

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k42-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES

Features	PIC18(L)F24K42	PIC18(L)F25K42			
Program Memory (Bytes)	16384	32768			
Program Memory (Instructions)	8192	16384			
Data Memory (Bytes)	1024	2048			
Data EEPROM Memory (Bytes)	256	256			
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,E ⁽¹⁾			
Capture/Compare/PWM Modules (CCP)	4	4			
10-Bit Pulse-Width Modulator (PWM)	4	4			
12-Bit Analog-to-Digital Module (ADC ²) with Computation Accelerator	5 internal 24 external	5 internal 24 external			
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN			
Timers (16-/8-bit)		/3			
Serial Communications	2 UART, 2	2 I ² C, 1 SPI			
Enhanced Complementary Waveform Generator (ECWG)		3			
Zero-Cross Detect (ZCD)		1			
Data Signal Modulator (DSM)	1				
Signal Measurement Timer (SMT)		1			
5-Bit Digital-to-Analog Converter (DAC)	1				
Numerically Controlled Oscillator (NCO)	1				
Comparator Module		2			
Direct Memory Access (DMA)		2			
Configurable Logic Cell (CLC)		4			
Peripheral Pin Select (PPS)	Y	es			
Peripheral Module Disable (PMD)	Y	es			
16-bit CRC with Scanner	Y	es			
Programmable High/Low-Voltage Detect (HLVD)	Y	es			
Programmable Brown-out Reset (BOR)	Y	es			
Resets (and Delays)	RESET Ir Stack C Stack U (PWR]	BOR, hstruction, Overflow, nderflow r, OST), ry Execution Violation			
Instruction Set		ructions; struction Set enabled			
Operating Frequency	64	MHz			

Note 1: PORTE contains the single RE3 input-only pin.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
3FCEh	PORTE	_	_	_	_	RE3	_	_	—	x
3FCDh	_				Unimple	emented	•			-
3FCCh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	*****
3FCBh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXXXXXX
3FCAh	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXXXXXX
3FC9h - 3FC5h	—		Unimplemented							
3FC4h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11111111
3FC3h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	11111111
3FC2h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11111111
3FC1h - 3FBDh	—				Unimple	emented				—
3FBCh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXXXXXX
3FBBh	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXXXXXX
3FBAh	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXXXXXX
3FB9h	T0CON1		CS<2:0>		ASYNC		CKPS	8<3:0>		00000000
3FB8h	T0CON0	EN	—	OUT	MD16		OU	TPS		0-000000
3FB7h	TMR0H				TMF	ROH				11111111
3FB6h	TMR0L				TM	R0L				00000000
3FB5h	T1CLK				С	S				00000
3FB4h	T1GATE				GS	SS				00000
3FB3h	T1GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	_	_	00000x
3FB2h	T1CON	—	—	CKPS	<1:0>	—	SYNC	RD16	ON	00-000
3FB1h	TMR1H				TMF	R1H				00000000
3FB0h	TMR1L				TM	R1L				00000000
3FAFh	T2RST	—	—	_			RSEL			00000
3FAEh	T2CLK	—	—	—	—		C	S		0000
3FADh	T2HLT	PSYNC	CKPOL	CKSYNC			MODE			00000000
3FACh	T2CON	ON		CKPS			OU	TPS		00000000
3FABh	T2PR				PF	R2				11111111
3FAAh	T2TMR				TM	IR2				00000000
3FA9h	T3CLK				С	S				00000
3FA8h	T3GATE				GS	SS				00000
3FA7h	T3GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	—	—	00000x
3FA6h	T3CON	—	—	СК	PS	—	NOT_SYNC	RD16	ON	00-000
3FA5h	TMR3H				TMF	R3H				00000000
3FA4h	TMR3L				TM	R3L				00000000
3FA3h	T4RST	—	—	—			RSEL			00000
3FA2h	T4CLK	—	—	—			C	S		0000
3FA1h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE			00000000
3FA0h	T4CON	ON		CKPS			OU	TPS		00000000
3F9Fh	T4PR		PR4							
3F9Eh	T4TMR				TM	IR4				00000000
3F9Dh	T5CLK				С	S				00000
3F9Ch	T5GATE				G	SS				00000
3F9Bh	T5GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	_	—	00000x
3F9Ah	T5CON	—	—	CK	PS	—	NOT_SYNC	RD16	ON	00-000
3F99h	TMR5H				TMF	R5H				00000000
	TMR5L	1	TMR5L							

TABLE 4-11: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

 $\label{eq:logend: second sec$

Note 1: Not present in LF devices.

PIC18(L)F24/25K42

REGISTER 5	-7: CONFI	GURATION V	VORD 4L (3	0 0006h)				
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
WRTAPP (1)	—	-	SAFEN (2)	BBEN (2)		BBSIZE<2:0> (3	3)	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '1'		
-n = Value for I	blank device	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unk	nown	
	0 = Applicati	ion Block NOT on Block write	protected	a				
bit 6-5	Unimplemen	ted: Read as '1	Ĺ					
bit 4	1 = SAF dis							
bit 3	it 3 BBEN: Boot Block Enable bit 1 = Boot Block disabled 0 = Boot Block enabled							
bit 2-0								

Note 1: Once protection is enabled through ICSP or a self write, it can only be reset through a bulk erase.

- **2:** See Table 4-2 for Program Flash Memory Partition.
- **3:** BBSIZE bits can only be changed when BBEN = 1. Once BBEN = 0, BBSIZE can only be changed through a bulk erase.

BBEN	BBSIZE<2:0>	Boot Block Size		Device Size ⁽¹⁾		
DDEN	BB3IZE<2:02	(words)	END_ADDRESS_BOOT	8K Words	16K Words	
1	XXX	0	—	Х	Х	
0	111	512	00 03FFh	Х	Х	
0	110	1024	00 07FFh	Х	Х	
0	101	2048	00 0FFFh	Х	Х	
0	100	4096	00 1FFFh	Х	Х	
0	011	8192	00 3FFFh	—	Х	
0	010	16384	00 7FFFh	—	—	
0	001	32768	00 FFFFh	No	te 2	
0	000	32768	00 FFFFh	—	_	

TABLE 5-1:BOOT BLOCK SIZE BITS

Note 1: See Table 5-1 for Device Size.

2: The maximum boot block size is half the user program memory size. All selections higher than the maximum size default to maximum boot block size of half PFM. For example, all settings of BBSIZE = 000 through BBSIZE = 100, default to a boot block size of 4 kW on a 8 kW device.

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HC-1/u	U-0		
—	_	_	—	—	—	MEMV	—		
bit 7 bit 0									
Legend:									
R = Readable b	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is uncha	inged	x = Bit is unkn	own	-m/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition					

REGISTER 8-3: PCON1: POWER CONTROL REGISTER 1

bit 7-2	Unimplemented: Read as '0'

bit 1 **MEMV:** Memory Violation Flag bit

1 = No memory violation Reset occurred or set to '1' by firmware

0 = A memory violation Reset occurred (set to '0' in hardware when a Memory Violation occurs)

bit 0 Unimplemented: Read as '0'

TABLE 8-4: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN				_			BORRDY	90
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	95
PCON1	_	_	_	_	_	_	MEMV	_	96

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCNTIE	DMA2SCNTIE	C2IE	INT1IE				
bit 7			•				bit (
Legend:											
R = Readab		W = Writable b	it	-	ented bit, read as						
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all ot	her Resets				
'1' = Bit is se	et	'0' = Bit is clea	red								
bit 7		² C2 Transmit Int	errupt Enable b	it							
		1 = Enabled									
1.1.0	0 = Disable	_									
bit 6		XIE: I ² C2 Receive Interrupt Enable bit									
	1 = Enabled 0 = Disabled										
bit 5		- DMA2 Abort Inte	rrupt Enable bit								
	1 = Enabled										
	0 = Disabled										
bit 4	DMA2ORIE: DMA2 Overrun Interrupt Enable bit										
	1 = Enabled										
	0 = Disabled										
bit 3	DMA2DCNTIE: DMA2 Destination Count Interrupt Enable bit										
	1 = Enabled										
L:1 0	0 = Disable			at Eachte bit							
bit 2	1 = Enabled	TE: DMA2 Source	e Count Interru	pt Enable bit							
	0 = Disable										
bit 1		errupt Enable bi	t								
	1 = Enabled										
	0 = Disable	d									
bit 0	INT1IE: Exte	ernal Interrupt 1	Enable bit								
	1 = Enabled										
	0 = Disable	-1									

REGISTER 11-19: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

14.0 8x8 HARDWARE MULTIPLIER

14.1 Introduction

All PIC18 devices include an 8x8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 14-1.

14.2 Operation

Example 14-1 shows the instruction sequence for an 8x8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 14-2 shows the sequence to do an 8x8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 14-1: 8x8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;				
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRODE	1:1	PRODL	

EXAMPLE 14-2: 8x8 SIGNED MULTIPLY

		R	JUTINE
MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH: PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time				
Routine	Multiply Method	Memory (Words)	(Max)	@ 64 MHz	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9v9 uppigpod	Without hardware multiply	13	69	4.3 μs	6.9 μs	27.6 μs	69 μs	
8x8 unsigned	Hardware multiply	1	1	62.5 ns	100 ns	400 ns	1 μs	
9v9 signed	Without hardware multiply	33	91	5.7 μs	9.1 μs	36.4 μs	91 μs	
8x8 signed	Hardware multiply	6	6	375 ns	600 ns	2.4 μs	6 μs	
16v16 unsigned	Without hardware multiply	21	242	15.1 μs	24.2 μs	96.8 μs	242 μs	
16x16 unsigned	Hardware multiply	28	28	1.8 μs	2.8 μs	11.2 μs	28 μs	
16x16 aignod	Without hardware multiply	52	254	15.9 μs	25.4 μs	102.6 μs	254 μs	
16x16 signed	Hardware multiply	35	40	2.5 μs	4.0 μs	16.0 μs	40 μs	

TABLE 14-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

17.9.5 OVERRUN INTERRUPT

The Overrun Interrupt flag is set if the DMA receives a trigger to start a new message before the current message is completed.

Instruction	() 111111	@ וחחח	<u>э</u> ПППП	() () ()	9 1000	6 0000	0 ПППП	® ПППП	9 ПППП	<u>ө</u> пппп	<u>ө</u> ПППП	ש וחחחר	9 1000	₪ 1000	₽ 1000	6) ПППП	₽ 000000000000000000000000000000000000	<u>в</u> ПППП	Rev. 10-000275E 87112016
Clock										JUUUL									
EN	,																		
SIRQEN																			
Source Hardware Trigger -			ſ					1											
DGO-																			
DMAxSPTR			0x100)		(0x	101	χ		0x100		Х	0x1	01			0x100)	
DMAxDPTR			0x200)		0x	201	χ		0x202		X	0x2	03			0x200)	
DMAxSCNT			2			Χ	1	χ		2		Х	1	.)			2		
DMAxDCNT	$\langle $		4			Χ	3	χ		2		Х	1	.)			4		
DMA STATE		IDLE		SR ⁽¹⁾	DW ⁽²⁾	SR ⁽¹⁾	DW ⁽²⁾	χ	IDLE		SR ⁽¹⁾	DW ⁽²⁾	SR ⁽¹⁾	DW ⁽²⁾			IDLE		
DMAxSCNTIF							ſ]					Γ					
DMAxORIF																			
	DMA	xCON1 xSSA xSSZ	bits.SM 0x10 0x2	10		DMAxD DMAxD		0x200 0x20											
Note 1:	SR -	Sour	ce Re	ad					-										
2:	DW -	Dest	inatic	on Wr	ite														

FIGURE 17-9: OVERRUN INTERRUPT

REGISTER 17-15: DMAxDSAH – DMAx DESTINATION START ADDRESS HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
DSA<15:8>										
bit 7							bit 0			
Legend:										

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 DSA<15:8>: Destination Start Address bits

REGISTER 17-16: DMAxDPTRL – DMAx DESTINATION POINTER LOW REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
DPTR<7:0>										
bit 7							bit 0			
l edenq.										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 DPTR<7:0>: Current Destination Address Pointer

REGISTER 17-17: DMAxDPTRH – DMAx DESTINATION POINTER HIGH REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
DPTR<15:8>								
bit 7							bit 0	

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged			

bit 7-0 **DPTR<15:8>:** Current Destination Address Pointer

© 2016-2017 Microchip Technology Inc.

Trigger

Source

Level

Triggered

DMAxSIRQ

DMAxAIRQ

TABLE 17-2:	DMAxSIRQ AND DMAxAIRQ						
DMAxSIRQ DMAxAIRQ	Trigger Source	Level Triggered					
0	Reserved	·					
1	LVD	No					
2	OSF	No					
3	CSW	No					
4	NVM	No					
5	SCAN	No					
6	CRC	No					
7	IOC	Yes					
8	INT0	No					
9	ZCD	No					
10	AD	No					
11	ADT	No					
12	CMP1	No					
13	SMT1	No					
14	SMT1PRA	No					
15	SMT1PWA	No					
16	DMA1SCNT	No					
17	DMA1DCNT	No					
18	DMA10R	No					
19	DMA1A	No					
20	SPI1RX	Yes					
21	SPI1TX	Yes					
22	SPI1	Yes					
23	I2C1RX	Yes					
24	I2C1TX	Yes					
25	I2C1	Yes					
26	I2C1E	Yes					
27	U1RX	Yes					
28	U1TX	Yes					
29	U1E	Yes					
30	U1	No					
31	TMR0	No					
32	TMR1	No					
33	TMR1G	No					
34	TMR2	No					
35	CCP1	No					
36	Reserved	·					
37	NCO	No					
38	CWG1	No					
39	CLC1	No					
40	INT1	No					
41	CMP2	No					

TABLE 17-2: DI	MAXSIRQ AND DMAXAIRQ INTERRUPT SOURCES
----------------	--

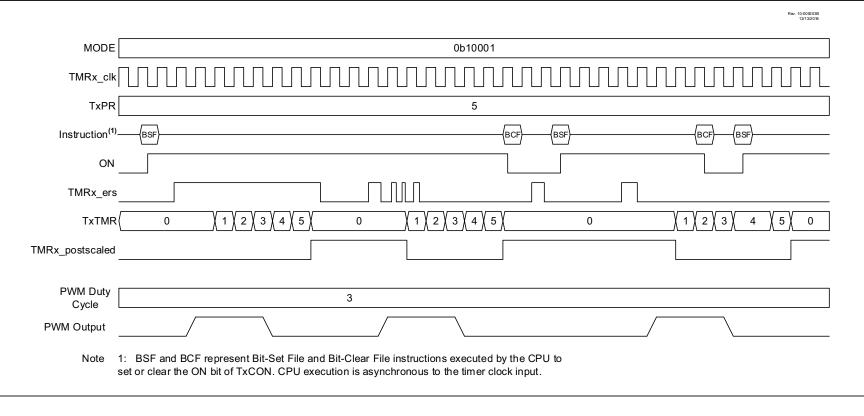
42 DMA2SCNT No 43 DMA2DCNT No 44 DMA2OR No 45 DMA2A No I2C2RX 46 Yes 47 I2C2TX Yes I2C2 48 Yes 49 I2C2E Yes U2RX 50 Yes 51 U2TX Yes 52 U2E Yes U2 53 No 54 TMR3 No 55 TMR3G No 56 TMR4 No CCP2 57 No 58 Reserved CWG2 59 No CLC2 60 No INT2 61 No 62 Reserved 63 Reserved 64 Reserved 65 Reserved 66 Reserved 67 Reserved 68 Reserved 69 Reserved 70 TMR5 No 71 TMR5G No 72 TMR6 No CCP3 73 No 74 CWG3 No CLC3 75 No 76 Reserved 77 Reserved 78 Reserved 79 Reserved CCP4 80 No 81 CLC4 No Reserved 82 _ 127

Note 1: All trigger sources that are not Level-triggered are Edge-triggered.

IADLE 17-5:	JUNINA		GISTERS	A33001					
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
DMAxCON0	EN	SIRQEN	DGO	_	—	AIRQEN	_	XIP	252
DMAxCON1	DMOD	E<1:0>	DSTP	SMR	<1:0>	SMOD	E<1:0>	SSTP	253
DMAxBUF	DBUF7	DBUF6	DBUF5	DBUF4	DBUF3	DBUF2	DBUF1	DBUF0	254
DMAxSSAL				SSA	<7:0>				254
DMAxSSAH		SSA<15:8>						254	
DMAxSSAU	—	— SSA<21:16>							255
DMAxSPTRL				SPTR	<7:0>				255
DMAxSPTRH				SPTR	<15:8>				255
DMAxSPTRU	—	SPTR<21:16>						256	
DMAxSSZL		SSZ<7:0>							256
DMAxSSZH	—	—	—	— — SSZ<11:8>					
DMAxSCNTL				SCNT	<7:0>				257
DMAxSCNTH	—	—		—		SCNT	<11:8>		257
DMAxDSAL				DSA	<7:0>				257
DMAxDSAH				DSA<	:15:8>				258
DMAxDPTRL				DPTF	R<7:0>				258
DMAxDPTRH				DPTR	<15:8>				258
DMAxDSZL				DSZ	<7:0>				259
DMAxDSZH		—	_	—		DSZ<	:11:8>		259
DMAxDCNTL				DCN1	<7:0>				259
DMAxDCNTH		—	—	_		DCNT	<11:8>		260
DMAxSIRQ		SIRQ6	SIRQ5	SIRQ4	SIRQ3	SIRQ2	SIRQ1	SIRQ0	260
DMAxAIRQ	_	AIRQ6	AIRQ5	AIRQ4	AIRQ3	AIRQ2	AIRQ1	AIRQ0	260

TABLE 17-3:	SUMMARY OF REGISTERS ASSOCIATED WITH DMA
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by DMA.


24.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the T2PR period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the T2PR value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

FIGURE 24-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

REGISTER 29-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	_	_	—	CLC4OUT	CLC3OUT	CLC2OUT	CLC1OUT
bit 7							bit 0

Legend:

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	CLC4OUT: Mirror copy of OUT bit of CLC4CON register
bit 2	CLC3OUT: Mirror copy of OUT bit of CLC3CON register
bit 1	CLC2OUT: Mirror copy of OUT bit of CLC2CON register
bit 0	CLC1OUT: Mirror copy of OUT bit of CLC1CON register

TABLE 29-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CLCxCON	EN	_	OUT	INTP	INTN		MODE<2:0>			
CLCxPOL	POL	_	_	—	G4POL	G3POL	G2POL	G1POL	460	
CLCxSEL0	_	_		D1S<5:0>						
CLCxSEL1	_	_		D2S<5:0>						
CLCxSEL2	—	_		D3S<5:0>						
CLCxSEL3	—	_		D4S<5:0>						
CLCxGLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	462	
CLCxGLS1	G2D4T	G2D4N	G2D3T	G2D3T G2D3N G2D2T G2D2N G2D1T G2D1N						
CLCxGLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	464	
CLCxGLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	465	
CLCDATA	_	_	_	_	CLC4OUT	CLC3OUT	CLC2OUT	CLC10UT	465	

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

33.6 DALI Mode (UART1 only)

DALI is a protocol used to control lighting in large buildings such as offices and factories. It consists of two modes: 'Control Device' and 'Control Gear'. A control device is the main controller that sends out commands to the lighting fixtures. The lighting fixture itself is known as control gear. All bit transmission is done in Manchester encoding, which is done by the hardware.

Manchester encoding contains the clock and data in a single bit stream. A bit always has a transition in the middle of the bit period and may or may not have a transition at the bit period boundaries. When consecutive bits are the same value then there will be a transition at the bit boundary. When the bit value changes then there will not be a transition at the bit boundary.

When ABDEN = 0, the receiver bit rate is determined by the BRG register. Otherwise, when ABDEN = 1, the first bit synchronizes the receiver to the transmitter and sets the receiver bit rate. The Start bit low period is measured and used as the timing reference for all data bits. The ABDOVF bit will be set if the Start bit low period causes the measurement counter to overflow. All bits that follow the Start bit are data bits. The bit stream terminates when there is no transition sensed in the middle of a bit period. See Figure 33-7.

The DALI wire is half-duplex: The transmit and receive lines are electrically tied together through an interface circuit such as a diode bridge. Wait periods between frames ensure that the Forward and Back Frames do not collide.

Unlike all other protocols, DALI is transmitted MSb first. The transaction starts when the 'control device' starts a transmission. A control device transmission is called the 'Forward Frame' and consists of two bytes in DALI 1.0 or three bytes in DALI 2.0. The first byte is the control followed by one or two data bytes. Typical frame timing is shown in Figure 33-8.

When writing code for DALI 2.0 Devices, where three bytes must be transmitted, the software must write the third byte to UxTXB as soon as UxTXIF goes true and before the output shifter becomes empty. This will ensure that three bytes are transmitted back-to-back without interruption.

All control gear on the line receive the 'Forward Frame'. One of the control gear may respond to this with a single byte in reply, called the 'Back Frame'. The DALI protocol requires that the Back Frame must begin to be received between 3.5 to 11 bit periods after the Forward Frame. If a Back Frame is received, the control device is required to wait a minimum of 11 bit periods after the end of the Back Frame. After this time, the control device is free to transmit another Forward Frame. See Figure 33-9. Forward and Back Frames are terminated by two idle bit periods or Stop bits. Normally these start in the first bit period of a byte. If both Stop bits are valid, the byte reception is terminated without further action.

If either Stop bit is invalid, the frame is tagged as invalid by saving a null byte, with the framing error set, in the receive FIFO.

A framing error will also occur when a no-transition is detected in the middle of a bit period and the byte in progress is not complete. In this case, the byte will be saved with the FERIF bit set.

33.6.1 DALI DEVICE TRANSMITTER

DALI Control Device mode is configured with the following settings:

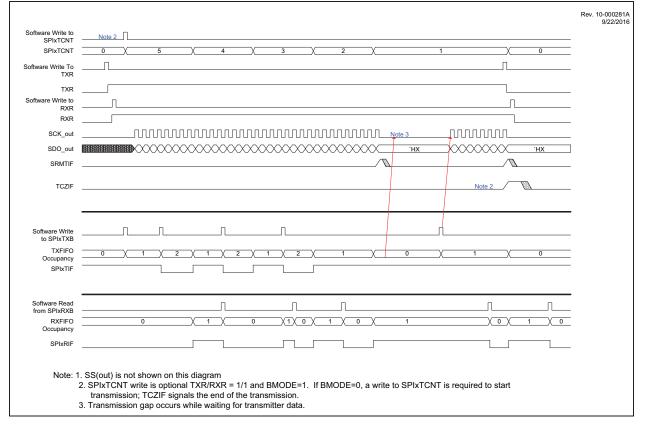
- MODE<3:0> = 1000
- TXEN = 1
- RXEN = 1
- UxP1 = Forward Frames are held for transmission this number of half-bit periods after the completion of a Forward or Back Frame.
- UxP2 = Forward/Back Frame threshold delimiter. Any reception that starts this number of half bit periods after the completion of a Forward or Back Frame is detected as Forward Frame and sets the PERIF flag of the corresponding received byte.
- UxBRGH:L = Value to achieve 1200 baud rate
- TXPOL = appropriate polarity for interface circuit
- STP<1:0> = 10 for two Stop bits
- RxyPPS = TX pin selection code
- TX pin TRIS control = 0
- ON = 1

A Forward Frame is initiated by writing the control byte to the UxTXB register. Each data byte after the control byte must be written to the UxTXB register as soon as UxTXIF goes true. It is important that every write is performed after UxTXIF goes true, to ensure the transmit buffer is ready to accept the byte. Each write must also occur before the TXMTIF bit goes true, to ensure the Forward Frame bit stream is generated without interruption.

When TXMTIF goes true, indicating the transmit shift register has completed sending the last byte in the frame, the TX output is held in the Idle state for the number of half-bit periods selected by the STP<1:0> bits in the UxCON2 register.

After the last Stop bit, the TX output is held in the Idle state for an additional wait time determined by the halfbit period count in the UxP1 register. An 11 bit period delay requires a value of 22 in UxP1L.

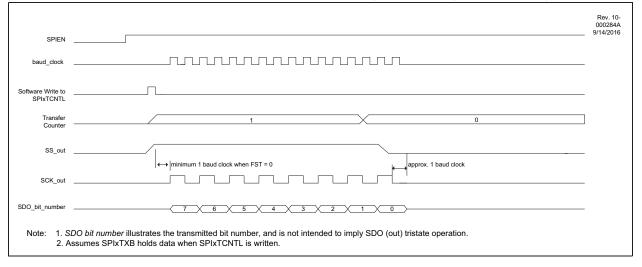
Any writes to the UxTXB register that occur after TXMTIF goes true, but before the UxP1 wait time, will be held and then transmitted immediately following the wait time. If a Back Frame is received during the wait time, any bytes that may have been written to UxTXB will not be transmitted until after the Back Frame plus the UxP1 wait time.


34.5.1 FULL DUPLEX MODE

When both TXR and RXR are set, the SPI master is in Full Duplex mode. In this mode, data transfer triggering is affected by the BMODE bit of SPIxCON0.

When BMODE = 1, data transfers will occur whenever both the RXFIFO is not full and there is data present in the TXFIFO. In practice, as long as the RXFIFO is not full, data will be transmitted/received as soon as the SPIxTxB register is written to, matching functionality of SPI (MSSP) modules on older 8-bit Microchip devices. The SPIxTCNT will decrement with each transfer. However, when SPIxTCNT is zero the next transfer is not inhibited and the corresponding SPIxTCNT decrement will cause the count to roll over to the maximum value. Figure 34-3 shows an example of a communication using this mode.

When BMODE = 0, the transfer counter (SPIxTCNTH/ SPIxTCNTL) must also be written to before transfers will occur, and transfers will cease when the transfer counter reaches '0'. For example, if SPIxTXB is written twice and then SPIxTCTL is written with '3' then the transfer will start with the SPIxTCTL write. The two bytes in the TXFIFO will be sent after which the transfer will suspend until the third and last byte is written to SPIxTXB.


34.5.5 MASTER MODE SLAVE SELECT CONTROL

34.5.5.1 Hardware Slave Select Control

This SPI module allows for direct hardware control of a Slave Select output. The Slave Select output SS(out) is controlled both directly, through the SSET bit of SPIxCON2, as well indirectly by the hardware while the transfer counter is non-zero (see Section 34.4 "Transfer Counter"). SS(out) is steered by the PPS registers to pins (see Section 19.2 "PPS Outputs")

and its polarity is controlled by the SSP bit of SPIxCON1. Setting the SSET bit will also assert SS(out). Clearing the SSET bit will leave SS(out) to be controlled by the Transfer Counter. When the Transfer Counter is loaded, the SPI module will automatically assert the SS. When the Transfer Counter decrements to zero, the SPI module will deassert SS either one baud period after the final SCK pulse of the final transfer (if CKE/SMP = 0/1) or one half baud period otherwise (see Figure 34-6).

FIGURE 34-6: SPI MASTER SS OPERATION- CKE = 0, BMODE = 1, TCWIDTH = 0, SSP = 0

34.5.5.2 Software Slave Select Control

Slave Select can also be controlled through software via a general purpose I/O pin. In this case, ensure that the pin in question is configured as a GPIO through PPS (see Section 19.2 "PPS Outputs"), and ensure that the pin is set as an output (clear the appropriate bit in the appropriate TRIS register). In this case, SSET will not affect the slave select, the Transfer Counter will not automatically control the slave select output, and all setting and clearing of the slave select output line must be directly controlled by software.

35.5.10 MASTER RECEPTION IN 7-BIT ADDRESSING MODE

This section describes the sequence of events for the I^2C module configured as an I^2C master in 7-bit Addressing mode and is receiving data. Figure 35-20 is used as a visual reference for this description.

- Master software loads slave address in I2CxADB1 with R/W bit = d and number of bytes to be received in one sequence in I2CxCNT register.
- 2. Master hardware waits for BFRE bit to be set; then shifts out start and address with R/W = 1.
- 3. Master sends out the 9th SCL pulse for ACK, master hardware clocks in ACK from Slave
- 4. If ABD = 0; i.e. Address buffers are enabled

If NACK, master hardware sends Stop or sets MDR (if RSEN = 1) and waits for user software to write to S bit for restart.

If ABD = 1; i.e. Address buffers are disabled

If NACK, master hardware sends Stop or sets MDR (if RSEN = 1) and waits for user software to load the new address into I2CxTXB. Software writes to the S bit are ignored in this case.

- 5. If ACK, master hardware receives 7-bits of data into the shift register.
- 6. If the receive buffer is full (i.e. RXBF = 1), clock is stretched on 7th falling SCL edge.
- 7. Master software must read previous data out of I2CxRXB to clear RXBF.
- Master hardware receives 8th bit of data into the shift register and loads it into I2CxRXB, sets I2CxRXIF and RXBF bits. I2CxCNT is decremented.
- 9. If I2CxCNT! = 0, master hardware clocks out ACKDT as ACK value to slave. If I2CxCNT = 0, master hardware clocks out ACKCNT as ACK value to slave. It is up to the user to set the values of ACKDT and ACKCNT correctly. If the user does not set ACKCNT to '1', the master hardware will never send a NACK when I2CxCNT becomes zero. Since a NACK was not seen on the bus, the master hardware will also not assert a Stop condition.
- 10. Go to step 4.

PIC18(L)F24/25K42

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACNT	GCEN	FME	ADB	SDAH	T<1:0>	BFRE	T<1:0>
bit 7	•			-			bit C
Legend:							
R = Readab	ole bit	W = Writable b	it	U = Unimplen	nented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unkno	own	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	red	HS = Hardwa	re set HC =	Hardware clea	r
bit 7	1 = The first ister. T ACKD receive update	-Load I ² C Count t received or tran 'he I2CCNT regis T is used to dete ed message. Th the I2CCNT reg ad of I2CCNT dis	smitted byte af ster is loaded a ermine the ACk is prevents a gister.	ter the address, it the same time (/NACK value fo	e as the value is or the address	moved to/fron bytes and first	n the shifter. data byte of a
bit 6	1 = Genera	eral Call Addres I call address, 0 I call address dis	(00, causes ad		,		
bit 5	1 = SCL is s	Node Enable bit sampled high on sampled high tw			/. (Fscl = Fclk/ (Fscl = Fclk		
bit 4	1 = Receive Transn 0 = Receive	ess Data Buffer E ed address data nitted address d ed address data nitted address d	is loaded into b ata is loaded fr is loaded only i	om the I2CTXB into the I2CADE	3		
bit 3-2	11 = Reserv 10 = Minimu 01 = Minimu	SDA Hold Tir ved um of 30 ns hold um of 100 ns hol um of 300 ns hol	time on SDA a d time on SDA	after the falling e after the falling	edge of SCL		
bit 1-0	$11 = 64 I^2 C$ $10 = 32 I^2 C$	>: Bus Free Tim Clock pulses Clock pulses Clock pulses Clock pulses	e Selection bits	5			

40.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 40-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Hysteresis enable
- · Timer1 output synchronization

The CMxCON1 register (see Register 40-2) contains Control bits for the following:

· Interrupt on positive/negative edge enables

The CMxPCH and CMxNCH registers are used to select the positive and negative input channels, respectively.

40.2.1 COMPARATOR ENABLE

Setting the EN bit of the CMxCON0 register enables the comparator for operation. Clearing the EN bit disables the comparator resulting in minimum current consumption.

40.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the CxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 19-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

40.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the POL bit of the CMxCON0 register. Clearing the POL bit results in a non-inverted output.

Table 40-1 shows the output state versus input conditions, including polarity control.

TABLE 40-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	POL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

PIC18(L)F24/25K42

RCA	LL	Relative C	Relative Call				
Synta	ax:	RCALL n					
Oper	ands:	-1024 ≤ n ≤	1023				
Oper	ation:	$(PC) + 2 \rightarrow (PC) + 2 + 2$;			
Statu	is Affected:	None					
Enco	oding:	1101	1nnn	nnnı	n	nnnn	
Word		from the cu address (PC stack. Then number '2n' have incren instruction, PC + 2 + 2r	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction. 1				
,	vcle Activity:	2					
	Q1	Q2	Q3	3		Q4	
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat		Wri	te to PC	
	No operation	No operation	No opera	·	ор	No eration	

Example: HERE RCALL Jump

> Before Instruction PC = Address (HERE) After Instruction

PC = TOS= Address (Jump) Address (HERE + 2)

RES	ET	Reset						
Synta	ax:	RESET	RESET					
Oper	ands:	None						
Oper	ation:	Reset all registers and flags that are affected by a MCLR Reset.						
Statu	s Affected:	All						
Enco	Encoding: 0000 0000 1111 111				1111			
Desc	Description: This instruction provides a way to execute a MCLR Reset by software.					·		
Word	ls:	1						
Cycle	es:	1						
Q Cycle Activity:								
	Q1	Q2 Q3 Q4			Q4			
	Decode	Start	No No					
		Reset	opera	tion	op	peration		

Example:

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

PIC18(L)F24/25K42

RET	URN	N Return from Subroutine						
Synta	ax:	RETURN	RETURN {s}					
Oper	ands:	$s \in [0,1]$						
Oper	ation:	if s = 1 (WS) \rightarrow W (STATUSS (BSRS) \rightarrow	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged					
Status Affected: None								
Enco	ding:	0000	0000	0001	l 001s			
	ription:	popped and the top of the stack (TOS) is loaded into the program counter. If 's'= 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of these registers occurs (default).						
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	No operation	Proce Dat		POP PC from stack			
	No	No	No		No			
	operation	operation operation operation						
Example: RETURN After Instruction:								

lei	11150	uu	JUOTI.
	PC	=	TOS

Rotate Left f through Carry					
RLCF f	{,d {,a}}				
$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
(f<7>) → C	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$				
C, N, Z					
0011	01da fff	f ffff			
one bit to the flag. If 'd' is W. If 'd' is '' in register 'f If 'a' is '0', t selected. If select the O If 'a' is '0' a set is enable operates in Addressing $f \le 95$ (5Fh) 43.2.3 "Byt ented Instr	The contents of register 'f' are rotated one bit to the left through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 43.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal Offset Mode " for details.				
1					
1					
Q2	Q3	Q4			
Read register 'f'	Process Data	Write to destination			
RLCF	REG, 0,	0			
= 0 on = 1110 0	110				
	RLCFf + 0 \leq f \leq 255 d \in [0,1] a \in [0,1] (f<7>) \rightarrow de (f<7>) \rightarrow C (C) \rightarrow destr C, N, Z0011The content one bit to th flag. If 'd' is '0'. If 'd' is '0'. If 'a' is '0'. If 'a' is '0'. If 'a' is '0' at selected. If select the C If 'a' is '0' at set is enable operates in Addressing f \leq 95 (5Fh) 43.2.3 "Bytented Instr Offset Mode1Q2Read register 'f'RLCF tion=11100=11100=11100=11100	RLCF $f \{.d \{.a\}\}$ $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$ C, N, Z $0 \ 0 \ 11$ $0 \ 1 \ da$ $0 \ 0 \ 11$ $0 \ 1 \ da$ $f \ ff \ ff$ The contents of register 'fone bit to the left throughflag. If 'd' is '0', the result isin register 'f' (default).If 'a' is '0', the Access Baselected. If 'a' is '1', the Bselect the GPR bank.If 'a' is '0' and the extendedset is enabled, this instructions in Indexed LitersAddressing mode whenever $f \le 95$ (5Fh). See Section43.2.3 "Byte-Oriented artented Instructions in IndoOffset Mode" for details.CCregister 'f'DataRLCFREG, 0,ntion= 1110 0110= 0nn= 1110 0110= 1110 0110= 1110 0110			