

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k42-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
3C72h	CLC2GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	XXXXXXXX
3C71h	CLC2GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	XXXXXXXX
3C70h	CLC2GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	XXXXXXXX
3C6Fh	CLC2SEL3				D4	IS				XXXXXXXX
3C6Eh	CLC2SEL2				D3	BS				XXXXXXXX
3C6Dh	CLC2SEL1				D2	2S				XXXXXXXX
3C6Ch	CLC2SEL0				D1	S				XXXXXXXX
3C6Bh	CLC2POL	POL	—	—	—	G4POL	G3POL	G2POL	G1POL	0xxxx
3C6Ah	CLC2CON	EN	OE	OUT	INTP	INTN		MODE		00000000
3C69h	CLC3GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	*****
3C68h	CLC3GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	XXXXXXXX
3C67h	CLC3GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	XXXXXXXX
3C66h	CLC3GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	*****
3C65h	CLC3SEL3				D4	IS				*****
3C64h	CLC3SEL2				D	S				*****
3C63h	CLC3SEL1				D2	2S				*****
3C62h	CLC3SEL0		-		D1	S		-		*****
3C61h	CLC3POL	POL	_	—		G4POL	G3POL	G2POL	G1POL	0xxxx
3C60h	CLC3CON	EN	OE	OUT	INTP	INTN		MODE		00000000
3C5Fh	CLC4GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	******
3C5Eh	CLC4GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	*****
3C5Dh	CLC4GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	*****
3C5Ch	CLC4GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	******
3C5Bh	CLC4SEL3	D4S								******
3C5Ah	CLC4SEL2	D3S							******	
3C59h	CLC4SEL1				D2	2S				XXXXXXXX
3C58h	CLC4SEL0				D1	S			1	XXXXXXXX
3C57h	CLC4POL	POL	—	—	—	G4POL	G3POL	G2POL	G1POL	0xxxx
3C56h	CLC4CON	EN	OE	OUT	INTP	INTN		MODE		00000000
3C55h - 3C00h	_				Unimple	mented				—
3BFFh	DMA1SIRQ				SIF	RQ				00000000
3BFEh	DMA1AIRQ				AIF	RQ			1	00000000
3BFDh	DMA1CON1	EN	SIRQEN	DGO	—		AIRQEN	—	XIP	0000-0
3BFCh	DMA1CON0	DM	ODE	DSTP	SN	/R	SMC	DE	SSTP	00000000
3BFBh	DMA1SSAU	_	—			:	SSA			000000
3BFAh	DMA1SSAH				SS	SA				00000000
3BF9h	DMA1SSAL				SS	SA				00000000
3BF8h	DMA1SSZH	—	—	—	—		S	SZ		0000
3BF7h	DMA1SSZL			1	SS	SZ				00000000
3BF6h	DMA1SPTRU	—	—			S	PTR			000000
3BF5h	DMA1SPTRH				SP	TR				00000000
3BF4h	DMA1SPTRL				SP	TR				00000000
3BF3h	DMA1SCNTH	_	—	—	—		S	CNT		0000
3BF2h	DMA1SCNTL				SC	NT				00000000
3BF1h	DMA1DSAH				DS	SA				00000000
3BF0h	DMA1DSAL				SS	SA				00000000
3BEFh	DMA1DSZH	_	—	—	—		D	SZ		0000
3BEEh	DMA1DSZL				DS	SZ				******

TABLE 4-11: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

 $\label{eq:logend: Legend: Legend: we have a state of the state of th$

Note 1: Not present in LF devices.

REGISTER 5-	2: CONFIC	JURATION W	10RD 1H (3	0 0001n)						
U-1	U-1	R/W-1	U-1	R/W-1	U-1	R/W-1	R/W-1			
—	_	FCMEN	_	CSWEN	_	PR1WAY	CLKOUTEN			
bit 7							bit 0			
Legend:										
R = Readable	oit	W = Writable	bit	U = Unimplemented bit, read as '1'						
-n = Value for b	lank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 7-6	Unimplement	ed: Read as '1	,							
bit 5	FCMEN: Fail-Safe Clock Monitor Enable bit									
	1 = FSCM time	er is enabled								
bit 4	Unimplement	ed: Read as '1	,							
bit 3	CSWEN: Cloc	k Switch Enable	e bit							
	1 = Writing to 0 = The NOS	NOSC and ND C and NDIV bits	IV is allowed s cannot be c	hanged by us	er software					
bit 2	Unimplement	ed: Read as '1	,							
bit 1	PR1WAY: PRL	OCKED One-\	Nay Set Enat	ole bit						
	1 = PRLOCKE	ED bit can be	cleared and	set only once	; priority registe	ers remain loc	ked after one			
	clear/set cycle									
		ED bit can be s	et and cleare	d repeatedly (subject to the ur	nock sequenc	e)			
bit 0	CLKOUTEN: (Clock Out Enab	ole bit							
	If FEXTOSC<2:0> = EC (high, mid or low) or Not Enabled:									
	1 = CLKOUT	function is disa	bled; I/O or o	clock appears	at OSC2					
	Otherwise									

This bit is ignored.

8.13 Power Control (PCON0/PCON1) Register

The Power Control (PCON0/PCON1) register contains flag bits to differentiate between a:

- Brown-out Reset (BOR)
- Power-on Reset (POR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Window Violation (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)

The PCON0/1 register bits are shown in Register 8-2 and Register 8-3. Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-3).

Software should reset the bit to the inactive state after restart (hardware will not reset the bit). Software may also set any PCON0 bit to the active state, so that user code may be tested, but no Reset action will be generated.

9.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce 1, 2, 4, 8, 12, 16, 32, 48 and 64 MHz clock. The frequency can be controlled through the OSCFRQ register (Register 9-5). The Low-Frequency Internal Oscillator (LFINTOSC) generates a fixed 31 kHz frequency.

A 4x PLL is provided that can be used with an external clock. See **Section 9.2.1.4** "**4x PLL**" for more details.

The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 9.3 "Clock Switching**" for additional information. The system clock can be made available on the OSC2/CLKOUT pin for any of the modes that do not use the OSC2 pin. The clock out functionality is governed by the CLKOUTEN bit in the CONFIG1H register (Register 5-2). If enabled, the clock out signal is always at a frequency of Fosc/4.

9.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> and FEXTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> and NDIV<3:0> bits in the OSCCON1 register to switch the system clock source.

See **Section 9.3 "Clock Switching**" for more information.

9.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 9-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, above 8 MHz
- ECM Medium power, 100 kHz-8 MHz
- ECL Low power, below 100 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 9-2: EXTERNAL CLOCK (EC) MODE OPERATION

9.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 9-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification (above 100 kHz - 8 MHz).

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting (above 8 MHz).

Figure 9-3 and Figure 9-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

Register Definitions: Windowed Watchdog Timer Control 13.7

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0
_	-			PS<4:0>			SEN
oit 7	•	·				·	bit
.egend:							
R = Reada	ıble bit	W = Writable bit		U = Unimpleme	nted bit, read as	'0'	
u = Bit is u	nchanged	x = Bit is unknow	wn	-n/n = Value at I	POR and BOR/V	alue at all other R	esets
1' = Bit is :	set	'0' = Bit is cleare	ed	q = Value deper	nds on condition		
oit 7-6	Unimplen	nented: Read as '0'					
oit 5-1	PS<4:0>:	Watchdog Timer Pres	cale Select bits ^{(*}	1)			
	Bit Value	= Prescale Rate					
	11111 =	Reserved. Results in	n minimum interv	al (1:32)			
	•						
	•						
	•	Descrived Desults in	nainina um intor	val (1:22)			
	10011 =	Reserved. Results if	i minimum interv	ai (1.52)			
	10010 =	1.8388608 (2 ²³) (Inte	erval 256s nomir	nal)			
	10001 =	$1:4194304 (2^{22})$ (Internet)	erval 128s nomir	nal)			
	10000 =	1:2097152 (2 ²¹) (Inte	erval 64s nomina	al)			
	01111 =	1:1048576 (2 ²⁰) (Inte	erval 32s nomina	al)			
	01110 =	1:524288 (2 ¹⁹) (Inter	rval 16s nominal)			
	01101 =	1:262144 (2 ¹⁸) (Inter	rval 8s nominal)				
	01100 =	1:131072 (2 ¹⁷) (Inter	rval 4s nominal)				
	01011 =	1:65536 (Interval 2s	nominal) (Reset	value)			
	01010 =	1:32768 (Interval 1s	nominal)				
	01001 =	1:10384 (Interval 51.	2 ms nominal)				
	01000 =	1.6192 (Interval 200 1:4006 (Interval 128	ms nominal)				
	00111 =	1:2048 (Interval 64 r	ns nominal)				
	00101 =	1:1024 (Interval 32 r	ns nominal)				
	00100 =	1:512 (Interval 16 m	s nominal)				
	00011 =	1:256 (Interval 8 ms	nominal)				
	00010 =	1:128 (Interval 4 ms	nominal)				
	00001 =	1:64 (Interval 2 ms n	iominal)				
	00000 =	1:32 (Interval 1 ms n	iominal)				
oit O	SEN: Soft	ware Enable/Disable f	or Watchdog Tin	ner bit			
	If WDTE<	1:0> = 1x:					
	This bit is	ignored.					
	If WDTE<	<u>1:0> = 01</u> :					
	1 = WDT	is turned on					
	0 = VVDI	is turned off					
	<u>IT WUTE</u> This hit is	1.0 > = 0.0					
		ignorea.					
Note 1:	Times are app	proximate. WDT time is	based on 31 kH	Iz LFINTOSC.			
2:	When WDTCF	PS <4:0> in CONFIG3	L = 11111, the F	Reset value of PS	<4:0> is 01011.	Otherwise, the Re	set value of
	PS<4:0> is eq	ual to WDTCPS<4:0>	in CONFIG3L.				
3:	When WDTCF	PS <4:0> in CONFIG3	L ≠ 11111, these	e bits are read-on	ly.		

...

4: When the WWDT is configured to run using the SOSC as a clock source and the device is allowed to undergo a Reset, as triggered by a WDT time-out, the SOSC would also undergo a Reset. That means the SOSC will execute its start-up sequence which requires 1024 SOSC clock counts before it is made available for peripherals to use. So for example, if the WDT is set for a 1 ms time-out and the device is allowed to undergo a WDT Reset, then the actual WDT Reset period will be: WDT_PERIOD = (1/(SOSC_FREQUENCY) * 1024) + 1 ms.

REGISTER 16-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	nged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 ACC<7:0>: CRC Accumulator Register bits

'1' = Bit is set

REGISTER 16-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

'0' = Bit is cleared

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
SHIFT<15:8>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<15:8>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

REGISTER 16-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
SHIFT<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<7:0>: CRC Shifter Register bits Reading from this register reads the CRC Shifter.

FIGURE 20-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)

30.8 NCO Control Registers

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0		
EN	—	OUT	POL	—	—	—	PFM		
bit 7		•		, 			bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7 bit 6 bit 5 bit 4	EN: NCO1 Er 1 = NCO1 mc 0 = NCO1 mc Unimplemen OUT: NCO1 C Displays the c POL: NCO1 F 1 = NCO1 out 0 = NCO1 out	nable bit odule is enable odule is disable ted : Read as ' Output bit current output v Polarity tput signal is in tput signal is in	d d o' value of the NC verted ot inverted	CO1 module.					
bit 3-1 bit 0	Drimplemen PFM: NCO1 F 1 = NCO1 op 0 = NCO1 op	ted: Read as f Pulse Frequent erates in Pulse erates in Fixed	o' cy Mode bit Frequency m Duty Cycle m	ode ode, divide by :	2				

REGISTER 30-1: NCO1CON: NCO CONTROL REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	—			CH<4:0> ⁽¹⁾				
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 32-3: MD1CARH: MODULATION HIGH CARRIER CONTROL REGISTER

bit 7-5 Onimplemented. Read as 0	bit 7-5	Unimplemented:	Read	as	0'
---	---------	----------------	------	----	----

bit 4-0 CH<4:0>: Modulator Carrier High Selection bits⁽¹⁾ See Table 32-2 for signal list

Note 1: Unused selections provide an input value.

REGISTER 32-4: MD1CARL: MODULATION LOW CARRIER CONTROL REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			CL<4:0> ⁽¹⁾		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 CL<4:0>: Modulator Carrier Low Input Selection bits⁽¹⁾ See Table 32-2 for signal list

Note 1:Unused selections provide a zero as the input value.

TABLE 32-2: MD1CARH/MD1CARL SELECTION MUX CONNECTIONS

MD1CARH			MD1CARL			
CH<4:0	>	Connection	CL<4:0>	CL<4:0> Connection		
11111- 10011	31- 19	Reserved	11111- 10011	31- 19	Reserved	
10010	18	CLC4OUT	10010	18	CLC4OUT	
10001	17	CLC3OUT	10001	17	CLC3OUT	
10000	16	CLC2OUT	10000	16	CLC2OUT	
01111	15	CLC1OUT	01111	15	CLC1OUT	
01110	14	NCO10UT	01110	14	NCO10UT	
01101- 01100	13- 12	Reserved	01101- 01100	13- 12	Reserved	
01011	11	PWM8 OUT	01011	11	PWM8 OUT	
01010	10	PWM7 OUT	01010	10	PWM7 OUT	

© 2016-2017 Microchip Technology Inc.

MD1CARH			MD1CARL			
CH<4:0>		Connection	CL<4:0>		Connection	
01001	9	PWM6 OUT	01001	9	PWM6 OUT	
01000	8	PWM5 OUT	01000	8	PWM5 OUT	
00111	7	CCP4 OUT	00111	7	CCP4 OUT	
00110	6	CCP3 OUT	00110	6	CCP3 OUT	
00101	5	CCP2 OUT	00101	5	CCP2 OUT	
00100	4	CCP1 OUT	00100	4	CCP1 OUT	
00011	3	CLKREF output	00011	3	CLKREF output	
00010	2	HFINTOSC	00010	2	HFINTOSC	
00001	1	FOSC (system clock)	00001	1	FOSC (system clock)	
00000	0	Pin selected by MD1CARHPPS	00000	0	Pin selected by MD1CARLPPS	

TABLE 32-2: MD1CARH/MD1CARL SELECTION MUX CONNECTIONS (CONTINUED)

REGISTER 32-5: MD1SRC: MODULATION SOURCE CONTROL REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			MS<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 MS<4:0>: Modulator Source Selection bits⁽¹⁾ See Table 32-3 for signal list

Note 1:Unused selections provide a zero as the input value.

REGISTER 33-10: UxRXB: UART RECEIVE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			RXI	B<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unknow	vn	-n/n = Value at POR and BOR/Value at all other Res			
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 **RXB<7:0>:** Top of Receive Buffer

REGISTER 33-11: UxTXB: UART TRANSMIT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	TXB<7:0>									
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TXB<7:0>: Bottom of Transmit Buffer

35.5 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate Mode<2:0> bits in I2CxCON and then by setting the I2CEN bit. Master mode of operation is supported by interrupt generation on buffer full (RXIF), buffer empty (TXIF), and the detection of the Start, Restart, and Stop conditions. The Stop (P), Restart (RS) and Start (S) bits are cleared from a Reset or when the I²C module is disabled. Control of the I²C bus is asserted when the BFRE bit of I2CSTAT0 is set.

35.5.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start, Restart, and Stop conditions. A transfer is ended with a Stop condition or with a Restart condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released, and MMA bit will stay set signifying that the Master module is still active.

The steps to initiate a transaction depends on the setting of the address buffer disable bit (ABD) of the I2CxCON2 register.

• ABD = 0 (Address buffers are enabled)

In this case, the master module will use the address stored in the address buffer registers (I2CxADB0/1) to initiate communication with a slave device. User software needs to set the Start bit (S) in the I2CxCON0 register to start communication. This is valid for both 7-bit and 10-bit Addressing modes.

• ABD = 1 (Address buffers are disabled)

In this case, the slave address is transmitted through the transmit buffer and the contents of the address buffers are ignored. User software needs to write the slave address to the transmit buffer (I2CxTXB) to initiate communication. Writing to the Start bit is ignored in this mode. This is valid for both 7-bit and 10-bit Addressing modes.

35.5.1.1 Master Transmitter

In Master Transmitter mode, the first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In the case of master transmitter, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

35.5.1.2 Master Receiver

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of the transmission.

35.5.2 MASTER CLOCK SOURCE AND ARBITRATION

The I²C module clock source is selected by the I2CxCLK register. The I²C Clock provides the SCL output clock for Master mode and is used by the Bus Free timer. The I²C clock can be sourced from several peripherals.

35.5.3 BUS FREE TIME

In Master modes, the BFRE bit of the I2CxSTAT0 register gives an indication of the bus idle status. The master hardware cannot assert a Start condition until this bit is set by the hardware. This prevents the master from colliding with other masters that may already be talking on the bus. The BFRET<1:0> bits of I2CxCON1 allow selection of 8 to 64 pulses of the I²C clock input before asserting the BFRE bit. The BFRET bits are used to ensure that the I²C module always follows the minimum Stop Hold Time. The I²C timing requirements are listed in the electrical specifications chapter.

Note:	I ² C clock is not required to have a 50%
	duty cycle.

35.5.4 MASTER CLOCK TIMING

The clock generation in the I²C module can be configured using the Fast Mode Enable (FME) bit of the I2CxCON2 register. This bit controls the number of times the SCL pin is sampled before the master hardware drives it.

35.5.4.1 Clock Timing with FME = 0

One Tscl, consists of five clocks of the I^2C clock input. The first clock is used to drive SCL low, the third releases SCL high. The fourth and fifth clocks are used to detect if the SCL pin is, in fact, high or being stretched by a slave.

If a slave is clock stretching, the hardware waits; checking SCL on each successive I^2C clock, proceeding only after detecting SCL high. Figure 35-13 shows the clock synthesis timing when FME = 0.

KEGISTE	x 35-2: 12C)	$CON1 - I^{-}CC$	UNIKUL R	EGISTER 1				
R/W-0	R/W-0	R-0	R-0	U-0	R/W/HS-0	R/W/HS-0	R/W-0	
ACKCNT ⁽²	²⁾ ACKDT ^(1,2)	ACKSTAT	ACKT	—	RXO	TXU	CSD	
bit 7							bit	
Legend:								
R = Reada	ble bit	W = Writable b	it	U = Unimplemented bit, read as '0'				
u = Bit is ur	nchanged	x = Bit is unkno	wn	-n/n = Value	at POR and BC	OR/Value at all of	ther Resets	
'1' = Bit is s	set	'0' = Bit is clear	red	HS = Hardwa	are set HC =	Hardware clear	r	
bit 7	ACKCNT: A Acknowledg 1 = Not Ack 0 = Acknow	cknowledge End e value transmit nowledge (copie ledge (copied to	l of Count bit ⁽² ted after recei ed to SDA out SDA output)	2) ved data, when put)	I2CCNT = 0			
bit 6	ACKDT: Ack Acknowledg Acknowledg 1 = Not Ack 0 = Acknow	knowledge Data e value transmit e value transmit nowledge (copie rledge (copied to	bit ^(1,2) ted after matc ted after recei ed to SDA out SDA output)	hing address ved data, when put)	I2CCNT! = 0			
oit 5	ACKSTAT: /	Acknowledge Sta	atus bit (Trans	mission only)				
	1 = Acknow 0 = Acknow	rledge was not re rledge was recei	eceived for mo ved for most r	ost recent transi ecent transmiss	mission sion			
bit 4	ACKT: Ackn 1 = Indicate 0 = Not in A	owledge Time S s the I ² C bus is cknowledge sec	tatus bit in an Acknow juence, cleare	ledge sequence d on 9th rising	e, set on 8th fall edge of SCL	ing edge of SCL	clock	
bit 3	Unimpleme	nted: Read as 1	' b0					
bit 2	RXO: Recei	ve Overflow Stat	us bit (MODE	<2:0> = 0xx &	11x)			
	This bit can 1 = Set whe 0 = No slav	only be set when en SMA = 1, and e overflow condi	n CSD= 1 a master cloo tion	cks in data wher	n RXBF = 1			
bit 1	TXU: Transr This bit can 1 = Set whe 0 = No slav	nit Underflow St only be set when on SMA = 1, and e underflow con	atus bit (MOD n CSTRDIS = a master cloo dition	E<2:0> = 0xx & 1 cks out data who	& 11x) en TXBE = 1			
bit 0	CSD: Clock 1 = When S 0 = Slave cl	Stretching Disat SMA = 1, the CS lock stretching p	ble bit (MODE TR bit will nev roceeds norm	<2:0> = 0xx & : er be set ally	11x)			
Note 1: 2:	Software writes NACK may still	to ACKDT bit m be generated by	ust be followe [,] I ² C hardware	d by a minimum when bus erro	n SDA data-setu rs are indicated	up time before cl I in the I2CxSTA	earing CST T1 or	

I2CxERR registers.

		-		_			
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0
bit 7	•	•		•	•	•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HS = Hardwa	are set HC =	Hardware clea	r
bit 7-0	MODE<2:0>	= 00x					
	ADB<7:1>	: Address Data	a byte				
	Received	d matching 7-bi	t slave addres	ss data			
	R/W: Read	l/not-Write Data	a bit				
	Received	d read/write val	ue from 7-bit	address byte			
	MODE<2:0>	= 01x					
	ADB<7:0>	: Address Data	a byte				
	Received	d matching low	er 8-bits of 10	-bit slave addr	ess data		
	MODE<2:0>	= 100					
	Unused in	this mode; bit s	state is a don'	t care			
	MODE<2:0>	= 101					
	ADB<7:0>	: Low Address	Data byte				
	Low 10-b	oit address valu	e copied to tr	ansmit shift reo	gister		
	MODE<2:0>	= 11x					
	ADB<7:1>	: Address Data	a byte				
	Received	d matching 7-bi	t slave addres	SS			
	R/W: Read	I/not-Write Data	a bit				
	Received	d read/write val	ue received 7	-bit slave addr	ess byte		

REGISTER 35-16: I2CxADB0 – I²C ADDRESS DATA BUFFER 0 REGISTER⁽¹⁾

R-0/0	R-0/0	R-0/0	R/HS/HC-0/0	U-0	R-0/0	R-0/0	R-0/0				
AOV	UTHR	LTHR	MATH	—		STAT<2:0>					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is cle	ared	HS/HC = Bit	is set/cleared b	by hardware					
bit 7	AOV : ADC Act 1 = ADC accu 0 = ADC accu	ccumulator Ove Imulator or ER Imulator and E	erflow bit R calculation h RR calculation	ave overflowed	d flowed						
bit 6	UTHR : ADC Module Greater-than Upper Threshold Flag bit 1 = ERR >UTH 0 = ERR≤UTH										
bit 5	LTHR : ADC Module Less-than Lower Threshold Flag bit 1 = ERR <lth 0 = ERR≥LTH</lth 										
bit 4	 MATH: ADC Module Computation Status bit 1 = Registers ACC, FLTR, UTH, LTH and the AOV bit are updating or have already updated 0 = Associated registers/bits have not changed since this bit was last cleared 										
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	STAT<2:0>: A 111 = ADC m 110 = ADC m 101 = ADC m 100 = Not use 011 = ADC m 010 = ADC m 001 = ADC m 000 = ADC m	ADC Module C nodule is in 2 nd nodule is in 2 nd nodule is in 2 nd ed nodule is in 1 st nodule is in 1 st nodule is in 1 st	ycle Multistage conversion sta acquisition sta precharge stag conversion stag acquisition stag precharge stag	Status bits ⁽¹⁾ ge ge ge ge ge ge							

REGISTER 38-5: ADSTAT: ADC STATUS REGISTER

Note 1: If CS = 1, and FOSC<FRC, these bits may be invalid.

TABLE 43-1. C	
Field	Description
< >	Register bit field
E	In the set of
italics	User defined term (font is courier)

TABLE 43-1: OPCODE FIELD DESCRIPTIONS (CONTINUED)

FIGURE 43-1: General Format for Instructions (1/2)

	Example instruction
<u>15 10 9 8 7 0</u>	_
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
15 12 11 0	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	_
1111 f (Destination FILE #)	
f = 12-bit file register address	-
Byte to Byte move operations (3-word)	
15 4 3	<u>0</u>
OPCODE FILE #	MOVFFL MYREG1, MYREG2
15 12 11	<u>o</u>
1111 FILE#	
15 12 11	0
1111 FILE #	
Bit-oriented file register operations	
<u>15 12 11 9 8 7 0</u>	_
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0	
15 8 7 0 OPCODE k (literal)	MOVLW 7Fh

Mnemonic, Operands		Description		Cycles	16-Bit Instruction Word				Status	
					MSb			LSb	Affected	
ADDULNK	k	Add FSR2 with (k) & retur	'n	2	1110	1000	11kk	kkkk	None	
MOVSF	z _s , f _d	Move z _s (source) to	1st word	2	1110	1011	0 z z z	ZZZZ	None	
		f _d (destination) 2	2nd word	2	1111	ffff	ffff	ffff		
MOVSFL	z _s , f _d	Opcode 1	lst word		0000	0000	0000	0010	None	
		Move z _s (source) to 2	2nd word	3	1111	XXXZ	ZZZZ	zzff		
		f _d (full destination)	3rd word		1111	ffff	ffff	ffff		
MOVSS	z _s , z _d	Move z _s (source) to	1st word		1110	1011	1zzz	ZZZZ	None	
		z _d (destination)	2nd word	2	1111	XXXX	XZZZ	ZZZZ		
PUSHL	k	Push literal to POSTDEC2	2	1	1110	1010	kkkk	kkkk	None	
SUBULNK	k	Subtract (k) from FSR2 &	return	2	1110	1001	11kk	kkkk	None	

TABLE 43-2: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: Only available when extended instruction set is enabled.

4: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

TABLE 46-9: **PLL SPECIFICATIONS**

Standard Operating Conditions (unless otherwise stated) VDD $\ge 2.5V$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
PLL01	FPLLIN	PLL Input Frequency Range	4		16	MHz	()		
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	64	MHz	Note 1		
PLL03	TPLLST	PLL Lock Time from Start-up	_	200	—	Lμs			
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	_	0.25	%			
*	These n	arameters are characterized but not tested					\sim		

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.

TABLE 46-21: SPI MODE REQUIREM

Standard Operating Conditions (unless otherwise stated)									
Param No.	Symbol Characteristic		Min.	Тур†	Max.	Units	Conditions		
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25*Tcy	—		ns			
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20	—	—	ns			
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	—	—	ns			
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns			
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	_	_<	ns			
SP75*	TDOR	SDO data output rise time	_	10	25	ns	$3.0V \le VDD \le 5.5V$		
				25	50	ns	$1.8V \le VDD \le 5.5V$		
SP76*	TDOF	SDO data output fall time		10	25	ns	>		
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	10	$ - \rangle$	50 /	ns			
SP78*	TscR	SCK output rise time	- <	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$		
		(Master mode)		25	50	ns	$1.8V \le V\text{DD} \le 5.5V$		
SP79*	TscF	SCK output fall time (Master mode)			25	ns			
SP80*	TscH2doV,	SDO data output valid after SCK edge	$\mathcal{A}\mathcal{A}$	<u> </u>	50	ns	$3.0V \le V\text{DD} \le 5.5V$		
	TscL2doV	<	($\setminus -$	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$		
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tey		—	ns			
SP82*	TssL2doV	SDO data output valid after $\overline{\text{SS}}\downarrow$ edge			50	ns			
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	4.5 Tex + 40	_	_	ns			

*

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

© 2016-2017 Microchip Technology Inc.