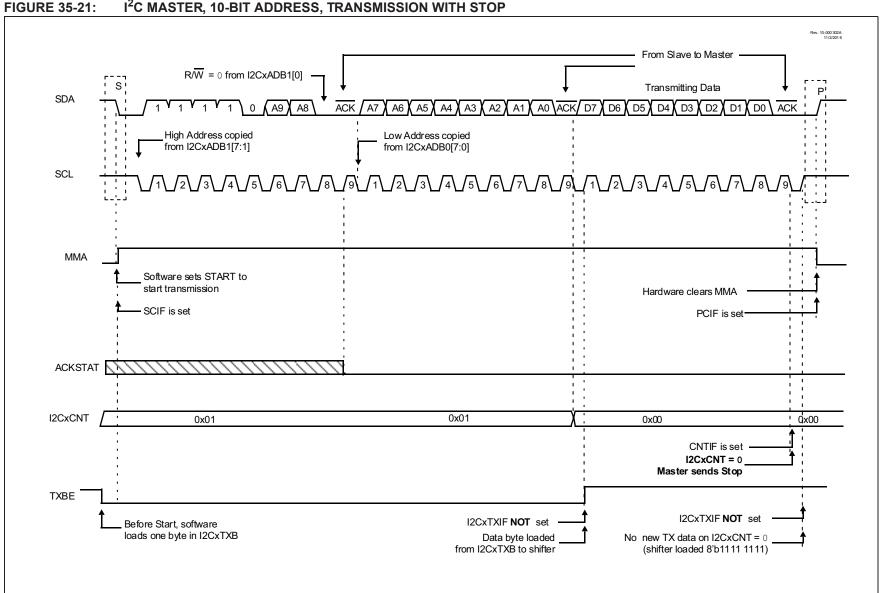
28.11.2 AUTO-RESTART

If the REN bit of the CWGxAS0 register is set (REN = 1), the CWG module will restart from the shutdown state automatically.

Once all auto-shutdown conditions are removed, the hardware will automatically clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N
bit 7							bit (
Legend: P = Peadable	, bit	W = Writable	hit	II – Unimplen	nented hit read	1 ac 'O'	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value						thar Dagata	
(1) = Bit is uncl(1) = Bit is set	•	0' = Bit is cle			at FOR and BO	in value at all u	
			aleu				
bit 7	G2D4T: Gate	e 1 Data 4 True	(non-inverted)) bit			
		(true) is gated					
		(true) is not ga					
bit 6	G2D4N: Gat	e 1 Data 4 Neg	ated (inverted)) bit			
		(inverted) is ga					
		(inverted) is no	•				
bit 5		e 1 Data 3 True					
		(true) is gated (true) is not ga					
bit 4		e 1 Data 3 Neg					
DIL 4		(inverted) is ga	,				
		(inverted) is ga					
bit 3		e 1 Data 2 True	•				
		(true) is gated					
	0 = CLCIN1	(true) is not ga	ted into CLCx	Gate 1			
bit 2	G2D2N: Gat	e 1 Data 2 Neg	ated (inverted)) bit			
		(inverted) is ga					
		(inverted) is no	•				
bit 1		e 1 Data 1 True					
		(true) is gated (true) is not ga					
bit 0		e 1 Data 1 Neg					
		(inverted) is ga	,				
	0 = CLCINO	(IIIVELLEU) IS Ya					


REGISTER 29-8: CLCxGLS1: GATE 1 LOGIC SELECT REGISTER

34.8.3.4 Receiver Overflow and Transmitter Underflow interrupts.

The receiver overflow interrupt triggers if data is received when the RXFIFO is already full and RXR = 1. In this case, the data will be discarded and the RXOIF bit will be set. The receiver overflow interrupt flag is the RXOIF bit of SPIxINTF. The receiver overflow interrupt enable bit is the RXOIE bit of SPIxINTE.

The Transmitter Underflow interrupt flag triggers if a data transfer begins when the TXFIFO is empty and TXR = 1. In this case, the most recently received data will be transmitted and the TXUIF bit will be set. The transmitter underflow interrupt flag is the TXUIF bit of SPIxINTF. The transmitter underflow interrupt enable bit is the TXUIE bit of SPIxINTE.

Both of these interrupts will only occur in Slave mode, as Master mode will not allow the RXFIFO to overflow or the TXFIFO to underflow.

I²C MASTER, 10-BIT ADDRESS, TRANSMISSION WITH STOP

PIC18(L)F24/25K42

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
_	_	—	—	—	_	INTP	INTN	
bit 7				•	•		bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 7-2	Unimplement	ed: Read as '0'						
bit 1	INTP: Compa	rator Interrupt	on Positive-Go	oing Edge Ena	ıble bit			
	1 = The CxI	F interrupt flag	will be set up	on a positive-g	oing edge of the	e CxOUT bit		
	0 = No inter	rupt flag will be	set on a posi	tive-going edg	e of the CxOUT	bit		
bit 0	pit 0 INTN: Comparator Interrupt on Negative-Going Edge Enable bit							
	1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit							
	0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit							

REGISTER 40-2: CMxCON1: COMPARATOR x CONTROL REGISTER 1

REGISTER 40-3: CMxNCH: COMPARATOR x INVERTING CHANNEL SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—	_	_		NCH<2:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 NCH<2:0>: Comparator Inverting Input Channel Select bits

111 **= V**SS

110 = FVR_Buffer2

101 = NCH not connected

- 100 = NCH not connected
- 011 = CxIN3-
- 010 = CxIN2-
- 001 = CxIN1-
- 000 = CxIN0-

PIC18(L)F24/25K42

DECF	Decrement f			DECFSZ	Decreme	nt f, skip if (D	
Syntax:	DECF f {,d {,a}	}}		Syntax:	DECFSZ	f {,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			
Operation:	$(f)-1 \rightarrow dest$			Operation:	()	$(f) - 1 \rightarrow dest,$		
Status Affected:	C, DC, N, OV, Z	2			skip if resu	t = 0		
Encoding:	0000 010	da fff	f ffff	Status Affected				
Description: Words:	000001daffffffffDecrement register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).If 'a' is '1', the Access Bank is selected.If 'a' is '0', the Access Bank is selected.If 'a' is '1', the BSR is used to select the GPR bank.GPR bank.If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 43.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Literal Offset Mode" for details.1			Encoding: Description:	001011daffffffffThe contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). 			
Cycles:	1					ever f ≤ 95 (5 " Byte-Orien	Fh). See Sec-	
Q Cycle Activity:					Oriented I	nstructions in	n Indexed Lit-	
Q1	Q2	Q3	Q4			Mode" for de	etails.	
Decode	Read P register 'f'	Process Data	Write to destination	Words:	1			
Example: Before Instruct	DECF CNT, tion = 01h	, 1, 0		Cycles: Q Cycle Activi	by a	vcles if skip ar a 2-word instru Q3		
Z After Instructio	= 0 n			Decod		Process	Write to	
CNT	= 00h			lf skip:	register 'f'	Data	destination	
Z	= 1			Q1	Q2	Q3	Q4	
				No	No	No	No	
				operatio		operation	operation	
					owed by 2-word in		04	
				Q1 No	Q2 No	Q3 No	Q4 No	
				operatio		operation	operation	
				No	No	No	No	
				operatio	n operation	operation	operation	
				Example:	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	
				Before Ins PC After Instr	= Addres	S (HERE)		
				If CN	$\begin{array}{rcl} PC &= & Address \\ T &\neq & 0; \end{array}$	S (CONTINU) S (HERE + 2		

PIC18(L)F24/25K42

Rotate Le	eft f (No Ca	rry)			
RLNCF	f {,d {,a}}				
$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$				
N, Z					
0100	01da ff	ff ffff			
one bit to the stored back of a stored b	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 43.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.				
1		,			
·					
1					
02	03	Q4			
Read register 'f'	Process Data	Write to destination			
n	011	0			
	RLNCF $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow d$ N, Z 0100 The conter one bit to th is placed ir stored back If 'a' is '0' a set is enab in Indexed mode when tion 43.2.3 Oriented II eral Offset 1 1 Q2 Read register 'f' RLNCF ion = 1010 1 n	$d \in [0,1]$ $a \in [0,1]$ $(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$ N, Z $\boxed{0100 01 da ff}$ The contents of register one bit to the left. If 'd' is is placed in W. If 'd' is '1 stored back in register 'f If 'a' is '0', the Access Ba If 'a' is '0', the Access Ba If 'a' is '0' and the extend set is enabled, this instru- in Indexed Literal Offset mode whenever f ≤ 95 (ft tion 43.2.3 "Byte-Orient Oriented Instructions i eral Offset Mode" for d $\boxed{- register}$ 1 1 1 $Q2 \qquad Q3$ Read Process register 'f' Data RLNCF REG, 1, ion = 1010 1011			

RRCF	CF Rotate Right f through Carry					
Syntax:	RRCF f {,	d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$	3				
Status Affected:	atus Affected: C, N, Z					
Encoding:	0011	00da ffi	ff ffff			
	one bit to the right through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec- tion 43.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
	in Indexed mode wher tion 43.2.3 Oriented Ir	Literal Offset A lever f ≤ 95 (5F "Byte-Oriente Instructions in	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails.			
Words:	in Indexed mode wher tion 43.2.3 Oriented In eral Offset	Literal Offset A never $f \le 95$ (5) "Byte-Orient structions in Mode" for def	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails.			
Words:	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C	Literal Offset A never $f \le 95$ (5) "Byte-Orient structions in Mode" for def	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails.			
Cycles:	in Indexed mode wher tion 43.2.3 Oriented In eral Offset	Literal Offset A never $f \le 95$ (5) "Byte-Orient structions in Mode" for def	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails.			
Cycles: Q Cycle Activity:	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1	Literal Offset A never f ≤ 95 (5f "Byte-Orient histructions in Mode" for de register	Addressing Fh). See Sec- ed and Bit- Indexed Lit- tails. r f			
Cycles:	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C	Literal Offset A never $f \le 95$ (5) "Byte-Orient structions in Mode" for def	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails.			
Cycles: Q Cycle Activity: Q1	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 2	Literal Offset A never f ≤ 95 (5f "Byte-Oriento astructions in Mode" for dei → register	Addressing Fh). See Sec- ed and Bit- Indexed Lit- tails. r f			
Cycles: Q Cycle Activity: Q1	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 1 2 Q2 Read	Literal Offset A never f ≤ 95 (5f "Byte-Oriento astructions in Mode" for def register Q3 Process	Addressing Fh). See Sec- ed and Bit- Indexed Lit- tails. r f Q4 Write to			
Cycles: Q Cycle Activity: Q1 Decode	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 1 2 Q2 Read	Literal Offset A never f ≤ 95 (5f "Byte-Oriento astructions in Mode" for def register Q3 Process	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails. r f Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 1 2 Q2 Read register 'f' RRCF tion	Literal Offset A never f ≤ 95 (5f "Byte-Orientu astructions in Mode" for dei register Q3 Process Data REG, 0, 0	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails. r f Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example:	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 1 2 Q2 Read register 'f' RRCF	Literal Offset A never f ≤ 95 (5f "Byte-Orientu astructions in Mode" for dei register Q3 Process Data REG, 0, 0	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails. T f Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc REG	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 1 2 Read register 'f' RRCF tion = 1110 (= 0	Literal Offset A never f ≤ 95 (5f "Byte-Orientu astructions in Mode" for dei register Q3 Process Data REG, 0, 0	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails. r f Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG After Instruction REG	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 1 2 Q2 Read register 'f' RRCF tion = 1110 C	Literal Offset A never f ≤ 95 (5f "Byte-Orientu histructions in Mode" for del register Q3 Process Data REG, 0, 0 0110	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails. T f Q4 Write to destination			
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction	in Indexed mode wher tion 43.2.3 Oriented Ir eral Offset C 1 1 1 2 Read register 'f' RRCF tion = 1110 (= 0	Literal Offset A never f ≤ 95 (5f "Byte-Orientu histructions in Mode" for del register Q3 Process Data REG, 0, 0 0110	Addressing Th). See Sec- ed and Bit- Indexed Lit- tails. T f Q4 Write to destination			

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3FCEh	PORTE	_	_	_	_	RE3	—	_	—	267
3FCDh	_				Unimple	emented	•			
3FCCh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	267
3FCBh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	267
3FCAh	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	267
3FC9h - 3FC5h	—		Unimplemented							
3FC4h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	268
3FC3h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	268
3FC2h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	268
3FC1h - 3FBDh	—				Unimple	emented				
3FBCh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	269
3FBBh	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	269
3FBAh	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	269
3FB9h	T0CON1		CS<2:0>		ASYNC		CKPS	8<3:0>		305
3FB8h	T0CON0	EN	_	OUT	MD16		OU	TPS		304
3FB7h	TMR0H				TMF	ROH				306
3FB6h	TMR0L				TM	ROL				306
3FB5h	T1CLK				С	S				318
3FB4h	T1GATE				G	SS				319
3FB3h	T1GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	_	_	317
3FB2h	T1CON	_	_	CKPS	<1:0>	—	SYNC	RD16	ON	341
3FB1h	TMR1H				TMF	R1H				320
3FB0h	TMR1L				TM	R1L				320
3FAFh	T2RST	_	_	_			RSEL			339
3FAEh	T2CLK	_	_	—	_		C	S		318
3FADh	T2HLT	PSYNC	CKPOL	CKSYNC			MODE			342
3FACh	T2CON	ON		CKPS			OU	TPS		316
3FABh	T2PR				PF	R2				340
3FAAh	T2TMR				TM	R2				340
3FA9h	T3CLK				С	S				318
3FA8h	T3GATE				G	SS				319
3FA7h	T3GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	_	_	317
3FA6h	T3CON	_	_	СК	PS	_	NOT_SYNC	RD16	ON	341
3FA5h	TMR3H				TMF	R3H				320
3FA4h	TMR3L				TM	R3L				320
3FA3h	T4RST	—	_	—			RSEL			339
3FA2h	T4CLK	—	_	—	_		C	S		338
3FA1h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE			342
3FA0h	T4CON	ON		CKPS			OU	TPS		341
3F9Fh	T4PR				PF	R4				340
3F9Eh	T4TMR				TM	R4				340
3F9Dh	T5CLK				C	S				338
3F9Ch	T5GATE				GS	SS				319
3F9Bh	T5GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	_	_	317
3F9Ah	T5CON	_	_	CK	PS	—	NOT_SYNC	RD16	ON	341
3F99h	TMR5H				TMF	R5H				320
3F98h	TMR5L				TM	R5L				320

TABLE 44-1: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition

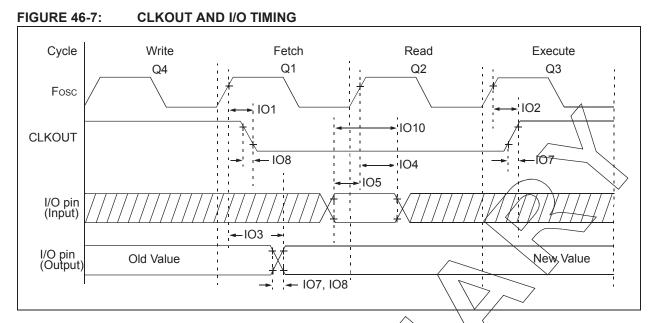
Note 1: Not present in LF devices.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
39A2h	PIR2	I2C1RXIF	SPI1IF	SPI1TXIF	SPI1RXIF	DMA1AIF	DMA10RIF	DMA1DCN TIF	DMA1SCN- TIF	143
39A1h	PIR1	SMT1PWAIF	SMT1PRAIF	SMT1IF	C1IF	ADTIF	ADIF	ZCDIF	INT0IF	143
39A0h	PIR0	IOCIF	CRCIF	SCANIF	NVMIF	CSWIF	OSFIF	HLVDIF	SWIF	142
399Fh - 399Bh	—				Unimple	emented				
399Ah	PIE10	_	_	_	_	_	_	CLC4IE	CCP4IE	161
3999h	PIE9	_	_	—	_	CLC3IE	CWG3IE	CCP3IE	TMR6IE	160
3998h	PIE8	TMR5GIE	TMR5IE	_	_	—	—	—	—	160
3997h	PIE7	—	_	INT2IE	CLC2IE	CWG2IE	—	CCP2IE	TMR4IE	159
3996h	PIE6	TMR3GIE	TMR3IE	U2IE	U2EIE	U2TXIE	U2RXIE	I2C2EIE	I2C2IE	158
3995h	PIE5	I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCN TIE	DMA2SCN- TIE	C2IE	INT1IE	157
3994h	PIE4	CLC1IE	CWG1IE	NCO1IE	_	CCP1IE	TMR2IE	TMR1GIE	TMR1IE	156
3993h	PIE3	TMR0IE	U1IE	U1EIE	U1TXIE	U1RXIE	I2C1EIE	I2C1IE	I2C1TXIE	155
3992h	PIE2	I2C1RXIE	SPI1IE	SPI1TXIE	SPI1RXIE	DMA1AIE	DMA10RIE	DMA1DCN TIE	DMA1SCN- TIE	154
3991h	PIE1	SMT1PWAIE	SMT1PRAIE	SMT1IE	C1IE	ADTIE	ADIE	ZCDIE	INT0IE	153
3990h	PIE0	IOCIE	CRCIE	SCANIE	NVMIE	CSWIE	OSFIE	HLVDIE	SWIE	152
398Fh - 398Bh	—		<u> </u>	1	Unimple	emented	1	1	<u>I</u>	
398Ah	IPR10	_	_	_	_	_	_	CLC4IP	CCP4IP	170
3989h	IPR9	_	_	—	_	CLC3IP	CWG3IP	CCP3IP	TMR6IP	170
3988h	IPR8	TMR5GIP	TMR5IP	_	_	_	_	_	—	169
3987h	IPR7	—	_	INT2IP	CLC2IP	CWG2IP	-	CCP2IP	TMR4IP	169
3986h	IPR6	TMR3GIP	TMR3IP	U2IP	U2EIP	U2TXIP	U2RXIP	I2C2EIP	I2C2IP	168
3985h	IPR5	I2C2TXIP	I2C2RXIP	DMA2AIP	DMA2ORIP	DMA2DCN TIP	DMA2SCN- TIP	C2IP	INT1IP	167
3984h	IPR4	CLC1IP	CWG1IP	NCO1IP	_	CCP1IP	TMR2IP	TMR1GIP	TMR1IP	165
3983h	IPR3	TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP	165
3982h	IPR2	I2C1RXIP	SPI1IP	SPI1TXIP	SPI1RXIP	DMA1AIP	DMA10RIP	DMA1DCN TIP	DMA1SCN- TIP	164
3981h	IPR1	SMT1PWAIP	SMT1PRAIP	SMT1IP	C1IP	ADTIP	ADIP	ZCDIP	INT0IP	163
3980h	IPR0	IOCIP	CRCIP	SCANIP	NVMIP	CSWIP	OSFIP	HLVDIP	SWIP	162
397Fh - 397Eh	—		·	1	Unimple	emented	1	1	<u> </u>	
397Dh	SCANTRIG	_	_	_	_		T	SEL		230
397Ch	SCANCON0	EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY	226
397Bh	SCANHADRU	_	_		•	F	IADR	•		228
397Ah	SCANHADRH				HA	DR				229
3979h	SCANHADRL				HA	DR				229
3978h	SCANLADRU	_				L	.ADR			227
3977h	SCANLADRH			1	LA	DR				227
3976h	SCANLADRL				LA	DR				228
3975h - 396Ah	—				Unimple	emented				
3969h	CRCCON1		DLEI	N			PI	LEN		222
3968h	CRCCON0	EN	CRCGO	BUSY	ACCM	_	_	SHIFTM	FULL	222
3967h	CRCXORH	X15	X14	X13	X12	X11	X10	X9	X8	225
3966h	CRCXORL	X7	X6	X5	X4	X3	X2	X1	_	225
3965h	CRCSHIFTH	SHFT15	SHFT14	SHFT13	SHFT12	SHFT11	SHFT10	SHFT9	SHFT8	224
3964h	CRCSHIFTL	SHFT7	SHFT6	SHFT5	SHFT4	SHFT3	SHFT2	SHFT1	SHFT0	224

TABLE 44-1: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

 $\textbf{Legend:} \qquad x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition$

Note 1: Not present in LF devices.


TABLE 46-9: **PLL SPECIFICATIONS**

Standard Operating Conditions (unless otherwise stated) VDD $\ge 2.5V$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	
PLL01	Fpllin	PLL Input Frequency Range	4	_	16	MHz	()
PLL02	FPLLOUT	PLL Output Frequency Range	16	_	64	MHz	Note 1
PLL03	TPLLST	PLL Lock Time from Start-up	_	200	_	Lμs	1
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	_	0.25	%	
*	These p	arameters are characterized but not tested		-			\sim

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.

TABLE 46-10:	I/O AND CLKOUT	TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT		>-	70	ns	
IO2*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKOUT	$\langle - \rangle$		72	ns	
IO3*	T _{IO_VALID}	Port output valid time (rising edge Fosc (Q1 cycle) to port valid)	\searrow	50	70	ns	
IO4*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cycle)	20	_	—	ns	
IO5*	T _{IO_HOLD}	Port input hold time (Hold time after rising edge Fosc – Q2 cycle)	50	_	—	ns	
106*	T _{IOR_SLREN}	Port I/O rise time, slew rate enabled	—	25	-	ns	VDD = 3.0V
107*	T _{IOR_SLRDIS}	Port I/O rise time, slew rate disabled	_	5		ns	VDD = 3.0V
108*	T _{IOF_SLREN}	Port I/O fail time, slew rate enabled	_	25	—	ns	VDD = 3.0V
109*	T _{IOF_SLRDIS}	Port I/O fall time, slew rate disabled	_	5	—	ns	VDD = 3.0V
IO10*	T _{INT}	INT pin high or low time to trigger an internupt	25			ns	
IO11*	TIOC	Interrupt-on-Change minimum high or low lime to trigger interrupt	25	—	—	ns	

*These parameters are characterized but not tested.