

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

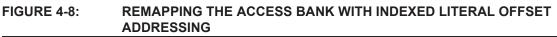
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

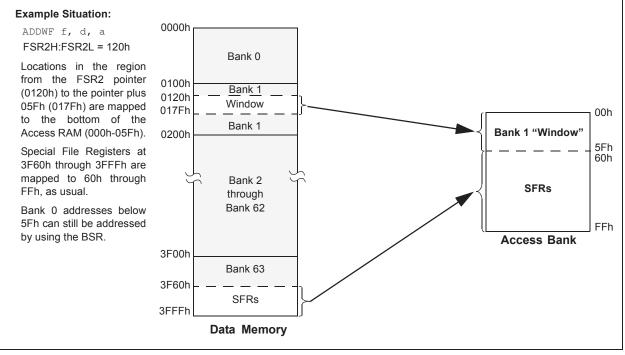
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k42-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


4.8.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE


The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see Section 4.5.2 "Access Bank"). An example of Access Bank remapping in this addressing mode is shown in Figure 4-8.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before.

4.9 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 43.2 "Extended Instruction Set**".

7.0 DEVICE CONFIGURATION INFORMATION

The Device Configuration Information (DCI) is a dedicated region in the Program memory space mapped from 3FFF00h to 3FFF09h. The data stored in these locations is ready-only and cannot be erased or modified.

Refer to Table 7-1: Device Configuration Information for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and Bootloader applications. These locations are read-only and cannot be erased or modified.

TABLE 7-1: DEVICE CONFIGURATION INFORMATION

ADDRESS	Name	DESCRIPTION	VALUE	UNITS
3FFF00h-3FFF01h	ERSIZ	Erase Row Size	32	Words
3FFF02h-3FFF03h	WLSIZ	Number of write latches	64	
3FFF04h-3FFF05h	URSIZ	Number of User Rows	See Table 7-2	Rows
3FFF06h-3FFF07h	EESIZ	EE Data memory size	256	Bytes
3FFF08h-3FFF09h	PCNT	Pin Count	28	Pins

TABLE 7-2:MEMORY SIZE AND NUMBER OF USER ROWS

Part Name	Memory size	Number of user rows
PIC18(L)F24K42	8K	256
PIC18(L)F25K42	16K	512

7.1 DIA and DCI Access

The DIA and DCI addresses are read-only and cannot be erased or modified. See Section 15.2 "Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the DIA and DCI regions, similar to the Device ID and Revision ID.

REGISTER 17-12: DMAxSCNTL – DMAx SOURCE COUNT LOW REGISTER

		-						
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
SCNT<7:0>								
bit 7							bit 0	
Legend:								

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged		

bit 7-0 SCNT<7:0>: Current Source Byte Count

REGISTER 17-13: DMAxSCNTH – DMAx SOURCE COUNT HIGH REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
_	—	—	—	SCNT<11:8>				
bit 7								

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged			

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SCNT<11:8>: Current Source Byte Count

REGISTER 17-14: DMAxDSAL – DMAx DESTINATION START ADDRESS LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	DSA<7:0>									
bit 7							bit 0			
Legend:										

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged	

bit 7-0 DSA<7:0>: Destination Start Address bits

© 2016-2017 Microchip Technology Inc.

REGISTER 17-21: DMAxDCNTH – DMAx DESTINATION COUNT HIGH REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	DCNT<11:8>			
bit 7							bit 0

Legend:

Legena.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n/n = Value at POR and 1 = bit is set BOR/Value at all other		0 = bit is cleared x = bit is unknown u = bit is unchange			
Resets					

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DCNT<11:8>: Current Destination Byte Count

REGISTER 17-22: DMAxSIRQ – DMAx START INTERRUPT REQUEST SOURCE SELECTION REGISTER

U-0	R/W-0/0						
_	SIRQ6	SIRQ5	SIRQ4	SIRQ3	SIRQ2	SIRQ1	SIRQ0
bit 7		•					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7 Unimplemented: Read as '0'

bit 6-0 **DMAxSIRQ<6:0>:** DMAx Start Interrupt Request Source Selection bits Please refer to Table 17-2 for more information.

REGISTER 17-23: DMAxAIRQ – DMAx ABORT INTERRUPT REQUEST SOURCE SELECTION REGISTER

U-0	R/W-0/0						
_	AIRQ6	AIRQ5	AIRQ4	AIRQ3	AIRQ2	AIRQ1	AIRQ0
bit 7		•	•	•	•		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7 Unimplemented: Read as '0'

bit 6-0 **DMAxAIRQ<6:0>:** DMAx Interrupt Request Source Selection bits Please refer to Table 17-2 for more information.

REGISTER 23-3: TxCLK: TIMERx CLOCK REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			CS<4:0>		
bit 7							bit 0
Legend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-5 Unimplemented: Read as '0'

bit 4-0 CS<4:0>: Timerx Clock Source Selection bits

	Timer1	Timer3	Timer5
CS	Clock Source	Clock Source	Clock Source
11111-10001	Reserved	Reserved	Reserved
10000	CLC4	CLC4	CLC4
01111	CLC3	CLC3	CLC3
01110	CLC2	CLC2	CLC2
01101	CLC1	CLC1	CLC1
01100	TMR5 overflow	TMR5 overflow	Reserved
01011	TMR3 overflow	Reserved	TMR3 overflow
01010	Reserved	TMR1 overflow	TMR1 overflow
01001	TMR0 overflow	TMR0 overflow	TMR0 overflow
01000	CLKREF	CLKREF	CLKREF
00111	SOSC	SOSC	SOSC
00110	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)
00101	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)
00100	LFINTOSC	LFINTOSC	LFINTOSC
00011	HFINTOSC	HFINTOSC	HFINTOSC
00010	Fosc	Fosc	Fosc
00001	Fosc/4	Fosc/4	Fosc/4
00000	T1CKIPPS	T3CKIPPS	T5CKIPPS

28.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 28-14.

28.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

28.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWGxAS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event. The SHUTDOWN bit indicates when a shutdown condition exists. The bit may be set or cleared in software or by hardware.

28.10.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the specified override levels without software delay. The override levels are selected by the LSBD<1:0> and LSAC<1:0> bits of the CWGxAS0 register (Register). Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Pin selected by CWGxPPS
- Timer2 post-scaled output
- Timer4 post-scaled output
- Timer6 post-scaled output
- · Comparator 1 output
- · Comparator 2 output
- CLC2 output

Shutdown input sources are individually enabled by the ASxE bits of the CWGxAS1 register (Register 28-7).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

28.10.1.3 Pin Override Levels

The levels driven to the CWG outputs during an autoshutdown event are controlled by the LSBD<1:0> and LSAC<1:0> bits of the CWGxAS0 register (Register). The LSBD<1:0> bits control CWGxB/D output levels, while the LSAC<1:0> bits control the CWGxA/C output levels.

28.10.1.4 Auto-Shutdown Interrupts

When an auto-shutdown event occurs, either by software or hardware setting SHUTDOWN, the CWGxIF flag bit of the PIR7 register is set (Register 9-5).

28.11 Auto-Shutdown Restart

After an auto-shutdown event has occurred, there are two ways to resume operation:

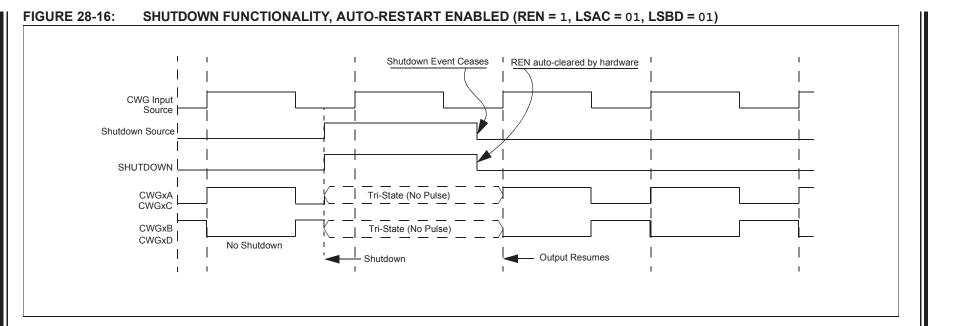
- Software controlled
- Auto-restart

In either case, the shut-down source must be cleared before the restart can take place. That is, either the shutdown condition must be removed, or the corresponding ASxE bit must be cleared.

28.11.1 SOFTWARE-CONTROLLED RESTART

If the REN bit of the CWGxAS0 register is clear (REN = 0), the CWG module must be restarted after an auto-shutdown event through software.

Once all auto-shutdown sources are removed, the software must clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.


Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

28.11.2 AUTO-RESTART

If the REN bit of the CWGxAS0 register is set (REN = 1), the CWG module will restart from the shutdown state automatically.

Once all auto-shutdown conditions are removed, the hardware will automatically clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

28.14 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripheral is shown in Table 28-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 28-1:

Peripheral	Bit Name Prefix
CWG1	CWG1
CWG2	CWG2
CWG3	CWG3

REGISTER 28-1: CWGxCON0: CWG CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	—	—		MODE<2:0>	
bit 7							bit 0

I

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 EN: CWGx Enable bit

- 1 = Module is enabled
 - 0 = Module is disabled

bit 6 LD: CWGx Load Buffers bit⁽¹⁾

- 1 = Dead-band count buffers to be loaded on CWG data rising edge, following first falling edge after this bit is set
- 0 = Buffers remain unchanged
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 MODE<2:0>: CWGx Mode bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = CWG outputs operate in Push-Pull mode
 - 100 = CWG outputs operate in Half-Bridge mode
 - 011 = CWG outputs operate in Reverse Full-Bridge mode
 - 010 = CWG outputs operate in Forward Full-Bridge mode
 - 001 = CWG outputs operate in Synchronous Steering mode
 - 000 = CWG outputs operate in Asynchronous Steering mode

Note 1: This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWGxCON0	EN	LD	—	_			MODE<2:0>		427
CWGxCON1	—	_	IN	_	POLD	POLC	POLB	POLA	428
CWGxCLK	_	_	_	_	_	_	_	CS	429
CWGxISM	—	_	—	_	_	ISM<2:0>		430	
CWGxSTR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	431
CWGxAS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	—	—	432
CWGxAS1	—	—	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	433
CWGxDBR	—	_	DBR<5:0>					434	
CWGxDBF		_			DBF<	:5:0>			434

TABLE 28-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by CWG.

30.8 NCO Control Registers

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT	POL	—	—	—	PFM
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7 bit 6 bit 5	0 = NCO1 mc Unimplemen OUT: NCO1 (Displays the c	odule is enable odule is disable odule is disable oted: Read as ' Output bit current output v	o'	CO1 module.			
bit 4		Polarity tput signal is ir tput signal is n					
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	1 = NCO1 op	Pulse Frequen erates in Pulse erates in Fixed	Frequency mo		2		

REGISTER 30-1: NCO1CON: NCO CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	_	_	—	P1<8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
hit 7 G	Unimalaman	ted. Dood oo f	<u>`</u>				
bit 7-6	Unimplemen	ted: Read as '	J				
bit 0	P1<8>: Most	Significant Bit	of Parameter	1			
	DMX mode:						
	Most Significa	int bit of numbe	r of bytes to tra	ansmit betwee	n Start Code and	d automatic Bre	eak generation
	DALI Control	Device mode:					
	Most Significa	int bit of idle tim	ie delay after v	which a Forwar	d Frame is sent.	Measured in h	nalf-bit periods
	DALI Control	<u>Gear mode</u> :					
	Most Significa	ant bit of delay	between the e	end of a Forwa	rd Frame and th	e start of the E	Back Frame
	Measured in h	nalf-bit periods					
	Other modes:						
	Not used						

REGISTER 33-12: UxP1H: UART PARAMETER 1 HIGH REGISTER

REGISTER 33-13: UxP1L: UART PARAMETER 1 LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | P1< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 P

P1<7:0>: Least Significant Bits of Parameter 1

DMX mode:

Least Significant Byte of number of bytes to transmit between Start Code and automatic Break generation

DALI Control Device mode:

Least Significant Byte of idle time delay after which a Forward Frame is sent. Measured in half-bit periods DALI Control Gear mode:

Least Significant Byte of delay between the end of a Forward Frame and the start of the Back Frame Measured in half-bit periods

LIN mode:

PID to transmit (Only Least Significant 6 bits used) <u>Asynchronous Address mode:</u> Address to transmit (9th transmit bit automatically set to '1') <u>Other modes</u>: Not used

FIGURE 34-7: CLOCKING DETAIL-MASTER MODE, CKE/SMP = 0/0

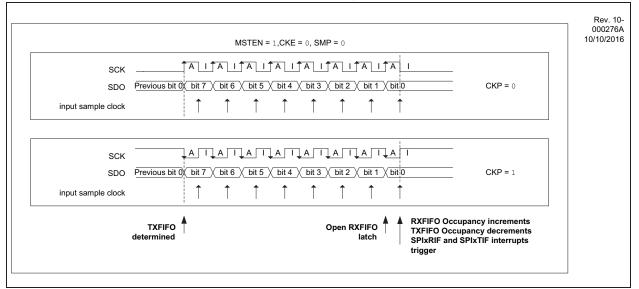
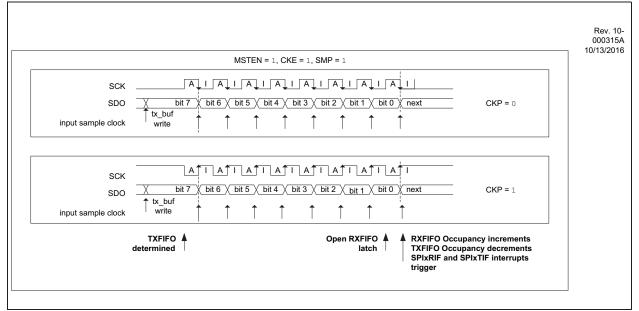
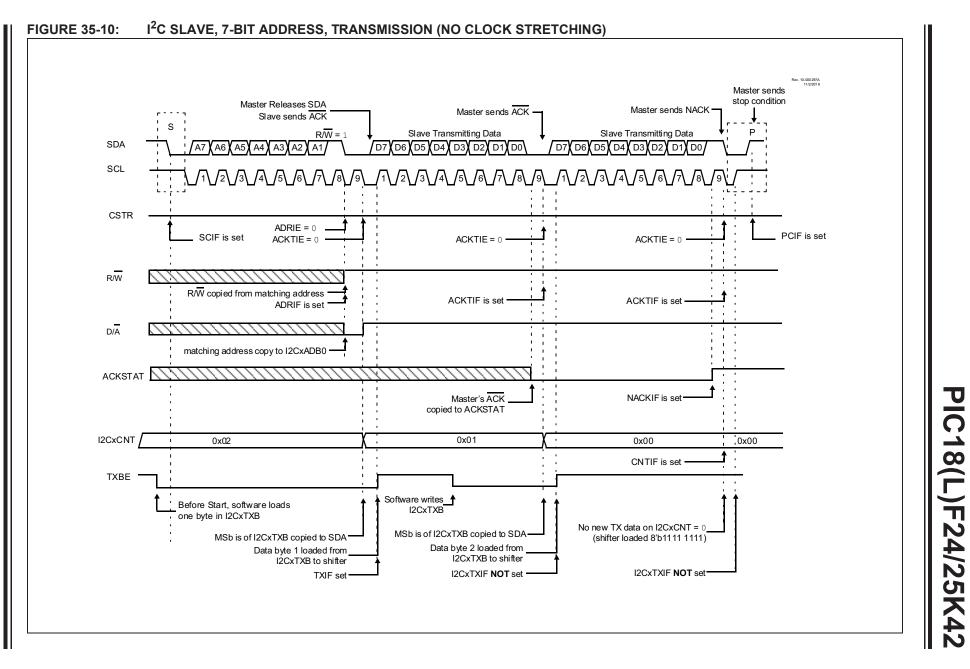
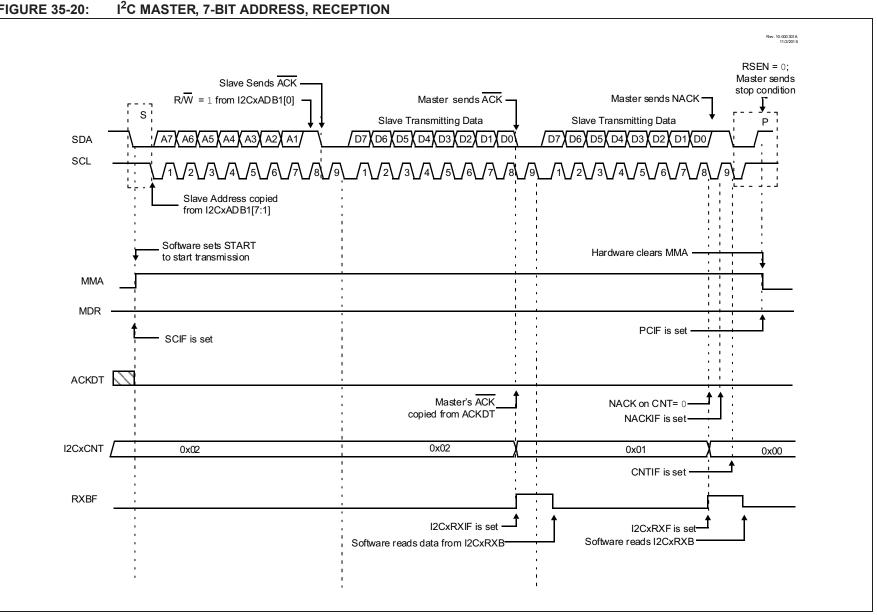





FIGURE 34-8: CLOCKING DETAIL - MASTER MODE, CKE/SMP = 1/1

FIGURE 35-20:

PIC18(L)F24/25K42

PIC18(L)F24/25K42

R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
BFRE ⁽³		MMA	R ^(1, 2)	D			
bit 7	01111		IX. I	D			bit
							Dit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							
1' = Bit is	set	'0' = Bit is cle	eared	HS = Hardwa	are set HC	= Hardware clea	r
oit 7	BFRE: Bus F	- ree Status bit ⁽	3)				
		s the I ² C bus is					
				for time-out se ource for this bit		CON2 <bfret<1< td=""><td>:0>> bits.</td></bfret<1<>	:0>> bits.
				ected, this bit r			
oit 6		Nodule Active			,		
				a received mate	ching 7-bit sla	ve address	
						lave low addres	S
					ching 10-bit sla	ave high w/ read	address, or
		previous match by any Restar					
		d by BTOIF and					
bit 5	MMA: Maste	r Module Activ	e Status bit				
	1 = Master	Mode state ma	chine is active	9			
				erts a Start on b	DUS		
		state machine when BCLIF i					
		when Stop is		master.			
			-		essfully shifts o	out a Stop condit	ion.
bit 4	R: Read Info	rmation bit ^{(1, 2}	.)				
			•	(high) address		equest	
	0 = Indicates	s the last matc	ning received	(high) address	was a Write		
bit 3	D: Data bit						
				insmitted was d insmitted was a			
bit 2-0		nted: Read as					
Note 1:	This bit holds the					h. Addresses tra	nsmitted by
	the Master or app						
2:	Clock requests an	•	•			es.	
3.	Software must use	e the EN bit to	torce Master o	or Slave hardwa	are to Idle		

3: Software must use the EN bit to force Master or Slave hardware to Idle.

41.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

41.7 Operation During Idle and Doze Modes

In both Idle and Doze modes, the module is active and events are generated if peripheral is enabled.

41.8 Operation During Freeze

When in Freeze mode, no new event or interrupt can be generated. The state of the LRDY bit is frozen.

Register reads and writes through the CPU interface are allowed.

41.9 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

PIC18(L)F24/25K42

RCALL Relative Call									
Synta	ax:	RCALL n	RCALL n						
Oper	ands:	-1024 ≤ n ≤	1023						
Oper	ation:	· · /	$\begin{array}{l} (PC) + 2 \rightarrow TOS, \\ (PC) + 2 + 2n \rightarrow PC \end{array}$						
Statu	is Affected:	None							
Enco	oding:	1101	1nnn	nnnı	n	nnnn			
Word		from the cu address (PC stack. Then number '2n' have incren instruction, PC + 2 + 2r	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.						
,	vcle Activity:	2							
	Q1	Q2	Q3	3		Q4			
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat		Wri	te to PC			
	No operation	No operation	No opera	·	ор	No eration			

Example: HERE RCALL Jump

> Before Instruction PC = Address (HERE) After Instruction

PC = TOS= Address (Jump) Address (HERE + 2)

RESET Reset							
Syntax: RESET							
Oper	ands:	None					
Oper	ation:		Reset all registers and flags that are affected by a MCLR Reset.				
Statu	s Affected:	All					
Enco	ding:	0000	0000	1111 1111		1111	
Desc	ription:	This instru execute a	<u>.</u>			·	
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3	Q3		Q4	
	Decode	Start		No		No	
		Reset	opera	tion	op	peration	

Example:

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

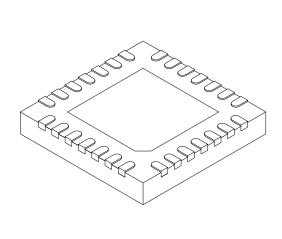
PIC18(L)F24/25K42

SUBWF	Subtract	W from f					
Syntax:	SUBWF	f {,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(f) – (W) –	$(f) - (W) \rightarrow dest$					
Status Affected:	N, OV, C, I	N, OV, C, DC, Z					
Encoding:	0101	11da fff	f ffff				
Description:	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 43.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
Example 1:	SUBWF	REG, 1, 0					
Before Instruct REG W C	tion = 3 = 2 = ?						
After Instructio REG W C Z N	= 1 = 2	esult is positive	2				
Example 2:	SUBWF	REG, 0, 0					
Before Instruct REG C After Instructio REG W	= 2 = 2 = ? n = 2 = 0						
C Z N	= 1 ; re = 1 = 0	esult is zero					
Example 3:	SUBWF	REG, 1, 0					
Before Instruct REG W C	tion = 1 = 2 = ?						
After Instructio REG		's complement)				
W C Z N	= 2	esult is negativ	,				

SUBWFB	Subtract	W from f with	h Borrow					
Syntax:	SUBWFB	f {,d {,a}}						
Operands:	$0 \leq f \leq 255$							
		$d \in [0,1]$						
Operation:	$a \in [0,1]$ (f) - (W) - (\overline{C}) \rightarrow dest							
Status Affected:	$(f) - (W) - (C) \rightarrow dest$ N, OV, C, DC, Z							
Encoding:	0101							
Description:		and the CARR						
	ment meth	od). If 'd' is '0', '	the result is					
		/. If 'd' is '1', the ‹ in register 'f' (
		he Access Ban						
		he BSR is used	to select the					
	GPR bank. If 'a' is '0' a	nd the extende	d instruction					
	set is enab	led, this instruc	tion operates					
		Literal Offset A never f ≤ 95 (5F	•					
		"Byte-Oriente						
		nstructions in						
Marda	eral Offset	Mode" for det	alis.					
Words: Cycles:	1							
Q Cycle Activity:	I							
Q1	Q2	Q3	Q4					
Decode	Read	Process	Write to					
Example 1:	register 'f'	Data	destination					
Before Instruct	tion	1120, 2, 0						
REG W	= 19h = 0Dh	(0001 100 (0000 110						
С	= 1	(
After Instructio								
REG	n = 0Ch	(0000 110)0)					
REG W	= 0Ch = 0Dh	(0000 110 (0000 110						
REG	= 0Ch = 0Dh = 1 = 0	(0000 110)1)					
REG W C Z N	= 0Ch = 0Dh = 1 = 0 = 0	(0000 110); result is po)1)					
REG [₩] C Z N <u>Example 2</u> :	= 0Ch = 0Dh = 1 = 0 = 0 SUBWFB	(0000 110)1)					
REG [₩] C Z N Example 2: Before Instruct REG	= 0Ch = 0Dh = 1 = 0 = 0 SUBWFB	(0000 110 ; result is po REG, 0, 0 (0001 101	1) psitive					
REG [₩] C Z N <u>Example 2</u> : Before Instruct	= 0Ch = 0Dh = 1 = 0 = 0 SUBWFB	(0000 110 ; result is po REG, 0, 0	1) psitive					
REG W C Z N Example 2: Before Instruct REG W C After Instructio	= 0Ch = 0Dh = 1 = 0 = 0 SUBWFB tion = 1Bh = 1Ah = 0 n	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101	1) 1) 0)					
REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W	= 0Ch = 0Dh = 1 = 0 = 0 SUBWFB tion = 1Bh = 1Ah = 0 n = 1Bh = 00h	(0000 110 ; result is po REG, 0, 0 (0001 101	1) 1) 0)					
REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z	= 0Ch = 0Dh = 1 = 0 SUBWFB tion = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 1	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101	1) sitive 1) 0) 1)					
REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C After N	= 0Ch = 0Dh = 1 = 0 SUBWFB tion = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 1 = 0	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 ; result is ze	1) sitive 1) 0) 1)					
REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3:	= 0Ch = 0Dh = 1 = 0 = 0 SUBWFB tion = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 1 = 0 SUBWFB	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101	1) sitive 1) 0) 1)					
REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG	= 0Ch = 0Dh = 1 = 0 SUBWFB ition = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 1 = 0 SUBWFB ition = 1 = 0 SUBWFB	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 ; result is ze REG, 1, 0 (0000 001	1) ositive 1) 0) 1) Pro					
REG [₩] Z N Example 2: Before Instructo REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C Z N	= 0Ch = 0Dh = 1 = 0 SUBWFB tion = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 0 SUBWFB tion = 0 = 0 SUBWFB = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 ; result is ze REG, 1, 0	1) ositive 1) 0) 1) Pro					
REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG M C After Instruction REG M C	= 0Ch = 0Dh = 1 = 0 SUBWFB tion = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 1 = 0 SUBWFB tion = 0 SUBWFB = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 (0001 101 ; result is ze REG, 1, 0 (0000 001 (0000 111	1) psitive 1) 0) 1) Pro 1) 0)					
REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG W C After Instructor REG M C After Instructor REG M C C After Instructor REG M C C After Instructor REG M C C After Instructor REG	= 0Ch = 0Dh = 1 = 0 SUBWFB ition = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 0 SUBWFB ition = 0Sh = 0 = 0 = 0 SUBWFB ition = 1 = 0 SUBWFB ition = 1 = 0 = 0 = 1 = 10 = 0 = 10 = 0 SUBWFB ition = 05 =	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 ; result is ze REG, 1, 0 (0000 001 (0000 111 (1111 010 ; [2's comp]	1) psitive 1) 0) 1) pro 1) 0) 1)					
REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C After Instructio REG M C After Instructio REG W C After Instructio REG W C After Instructio REG W C After Instructio REG W C Z N N Example 3: Before Instruct REG W C Z N N Example 3: Before Instruct REG W C Z N N Example 3: C After Instructor REG W C Z N N Example 3: C After Instructor REG W C Z N N Example 3: C After Instructor REG W C Z N N Example 3: C After Instructor REG W C Z N N Example 3: C After Instructor REG W C Z N N C After Instructor REG W C Z After Instructor REG W C After Instructor REG W C After Instructor REG W C After Instructor REG W C After Instructor REG W C		(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 ; result is ze REG, 1, 0 (0000 001 (0000 111 (1111 010	1) psitive 1) 0) 1) pro 1) 0) 1)					
REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG W C After Instructon REG W C After Instructon REG W C Z N N Example 3: Before Instructon REG W C Z N N Example 3: Before Instructon REG W C Z N Example 3: Before Instructon REG W C Z N Example 3: Before Instructon REG W C Z N Example 3: After Instructon REG W C Z N Example 3: Before Instructon REG W C Z N Example 3: M C After Instructon REG W C Z N Example 3: M C After Instructon REG W C Z N Example 3: M C After Instructon REG W C Z N Example 3: M C After Instructon REG W C Z After Instructon REG W C Z After Instructon REG W C Z After Instructon REG W C Z After Instructon REG W C Z After Instructon REG W C After Instructon REG W	= 0Ch ODh = 1 O SUBWFB SUBWFB ion = 1Bh = 1Ah = 0 n = 1Bh = 00h = 1 = 0 SUBWFB ion = 0 SUBWFB ion = 1 = 0 SUBWFB ion = 55h = 0Eh = 0Eh	(0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 ; result is ze REG, 1, 0 (0000 001 (0000 111 (1111 010 ; [2's comp]	1) psitive 1) 0) 1) Pro 1) 0) 1) 0) 1) 0)					

PIC18LF	24/25K42		Standard Operating Conditions (unless otherwise stated)						
PIC18F2	24/25K42								
Param.	0hal	Duvies Obernsteriation					Conditions		
No.	Symbol	Device Characteristics	Min.	Тур.†	Max.	Units	VDD	Note	
D100	IDD _{XT4}	XT = 4 MHz	—	560	1000	μΑ	3.0V	\land	
D100	IDD _{XT4}	XT = 4 MHz	—	730	1100	μΑ	3.0V		
D100A	IDD _{XT4}	XT = 4 MHz	—	370	—	μΑ	3.0V	PMØ 's all ⊥'s	
D100A	IDD _{XT4}	XT = 4 MHz	—	590	—	μΑ	3.0V	PMD's all 1's	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	2.2	3.7	mA	3.0V	\frown \bigcirc	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	2.3	3.8	mA	3.0V		
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.4	—	mA	∕3.0√	PMD's all 1's	
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.4	—	mA	3.0V	PM D's all ⊥'s	
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	8.0	11.1	mA	3.00		
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	8.0	11.2/	mA/	3.0V	\searrow	
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	4.8		μA	3.0V	PMD's all 1's	
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	4.8	- \	mA	73.0V	₽MD's all 1's	
D103	IDD _{HSPLL64}	HS+PLL = 64 MHz	—	8.0	11.1	mA	/3.0V		
D103	IDD _{HSPLL64}	HS+PLL = 64 MHz	—	8.0	11.2	mA	∖3.0V		
D103A	IDD _{HSPLL64}	HS+PLL = 64 MHz		4.8	$\langle - \rangle$	mA	3.0V	PMD's all 1's	
D103A	IDD _{HSPLL64}	HS+PLL = 64 MHz	$\left \right\rangle$	4.8	\rightarrow	mA	3.0V	PMD's all 1's	
D104	IDD _{IDLE}	IDLE mode, HFINTOSC = 16 MHz		1.8		-mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	\neq	1.8		mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.8	KŻ.	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.9	—	mA	3.0V		

TABLE 46-2: SUPPLY CURRENT (IDD)^(1,2,4)


Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. † Note 1:

The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low (MCLR = VDD WDT disabled. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. $IDD_{DOZE} = [IDD_{IDLE}^*(N-1)/N] + IDD_{HFO} T6/N where N = QOZE Ratio (Register 12-2).$ 2:

- 3:
- PMD bits are all in the default state, no modules are disabled. 4:

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	М	ILLIMETERS	6		
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Z	28				
Pitch	е	0.65 BSC				
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.20		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20		
Terminal Width	b	0.23	0.30	0.35		
Terminal Length	L	0.50	0.55	0.70		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2