

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k42-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
3C72h	CLC2GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	XXXXXXXX
3C71h	CLC2GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	XXXXXXXX
3C70h	CLC2GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	XXXXXXXX
3C6Fh	CLC2SEL3				D4	IS				XXXXXXXX
3C6Eh	CLC2SEL2				D3	BS				XXXXXXXX
3C6Dh	CLC2SEL1		D2S							
3C6Ch	CLC2SEL0		D1S							XXXXXXXX
3C6Bh	CLC2POL	POL	—	—	—	G4POL	G3POL	G2POL	G1POL	0xxxx
3C6Ah	CLC2CON	EN	OE	OUT	INTP	INTN		MODE		00000000
3C69h	CLC3GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	*****
3C68h	CLC3GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	XXXXXXXX
3C67h	CLC3GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	XXXXXXXX
3C66h	CLC3GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	*****
3C65h	CLC3SEL3				D4	IS				*****
3C64h	CLC3SEL2				D	S				*****
3C63h	CLC3SEL1				D2	2S				*****
3C62h	CLC3SEL0		-		D1	S		-		*****
3C61h	CLC3POL	POL	_	—		G4POL	G3POL	G2POL	G1POL	0xxxx
3C60h	CLC3CON	EN	OE	OUT	INTP	INTN		MODE		00000000
3C5Fh	CLC4GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	******
3C5Eh	CLC4GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	******
3C5Dh	CLC4GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	******
3C5Ch	CLC4GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	******
3C5Bh	CLC4SEL3		D4S							******
3C5Ah	CLC4SEL2		D3S							******
3C59h	CLC4SEL1				D2	2S				XXXXXXXX
3C58h	CLC4SEL0				D1	S			1	XXXXXXXX
3C57h	CLC4POL	POL	—	—	—	G4POL	G3POL	G2POL	G1POL	0xxxx
3C56h	CLC4CON	EN	OE	OUT	INTP	INTN		MODE		00000000
3C55h - 3C00h	_				Unimple	mented				—
3BFFh	DMA1SIRQ				SIF	RQ				00000000
3BFEh	DMA1AIRQ				AIF	RQ			1	00000000
3BFDh	DMA1CON1	EN	SIRQEN	DGO	—		AIRQEN	—	XIP	0000-0
3BFCh	DMA1CON0	DM	ODE	DSTP	SN	/IR	SMC	DE	SSTP	00000000
3BFBh	DMA1SSAU	_	—			:	SSA			000000
3BFAh	DMA1SSAH				SS	SA				00000000
3BF9h	DMA1SSAL				SS	SA				00000000
3BF8h	DMA1SSZH	—	—	—	—		S	SZ		0000
3BF7h	DMA1SSZL			1	SS	SZ				00000000
3BF6h	DMA1SPTRU	—	SPTR						000000	
3BF5h	DMA1SPTRH				SP	TR				00000000
3BF4h	DMA1SPTRL				SP	TR				00000000
3BF3h	DMA1SCNTH	_	—	—	—		S	CNT		0000
3BF2h	DMA1SCNTL				SC	NT				00000000
3BF1h	DMA1DSAH				DS	SA				00000000
3BF0h	DMA1DSAL				SS	SA				00000000
3BEFh	DMA1DSZH	_	—	—	—		D	SZ		0000
3BEEh	DMA1DSZL				DS	SZ				******

TABLE 4-11: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

 $\label{eq:logend: Legend: Legend: we have a state of the state of th$

Note 1: Not present in LF devices.

PIC18(L)F24/25K42

SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM

REGISTER 9-5:	OSCFRQ: HFINTOSC FREQUENCY SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
—	—	—	—		FRQ	<3:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Reset value is determined by hardware

bit 7-4 Unimplemented: Read as '0'

bit 3-0 FRQ<3:0>: HFINTOSC Frequency Selection bits⁽¹⁾

FRQ<3:0>	Nominal Freq (MHz)
1001	
1010	
1111	
1110	Reserved
1101	
1100	
1011	
1000	64
0111	48
0110	32
0101	16
0100	12
0011	8
0010	4
0001	2
0000	1

Note 1: Refer to Table 9-2 for more information.

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0
_	_	INT2IF	CLC2IF	CWG2IF	—	CCP2IF	TMR4IF
bit 7							bit 0
r							
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Bit is se	et in hardware		
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5	INT2IF: Exte	ernal Interrupt 2	Interrupt Flag	bit			
	1 = Interrup	t has occurred (must be cleare	ed by software)		
1.11.4		t event has not o					
DIT 4			g bit		、		
	1 = Interrup 0 = Interrup	t has occurred (t event has not o	must be cleare	ed by soπware)		
bit 3	CWG2IF: C\	NG2 Interrupt F	lag bit				
	1 = Interrup	t has occurred (must be cleare	ed by software)		
	0 = Interrup	t event has not o	occurred				
bit 2	Unimpleme	nted: Read as '	0'				
bit 1	CCP2IF: CC	P2 Interrupt Fla	g bit				
	1 = Interrup	t has occurred (must be cleare	ed by software			
bit 0	bit 0 TMD4E: TMD4 Interrupt Elect bit						
DILO	1 = Interrupt has occurred (must be cleared by software)						
	0 = Interrup	t event has not o	occurred	sa sy sonward	/		
Note:	Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its correspo enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are prior to enabling an interrupt.						corresponding g bits are clear

REGISTER 11-10: PIR7: PERIPHERAL INTERRUPT REGISTER 7

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCNTIE	DMA2SCNTIE	C2IE	INT1IE
bit 7			•	·			bit 0
Legend:							
R = Readabl	e bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	Value at all ot	ner Resets
'1' = Bit is se	t	'0' = Bit is clea	red				
bit 7	I2C2TXIE: I ²	2C2 Transmit Int	errupt Enable b	it			
	1 = Enabled	ł					
	0 = Disable	d					
bit 6	I2C2RXIE: I	² C2 Receive Inte	errupt Enable b	it			
	1 = Enabled	1					
bit 5	DMA2AIE: L	JMA2 Abort Inte	rrupt Enable bit				
	1 = Enableo 0 = Disableo	1 H					
hit 4			Interrunt Enab	le hit			
511 -	1 = Enabled						
	0 = Disable	d					
bit 3	DMA2DCNT	IE: DMA2 Desti	nation Count In	terrupt Enable bi	t		
	1 = Enabled	1		·			
	0 = Disable	d					
bit 2	DMA2SCNT	IE: DMA2 Source	ce Count Interru	ipt Enable bit			
	1 = Enabled	1					
	0 = Disabled						
bit 1	1 C2IE: C2 Interrupt Enable bit						
	1 = Enabled						
hit 0		u Arnol Intorrunt 1	Enabla bit				
DILU	1 - Enabled	ana menupi i					
	0 = Disable	d					

REGISTER 11-19: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

17.5.1.2 Hardware Trigger, SIRQ

A Hardware trigger is an interrupt request from another module sent to the DMA with the purpose of starting a DMA message. The DMA start trigger source is user selectable using the DMAxSIRQ register.

The SIRQEN bit (DMAxCON0 register) is used to enable sampling of external interrupt triggers by which a DMA transfer can be started. When set the DMA will sample the selected Interrupt source and when cleared, the DMA will ignore the selected Interrupt source. Clearing SIRQEN does not stop a DMA transaction currently progress, it only stops more hardware request signals from being received.

17.5.2 STOPPING DMA MESSAGE TRANSFERS

The DMA controller can stop data transactions by either of the following two conditions:

- 1. Clearing the DGO bit
- 2. Hardware trigger, AIRQ
- 3. Source Count reload
- 4. Destination Count reload
- 5. Clearing the Enable bit

17.5.2.1 User Software Control

If the user clears the DGO bit, the message will be stopped and the DMA will remain in the current configuration.

For example, if the user clears the DGO bit after source data has been read but before it is written to the destination, then the data in DMAxBUF will not reach its destination.

This is also referred to as a soft-stop as the operation can resume if desired by setting DGO bit again.

17.5.2.2 Hardware Trigger, AIRQ

The AIRQEN bit (DMAxCON0 register) is used to enable sampling of external interrupt triggers by which a DMA transaction can be aborted.

Once an Abort interrupt request has been received, the DMA will perform a soft-stop by clearing the DGO bit as well as clearing the SIRQEN bit so overruns do not occur. The AIRQEN bit is also cleared to prevent additional abort signals from triggering false aborts.

If desired, the DGO bit can be set again and the DMA will resume operation from where it left off after the softstop had occurred as none of the DMA state information is changed in the event of an abort.

17.5.2.3 Source Count Reload

A DMA message is considered to be complete when the Source count register is decremented from 1 and then reloaded (i.e. once the last byte from either the source read or destination write has occurred). When the SSTP bit is set (DMAxCON1 register) and the source count register is reloaded then further message transfer is stopped.

17.5.2.4 Destination Count Reload

A DMA message is considered to be complete when the Destination count register is decremented from 1 and then reloaded (i.e. once the last byte from either the source read or destination write has occurred). When the DSTP bit is set (DMAxCON1) and the destination count register is reloaded then further message transfer is stopped.

Note:	Reading the DMAxSCNT or DMAxDCNT						
	registers will never return zero. When						
	either register is decremented from '1' it is						
	immediately reloaded from the						
	corresponding size register.						

17.5.2.5 Clearing the Enable bit

If the User clears the EN bit, the message will be stopped and the DMA will return to its default configuration. This is also referred to as a hard-stop as the DMA cannot resume operation from where it was stopped.

Note: After the DMA message transfer is stopped, it requires an extra instruction cycle before the Stop condition takes effect. Thus, after the Stop condition has occurred, a Source read or a Destination write can occur depending on the Source or Destination Bus availability.

17.5.3 DISABLE DMA MESSAGES TRANSFERS UPON COMPLETION

Once the DMA message is complete it may be desirable to disable the trigger source to prevent overrun or under run of data. This can be done by either of the following methods:

- 1. Clearing the SIRQEN bit
- 2. Setting the SSTP bit
- 3. Setting the DSTP bit

FIGURE 20-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)

REGISTER 22-3: TMR0L: TIMER0 COUNT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMRC	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	pit	W = Writable bit	t	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	naed	x = Bit is unknow	wn	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 TMR0L<7:0>:TMR0 Counter bits <7:0>

1' = Bit is set

REGISTER 22-4: TMR0H: TIMER0 PERIOD REGISTER

'0' = Bit is cleared

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | TMR0H | 1<15:8> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 When MD16 = 0 **PR0<7:0>:**TMR0 Period Register Bits <7:0> When MD16 = 1 **TMR0H<15:8>:** TMR0 Counter bits <15:8>

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T0CON0	EN	—	OUT	MD16		OUTPS<3:0>			
T0CON1	CS<2:0> ASYNC CKPS<3:0>					305			
TMR0L	TMR0L<7:0>						306		
TMR0H	TMR0H<15:8>						306		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Timer0.

PIC18(L)F24/25K42

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			CH<4:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 32-3: MD1CARH: MODULATION HIGH CARRIER CONTROL REGISTER

bit 7-5 Onimplemented. Read as 0	bit 7-5	Unimplemented:	Read	as	0'
---	---------	----------------	------	----	----

bit 4-0 CH<4:0>: Modulator Carrier High Selection bits⁽¹⁾ See Table 32-2 for signal list

Note 1: Unused selections provide an input value.

REGISTER 32-4: MD1CARL: MODULATION LOW CARRIER CONTROL REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			CL<4:0> ⁽¹⁾		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 CL<4:0>: Modulator Carrier Low Input Selection bits⁽¹⁾ See Table 32-2 for signal list

Note 1:Unused selections provide a zero as the input value.

TABLE 32-2: MD1CARH/MD1CARL SELECTION MUX CONNECTIONS

	MD1CARH			MD1CARL			
CH<4:0	CH<4:0> Connection		CL<4:0>		Connection		
11111- 10011	31- 19	Reserved	11111- 10011	31- 19	Reserved		
10010	18	CLC4OUT	10010	18	CLC4OUT		
10001	17	CLC3OUT	10001	17	CLC3OUT		
10000	16	CLC2OUT	10000	16	CLC2OUT		
01111	15	CLC1OUT	01111	15	CLC1OUT		
01110	14	NCO10UT	01110	14	NCO10UT		
01101- 01100	13- 12	Reserved	01101- 01100	13- 12	Reserved		
01011	11	PWM8 OUT	01011	11	PWM8 OUT		
01010	10	PWM7 OUT	01010	10	PWM7 OUT		

© 2016-2017 Microchip Technology Inc.

33.2.2 UART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 33-2. The data is received on the RX pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 4 or 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the UART receiver. The FIFO registers and RSR are not directly accessible by software. Access to the received data is via the UxRXB register.

33.2.2.1 Enabling the Receiver

The UART receiver is enabled for asynchronous operation by configuring the following control bits:

- RXEN = 1
- MODE<3:0> = 0h through 3h
- UxBRGH:L = desired baud rate
- RXPPS = code for desired input pin
- Input pin ANSEL bit = 0
- ON = 1

All other UART control bits are assumed to be in their default state.

Setting the RXEN bit in the UxCON0 register enables the receiver circuitry of the UART. Setting the MODE<3:0> bits in the UxCON0 register configures the UART for the desired asynchronous mode. Setting the ON bit in the UxCON1 register enables the UART. The TRIS bit corresponding to the selected RX I/O pin must be set to configure the pin as an input.

Note: If the RX function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

33.2.2.2 Receiving Data

Data is recovered from the bit stream by timing to the center of the bits and sampling the input level. In High-Speed mode, there are four BRG clocks per bit and only one sample is taken per bit. In Normal-Speed mode, there are 16 BRG clocks per bit and three samples are taken per bit.

The receiver data recovery circuit initiates character reception on the falling edge of the Start bit. The Start bit, is always a '0'. The Start bit is qualified in the middle of the bit. In Normal-Speed mode only, the Start bit is also qualified at the leading edge of the bit. The following paragraphs describe the majority detect sampling of Normal-Speed mode.

The falling edge starts the baud rate generator (BRG) clock. The input is sampled at the first and second BRG clocks.

If both samples are high then the falling edge is deemed a glitch and the UART returns to the Start bit detection state without generating an error.

If either sample is low, the data recovery circuit continues counting BRG clocks and takes samples at clock counts 7, 8, and 9. When less than two samples are low, the Start bit is deemed invalid and the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit.

When two or more samples are low, the Start bit is deemed valid and the data recovery continues. After a valid Start bit is detected, the BRG clock counter continues and resets at count 16. This is the beginning of the first data bit.

The data recovery circuit counts BRG clocks from the beginning of the bit and takes samples at clocks 7, 8, and 9. The bit value is determined from the majority of the samples. The resulting '0' or '1' is shifted into the RSR.The BRG clock counter continues and resets at count 16. This sequence repeats until all data bits have been sampled and shifted into the RSR.

After all data bits have been shifted in, the first Stop bit is sampled. Stop bits are always a '1'. If the bit sampling determines that a '0' is in the Stop bit position, the framing error is set for this character. Otherwise, the framing error is cleared for this character. See **Section 33.2.2.4 "Receive Framing Error"** for more information on framing errors.

33.2.2.3 Receive Interrupts

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the UART receive FIFO. The UxRXIF interrupt flag in the respective PIR register is set at this time, provided it is not being suppressed.

The UxRXIF is suppressed by any of the following:

- FERIF if FERIE is set
- PERIF if PERIE is set

This suspends DMA transfer of data until software processes the error and reads UxRXB to advance the FIFO beyond the error.

UxRXIF interrupts are enabled by setting all of the following bits:

- UxRXIE, Interrupt Enable bit in the PIE register
- GIE, Global Interrupt Enable bits in the INTCON0
 register

The UxRXIF interrupt flag bit will be set when not suppressed and there is an unread character in the FIFO, regardless of the state of interrupt enable bits. Reading the UxRXB register will transfer the top character out of the FIFO and reduce the FIFO contents by one. The UxRXIF interrupt flag bit is read-only, it cannot be set or cleared by software.

© 2016-2017 Microchip Technology Inc.

33.12 Flow Control

This section does not apply to the LIN, DALI, or DMX modes.

Flow control is the means by which a sending UART data stream can be suspended by a receiving UART. Flow control prevents input buffers from overflowing without software intervention. The UART supports both hardware and XON/XOFF methods of flow control.

The flow control method is selected with the FLO<1:0> bits in the UxCON2 register. Flow control is disabled when are both bits are cleared.

33.12.1 HARDWARE FLOW CONTROL

Hardware flow control is selected by setting the FLO<1:0> bits to '10'.

Hardware flow control consists of three lines. The RS-232 signal names for two of these are RTS, and CTS. Both are low true. The third line may be used to control an RS-485 transceiver. The signal name for this is TXDE for transmit drive enable. This output is high when the TX output is actively sending a character and low at all other times. The UART is configured as DTE (computer) equipment which means RTS is an output and CTS is an input.

The RTS and CTS signals work as a pair to control the transmission flow. A DTE-to-DTE configuration connects the RTS output of the receiving UART to the CTS input of the sending UART. Refer to Figure 33-10.

The UART receiving data asserts the $\overline{\text{RTS}}$ output low when the input FIFO is empty. When a character is received, the $\overline{\text{RTS}}$ output goes high until the UxRXB is read to free up both FIFO locations.

When the $\overline{\text{CTS}}$ input goes high after a byte has started to transmit, the transmission will complete normally. The receiver accommodates this by accepting the character in the second FIFO location even when the $\overline{\text{CTS}}$ input is high.

FIGURE 33-10: FLOW CONTROL

33.12.2 RS-485 TRANSCEIVER CONTROL

Hardware flow control can be used to control the direction of an RS-485 transceiver as shown in Figure 33-11. Configure the CTS input to be always enabled by setting the UxCTSPPS selection to an unimplemented port pin such as RD0. When the signal and control lines are configured as shown in Figure 33-11, then the UART will not receive its own transmissions. To verify that there are no collisions on the RS-485 lines then the transceiver RE control can be disconnected from TXDE and tied low thereby enabling loop-back reception of all transmissions. See **Section 33.14 "Collision Detection"** for more information.

FIGURE 33-11: RS-485 CONFIGURATION

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	_	_	_	—	—	P2<8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 0	P2<8>: Most	Significant Bit o	of Parameter 2	2			
	DMX mode:						
	Most Significa	int bit of first ac	dress of rece	ive block			
	DALI mode:						
	Most Significa	int bit of numbe	er of half-bit pe	eriods of idle ti	me in Forward F	Frame detection	n threshold
	Other modes:						
	Not used						

REGISTER 33-14: UxP2H: UART PARAMETER 2 HIGH REGISTER

REGISTER 33-15: UxP2L: UART PARAMETER 2 LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | P2< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

P2<7:0>: Least Significant Bits of Parameter 2 <u>DMX mode</u>: Least Significant Byte of first address of receive block <u>LIN Slave mode</u>: Number of data bytes to transmit DALI mode:

Least Significant Byte of number of half-bit periods of idle time in Forward Frame detection threshold Asynchronous Address mode: Receiver address

Other modes:

Not used

The SPI transmit output (SDO_out) is available to the remappable PPS SDO pin and internally to the following peripherals:

- Configurable Logic Cell (CLC)
- Data Signal Modulator (DSM)

The SPI bus typically operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions typically involve shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new bit is shifted into the device. Unlike older Microchip devices, the SPI on the PIC18F2X/4XK42 contains two separate registers for incoming and outgoing data. Both registers also have 2-byte FIFO buffers and allow for DMA bus connections.

Figure 34-2 shows a typical connection between two PIC18F2X/4XK42 devices configured as master and slave devices.

Data is shifted out of the transmit FIFO on the programmed clock edge and into the receive shift register on the opposite edge of the clock.

The master device transmits information on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

The master device sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its output register (on its SDO pin) and the slave device is reading this bit and saving as the LSb of its input register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its input register.

After eight bits have been shifted out, the master and slave have exchanged register values and stored the incoming data into the receiver FIFOs.

If there is more data to exchange, the registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data
- Master sends useful data and slave sends useful data
- Master sends dummy data and slave sends useful data

In this particular SPI module, dummy data may be sent without software involvement, by clearing either the RXR bit (for receiving dummy data) or the TXR bit (for sending dummy data) (see Table 34-1 as well as Section 34.5 "Master mode" and Section 34.6 "Slave Mode" for further TXR/RXR setting details). This SPI module can send transmissions of any number of bits, and can send information in segments of varying size (from 1-8 bits in width). As such, transmissions may involve any number of clock cycles, depending on the amount of data to be transmitted.

When there is no more data to be transmitted, the master stops sending the clock signal and deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line disregards the clock and transmission signals and does not transmit out any data of its own.

PIC18(L)F24/25K42

FIGURE 35-12: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION

REGISTER 35-9: I2CxCNT – I²C BYTE COUNT REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			CNT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	it	U = Unimple	mented bit, read	l as '0'	

u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR a	nd BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set	HC = Hardware clear

bit 7-0 CNT<7:0>: I²C Byte Count Register bits

If receiving data,

decremented 8th SCL edge, when a new data byte is loaded into I2CxRXB

If transmitting data,

decremented 9th SCL edge, when a new data byte is moved from I2CxTXB

CNTIF flag is set on 9th falling SCL edge, when I2CxCNT = 0. (Byte count cannot decrement past '0')

Note 1: It is recommended to write this register only when the module is IDLE (MMA = 0, SMA = 0) or when clock stretching (CSTR = 1 || MDR = 1).

37.2.1 CALIBRATION

37.2.1.1 Single-Point Calibration

Single-point calibration is performed by application software using Equation 37-1 and the assumed Mt. A reading of VTSENSE at a known temperature is taken, and the theoretical temperature is calculated by temporarily setting TOFFSET = 0. Then TOFFSET is computed as the difference of the actual and calculated temperatures. Finally, TOFFSET is stored in nonvolatile memory within the device, and is applied to future readings to gain a more accurate measurement.

37.2.1.2 Higher-Order Calibration

If the application requires more precise temperature measurement, additional calibrations steps will be necessary. For these applications, two-point or three-point calibration is recommended.

Note 1:	The TOFFSET value may be determined by the user with a temperature test.
2:	Although the measurement range is -40° C to $+125^{\circ}$ C, due to the variations in offset error, the single-point uncalibrated calculated TSENSE value may indicate a temperature from -140° C to $+225^{\circ}$ C, before the calibration offset is applied.
3:	The User must take into consideration self-heating of the device at different clock frequencies and output pin loading. For package related thermal characteris-

tics information, refer to Table 46-6.

37.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count), depends on both the ADC resolution N and the reference voltage used for conversion, as shown in Equation 37-2. It is recommended to use the smallest VREF value, such as 2.048 FVR reference voltage, instead of VDD.

Note: Refer to Table 46-17 for FVR reference voltage accuracy.

EQUATION 37-2: TEMPERATURE RESOLUTION (°C/LSb)

$$Ma = \frac{V_{REF}}{2^{N}} \times Mt$$
$$Ma = \frac{\frac{V_{REF}}{2^{N}}}{Mv}$$

Where:

Mv = sensor voltage sensitivity (V/°C)

VREF = Reference voltage of the ADC module (in Volts) N = Resolution of the ADC

The typical Mv value for a single diode is approximately -1.267 to -1.32 mV/C.

The typical Mv value for a stack of two diodes (Low Range setting) is approximately -2.533 mV/C.

The typical Mv value for a stack of three diodes (High range setting) is approximately -3.8 mV/C.

37.3 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait a certain time for the ADC value to settle, after the ADC input multiplexer is connected to the temperature indicator output, before the conversion is performed.

38.0 ANALOG-TO-DIGITAL CONVERTER WITH COMPUTATION (ADC²) MODULE

The Analog-to-Digital Converter with Computation (ADC²) allows conversion of an analog input signal to a 12-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 12-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair).

Additionally, the following features are provided within the ADC module:

- 13-bit Acquisition Timer
- Hardware Capacitive Voltage Divider (CVD) support:
 - 13-bit Precharge Timer
 - Adjustable sample and hold capacitor array
- Guard ring digital output drive
- · Automatic repeat and sequencing:
 - Automated double sample conversion for CVD
 - Two sets of result registers (Result and Previous result)
 - Auto-conversion trigger
 - Internal retrigger
- Computation features:
 - Averaging and Low-Pass Filter functions
 - Reference Comparison
 - 2-level Threshold Comparison
 - Selectable Interrupts

Figure 38-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion and upon threshold comparison. These interrupts can be used to wake-up the device from Sleep.

38.2.6 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO bit is set by hardware.

The Auto-conversion Trigger source is selected by the ADACT register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Register 38-33 for auto-conversion sources.

38.2.7 ADC CONVERSION PROCEDURE (BASIC MODE)

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
- 2. Configure the ADC module:
 - · Select ADC conversion clock
 - · Select voltage reference

EXAMPLE 38-1: ADC CONVERSION

```
/*This code block configures the ADC
for polling, VDD and VSS references, FRC
oscillator and ANO input.
Conversion start & polling for completion
are included.
 */
void main() {
    //System Initialize
    initializeSystem();
    //Setup ADC
    ADCONObits.FM = 1; //right justify
   ADCONObits.CS = 1; //FRC Clock
   ADPCH = 0 \times 00; //RA0 is Analog channel
   TRISAbits.TRISA0 = 1; //Set RA0 to input
   ANSELAbits.ANSELA0 = 1; //Set RA0 to analog
   ADCONObits.ON = 1; //Turn ADC On
    while (1) {
        ADCONObits.GO = 1; //Start conversion
        while (ADCONObits.GO); //Wait for conversion done
        resultHigh = ADRESH; //Read result
        resultLow = ADRESL; //Read result
```

- Select ADC input channel
- Precharge and acquisition
- Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable global interrupt (GIEL bit)⁽¹⁾
- If ADACQ = 0, software must wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - · Polling the GO bit
 - · Polling the ADIF bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

> 2: Refer to Section 38.3 "ADC Acquisition Requirements".

}

REGISTER 38-22: ADPREVH: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			PRE	V<15:8>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpler	nented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unknowr	ı	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleared					

PREV<15:8>: Previous ADC Results bits			
C conversion			
)C conversion ⁽¹⁾			

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the FM bit.

REGISTER 38-23: ADPREVL: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			PREV	/<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

PREV<7:0>: Previous ADC Results bits			
If ADPSIS = 1:			
Lower byte of FLTR at the start of current ADC conversion			
If ADPSIS = 0:			
Lower bits of ADRES at the start of current ADC conversion ⁽¹⁾			

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the FM bit.