

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

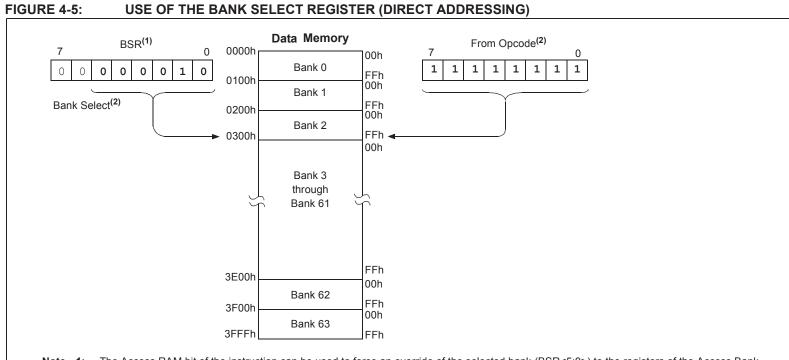
Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k42-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables


TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F2XK42)

							•		,										
Q	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	۱²c	Sa	UART	MSD	Timers/SMT	CCP and PWM	CWG	כרכ	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RA0	2	27	ANA0	_	-	C1IN0- C2IN0-	—	—	_	—	—	_	—	-	CLCIN0 ⁽¹⁾	—	_	IOCA0	-
RA1	3	28	ANA1	—	-	C1IN1- C2IN1-	—	—	_	—	—	_	—	—	CLCIN1 ⁽¹⁾	—	_	IOCA1	-
RA2	4	1	ANA2	VREF-	DAC1OUT1	C1IN0+ C2IN0+	—	—	—	—	—	_	—	—	—	—	—	IOCA2	-
RA3	5	2	ANA3	VREF+	_	C1IN1+	—	_	_	_	MDCARL ⁽¹⁾	_	_	-	_	_		IOCA3	_
RA4	6	3	ANA4	—	-	_	_	_	_	—	MDCARH ⁽¹⁾	T0CKI ⁽¹⁾	_	-	_	_	_	IOCA4	_
RA5	7	4	ANA5	_	_	_	_	_	SS1 ⁽¹⁾	—	MDSRC ⁽¹⁾	-	—	-	_	_		IOCA5	_
RA6	10	7	ANA6	—	-	-	—	-	-	-	—	—	—	—	—	_	—	IOCA6	OSC2 CLKOUT
RA7	9	6	ANA7	—	-	—	-	—	-	—	—	—	—	—	—	—	—	IOCA7	OSC1 CLKIN
RB0	21	18	ANB0	—	-	C2IN1+	ZCD	-	-	-	—	—	CCP4 ⁽¹⁾	CWG1IN ⁽¹⁾	—	—	—	INT0 ⁽¹⁾ IOCB0	-
RB1	22	19	ANB1	—	-	C1IN3- C2IN3-	—	SCL2 ^(3,4)	-	-	—	_	—	CWG2IN ⁽¹⁾	—	—	—	INT1 ⁽¹⁾ IOCB1	-
RB2	23	20	ANB2	—	-	-	—	SDA2 ^(3,4)	-	-	—	—	—	CWG3IN ⁽¹⁾	—	—	—	INT2 ⁽¹⁾ IOCB2	-
RB3	24	21	ANB3	_	-	C1IN2- C2IN2-	—	—	_	—	—	_	_	_	_	_	_	IOCB3	-
RB4	25	22	ANB4 ADCACT ⁽¹⁾	_	-	—	—	—	_	—	—	T5G ⁽¹⁾	-	-	—	—	_	IOCB4	-
RB5	26	23	ANB5	_	_	_	—	_	_	DCD2 ⁽¹⁾	—	T1G ⁽¹⁾	CCP3 ⁽¹⁾	_	_	—		IOCB5	—
RB6	27	24	ANB6	—	_	—	_	_	—	CTS2 ⁽¹⁾	—	_	—	-	CLCIN2 ⁽¹⁾	—	_	IOCB6	ICSPCLK
RB7	28	25	ANB7	_	DAC1OUT2	_	—	_	_	RX2 ⁽¹⁾	—	T6IN(1)	—	-	CLCIN3 ⁽¹⁾	_	_	IOCB7	ICSPDAT
Note	1:	This	s is a PPS rem	appable in	put signal. The	input functio	on may	be moved fror	n the default	location show	wn to one of seve	eral other PORT	c pins.						

2: All output signals shown in this row are PPS remappable.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C and SMBTM 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

- Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<5:0>) to the registers of the Access Bank.
 - $\ensuremath{\text{2:}} \quad \text{The MOVFFL instruction embeds the entire 14-bit address in the instruction.}$

TABLE 4-4:SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F24/25K42 DEVICES BANK 62

						. –								. –	
3EFFh	ADCLK	3EDFh	ADLTHH	3EBFh	CM1PCH	3E9Fh	—	3E7Fh	—	3E5Fh	—	3E3Fh		3E1Fh	—
3EFEh	ADACT	3EDEh	ADLTHL	3EBEh	CM1NCH	3E9Eh	DAC1CON0	3E7Eh	—	3E5Eh	—	3E3Eh	—	3E1Eh	—
3EFDh	ADREF	3EDDh	_	3EBDh	CM1CON1	3E9Dh	—	3E7Dh	—	3E5Dh	_	3E3Dh		3E1Dh	—
3EFCh	ADSTAT	3EDCh	—	3EBCh	CM1CON0	3E9Ch	DAC1CON1	3E7Ch	—	3E5Ch	—	3E3Ch	—	3E1Ch	—
3EFBh	ADCON3	3EDBh	—	3EBBh	CM2PCH	3E9Bh	—	3E7Bh	—	3E5Bh	—	3E3Bh	—	3E1Bh	—
3EFAh	ADCON2	3EDAh	—	3EBAh	CM2NCH	3E9Ah	—	3E7Ah	—	3E5Ah	—	3E3Ah	—	3E1Ah	—
3EF9h	ADCON1	3ED9h	_	3EB9h	CM2CON1	3E99h	—	3E79h	—	3E59h	—	3E39h	—	3E19h	—
3EF8h	ADCON0	3ED8h		3EB8h	CM2CON0	3E98h	—	3E78h	—	3E58h	—	3E38h	—	3E18h	—
3EF7h	ADPREH	3ED7h	ADCP	3EB7h	—	3E97h	—	3E77h	—	3E57h	—	3E37h	—	3E17h	—
3EF6h	ADPREL	3ED6h		3EB6h	—	3E96h	_	3E76h	—	3E56h	—	3E36h		3E16h	—
3EF5h	ADCAP	3ED5h	—	3EB5h	—	3E95h	—	3E75h	—	3E55h	—	3E35h	—	3E15h	—
3EF4h	ADACQH	3ED4h	—	3EB4h	—	3E94h	—	3E74h	—	3E54h	—	3E34h	—	3E14h	—
3EF3h	ADACQL	3ED3h	_	3EB3h	—	3E93h	—	3E73h	—	3E53h	—	3E33h	—	3E13h	—
2EF2h	—	3ED2h	_	3EB2h	—	3E92h	—	3E72h	—	3E52h	—	3E32h	—	3E12h	—
3EF1h	ADPCH	3ED1h	_	3EB1h	—	3E91h	—	3E71h	—	3E51h	—	3E31h	—	3E11h	—
3EF0h	ADRESH	3ED0h	_	3EB0h	—	3E90h	—	3E70h	—	3E50h	—	3E30h	—	3E10h	—
3EEFh	ADRESL	3ECFh	_	3EAFh	_	3E8Fh	_	3E6Fh	—	3E4Fh	_	3E2Fh		3E0Fh	—
3EEEh	ADPREVH	3ECEh	—	3EAEh	—	3E8Eh	—	3E6Eh	—	3E4Eh	—	3E2Eh	—	3E0Eh	—
3EEDh	ADPREVL	3ECDh	—	3EADh	—	3E8Dh	—	3E6Dh	—	3E4Dh	—	3E2Dh	—	3E0Dh	—
3EECh	ADRPT	3ECCh	_	3EACh	—	3E8Ch	—	3E6Ch	—	3E4Ch	—	3E2Ch	—	3E0Ch	—
3EEBh	ADCNT	3ECBh		3EABh	—	3E8Bh	—	3E6Bh	—	3E4Bh	—	3E2Bh	—	3E0Bh	—
3EEAh	ADACCU	3ECAh	HLVDCON1	3EAAh	—	3E8Ah	_	3E6Ah	—	3E4Ah	—	3E2Ah		3E0Ah	—
3EE9h	ADACCH	3EC9h	HLVDCON0	3EA9h	—	3E89h	—	3E69h	—	3E49h	—	3E29h	—	3E09h	—
3EE8h	ADACCL	3EC8h	—	3EA8h	—	3E88h	—	3E68h	—	3E48h	—	3E28h	—	3E08h	—
3EE7h	ADFLTRH	3EC7h	—	3EA7h	—	3E87h	—	3E67h	—	3E47h	—	3E27h	—	3E07h	—
3EE6h	ADFLTRL	3EC6h	_	3EA6h	—	3E86h	—	3E66h	—	3E46h	—	3E26h	—	3E06h	—
3EE5h	ADSTPTH	3EC5h	_	3EA5h	—	3E85h	—	3E65h	—	3E45h	—	3E25h	—	3E05h	—
3EE4h	ADSTPTL	3EC4h		3EA4h	—	3E84h	—	3E64h	—	3E44h	—	3E24h	—	3E04h	—
3EE3h	ADERRH	3EC3h	ZCDCON	3EA3h	—	3E83h	—	3E63h	—	3E43h	—	3E23h	—	3E03h	—
3EE2h	ADERRL	3EC2h	_	3EA2h	—	3E82h	—	3E62h	—	3E42h	—	3E22h	—	3E02h	—
3EE1h	ADUTHH	3EC1h	FVRCON	3EA1h	—	3E81h	—	3E61h	—	3E41h	—	3E21h	_	3E01h	—
3EE0h	ADUTHL	3EC0h	CMOUT	3EA0h	—	3E80h	—	3E60h	—	3E40h	—	3E20h	_	3E00h	—

Legend: Unimplemented data memory locations and registers, read as '0'.

TABLE 4-6: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F24/25K42 DEVICES BANK 60

_										_					
3CFFh	—	3CDFh	—	3CBFh	—	3C9Fh	—	3C7Fh	—	3C5Fh	CLC4GLS3	3C3Fh	—	3C1Fh	_
3CFEh	MD1CARH	3CDEh	—	3CBEh	—	3C9Eh	—	3C7Eh	CLCDATA0	3C5Eh	CLC4GLS2	3C3Eh	—	3C1Eh	_
3CFDh	MD1CARL	3CDDh	—	3CBDh	—	3C9Dh	—	3C7Dh	CLC1GLS3	3C5Dh	CLC4GLS1	3C3Dh	—	3C1Dh	_
3CFCh	MD1SRC	3CDCh	—	3CBCh	—	3C9Ch	—	3C7Ch	CLC1GLS2	3C5Ch	CLC4GLS0	3C3Ch	—	3C1Ch	_
3CFBh	MD1CON1	3CDBh	—	3CBBh	—	3C9Bh	—	3C7Bh	CLC1GLS1	3C5Bh	CLC4SEL3	3C3Bh	—	3C1Bh	_
3CFAh	MD1CON0	3CDAh	—	3CBAh	—	3C9Ah	—	3C7Ah	CLC1GLS0	3C5Ah	CLC4SEL2	3C3Ah	—	3C1Ah	_
3CF9h	—	3CD9h	—	3CB9h	—	3C99h	—	3C79h	CLC1SEL3	3C59h	CLC4SEL1	3C39h	—	3C19h	_
3CF8h	—	3CD8h	—	3CB8h	—	3C98h	—	3C78h	CLC1SEL2	3C58h	CLC4SEL0	3C38h	—	3C18h	_
3CF7h	_	3CD7h	—	3CB7h	—	3C97h	—	3C77h	CLC1SEL1	3C57h	CLC4POL	3C37h	—	3C17h	_
3CF6h	—	3CD6h	—	3CB6h	—	3C96h	—	3C76h	CLC1SEL0	3C56h	CLC4CON	3C36h	—	3C16h	_
3CF5h	_	3CD5h	—	3CB5h	—	3C95h	—	3C75h	CLC1POL	3C55h	—	3C35h	—	3C15h	_
3CF4h	_	3CD4h	—	3CB4h	—	3C94h	—	3C74h	CLC1CON	3C54h	—	3C34h	—	3C14h	_
3CF3h	_	3CD3h	—	3CB3h	—	3C93h	—	3C73h	CLC2GLS3	3C53h	—	3C33h	—	3C13h	_
3CF2h	_	3CD2h	—	3CB2h	—	3C92h	—	3C72h	CLC2GLS2	3C52h	—	3C32h	—	3C12h	_
3CF1h	_	3CD1h	—	3CB1h	—	3C91h	—	3C71h	CLC2GLS1	3C51h	—	3C31h	—	3C11h	_
3CF0h	_	3CD0h	—	3CB0h	—	3C90h	—	3C70h	CLC2GLS0	3C50h	—	3C30h	—	3C10h	_
3CEFh	_	3CCFh	—	3CAFh	—	3C8Fh	—	3C6Fh	CLC2SEL3	3C4Fh	—	3C2Fh	—	3C0Fh	_
3CEEh	_	3CCEh	—	3CAEh	—	3C8Eh	—	3C6Eh	CLC2SEL2	3C4Eh	—	3C2Eh	—	3C0Eh	_
3CEDh	_	3CCDh	—	3CADh	—	3C8Dh	—	3C6Dh	CLC2SEL1	3C4Dh	—	3C2Dh	—	3C0Dh	_
3CECh	_	3CCCh	—	3CACh	—	3C8Ch	—	3C6Ch	CLC2SEL0	3C4Ch	—	3C2Ch	—	3C0Ch	_
3CEBh	_	3CCBh	—	3CABh	—	3C8Bh	—	3C6Bh	CLC2POL	3C4Bh	—	3C2Bh	—	3C0Bh	_
3CEAh	_	3CCAh	—	3CAAh	—	3C8Ah	—	3C6Ah	CLC2CON	3C4Ah	—	3C2Ah	—	3C0Ah	_
3CE9h	_	3CC9h	—	3CA9h	—	3C89h	—	3C69h	CLC3GLS3	3C49h	—	3C29h	—	3C09h	_
3CE8h	_	3CC8h	—	3CA8h	—	3C88h	—	3C68h	CLC3GLS2	3C48h	—	3C28h	—	3C08h	_
3CE7h	_	3CC7h	—	3CA7h	—	3C87h	—	3C67h	CLC3GLS1	3C47h	—	3C27h	—	3C07h	_
3CE6h	CLKRCLK	3CC6h	—	3CA6h	—	3C86h	—	3C66h	CLC3GLS0	3C46h	—	3C26h	—	3C06h	_
3CE5h	CLKRCON	3CC5h	—	3CA5h	—	3C85h	—	3C65h	CLC3SEL3	3C45h	—	3C25h	—	3C05h	_
3CE4h	—	3CC4h	—	3CA4h	_	3C84h	_	3C64h	CLC3SEL2	3C44h	—	3C24h	_	3C04h	_
3CE3h	_	3CC3h	—	3CA3h	_	3C83h	_	3C63h	CLC3SEL1	3C43h	—	3C23h	_	3C03h	_
3CE2h	_	3CC2h	—	3CA2h	_	3C82h	_	3C62h	CLC3SEL0	3C42h	—	3C22h	_	3C02h	_
3CE1h	_	3CC1h	—	3CA1h	_	3C81h	_	3C61h	CLC3POL	3C41h	—	3C21h	_	3C01h	_
3CE0h	_	3CC0h	_	3CA0h	_	3C80h	_	3C60h	CLC3CON	3C40h	_	3C20h	_	3C00h	_
Logond	. Unimplomo	ntad data	momony location	a and real	store read as 'o'										

Legend: Unimplemented data memory locations and registers, read as '0'.

PIC18(L)F24/25K42

REGISTER 5	-7: CONFI	GURATION V	VORD 4L (3	0 0006h)			
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WRTAPP (1)	—	-	SAFEN (2)	BBEN (2)		BBSIZE<2:0> (3	3)
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '1'	
-n = Value for I	blank device	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unk	nown
	0 = Applicati	ion Block NOT on Block write	protected	a			
bit 6-5	Unimplemen	ted: Read as '1	Ĺ				
bit 4	SAFEN: Stora 1 = SAF disa 0 = SAF ena		Enable bit				
bit 3	1 = Boot Blo	Block Enable bi ock disabled ck enabled	t				
bit 2-0	BBSIZE<2:0> Refer to Table	•: Boot Block S e 5-1.	ize Selection b	pits			

Note 1: Once protection is enabled through ICSP or a self write, it can only be reset through a bulk erase.

- **2:** See Table 4-2 for Program Flash Memory Partition.
- **3:** BBSIZE bits can only be changed when BBEN = 1. Once BBEN = 0, BBSIZE can only be changed through a bulk erase.

BBEN	BBSIZE<2:0>	Boot Block Size		Device Size ⁽¹⁾		
DDEN	BB3IZE<2:02	(words)	END_ADDRESS_BOOT	8K Words	16K Words	
1	XXX	0	—	Х	Х	
0	111	512	00 03FFh	Х	Х	
0	110	1024	00 07FFh	Х	Х	
0	101	2048	00 0FFFh	Х	Х	
0	100	4096	00 1FFFh	Х	Х	
0	011	8192	00 3FFFh	—	Х	
0	010	16384	00 7FFFh	—	—	
0	001	32768	00 FFFFh	Note 2		
0	000	32768	00 FFFFh	—	_	

TABLE 5-1:BOOT BLOCK SIZE BITS

Note 1: See Table 5-1 for Device Size.

2: The maximum boot block size is half the user program memory size. All selections higher than the maximum size default to maximum boot block size of half PFM. For example, all settings of BBSIZE = 000 through BBSIZE = 100, default to a boot block size of 4 kW on a 8 kW device.

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0				
—	-	—	—	—	—	CLC4IF	CCP4IF				
bit 7	·						bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is s	set	'0' = Bit is clea	ared	HS = Bit is set in hardware							
bit 7-2	Unimplement	ted: Read as ') '								
bit 1	CLC4IF: CLC	4 Interrupt Flag	g bit								
		has occurred (ed by software)						
	0 = Interrupt	event has not o	occurred								
bit 0	CCP4IF: CCF	4 Interrupt Fla	g bit								
		has occurred (ed by software)						
	0 = Interrupt	event has not o	occurred								
Note:	Interrupt flag bits g enable bit, or the g prior to enabling ar	obal enable bi			-						

REGISTER 11-13: PIR10: PERIPHERAL INTERRUPT REGISTER 10

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	U-0			
TMR5GIE	TMR5IE	_	—	-	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	TMR5GIE: TN	MR5 Gate Inter	rupt Enable b	it						
	1 = Enabled									
	0 = Disabled									
bit 6	TMR5IE: TMF	R5 Interrupt En	able bit							
	1 = Enabled									
	0 = Disabled									
bit 5-0	Unimplemen	ted: Read as ')'							

REGISTER 11-22: PIE8: PERIPHERAL INTERRUPT ENABLE REGISTER 8

REGISTER 11-23: PIE9: PERIPHERAL INTERRUPT ENABLE REGISTER 9

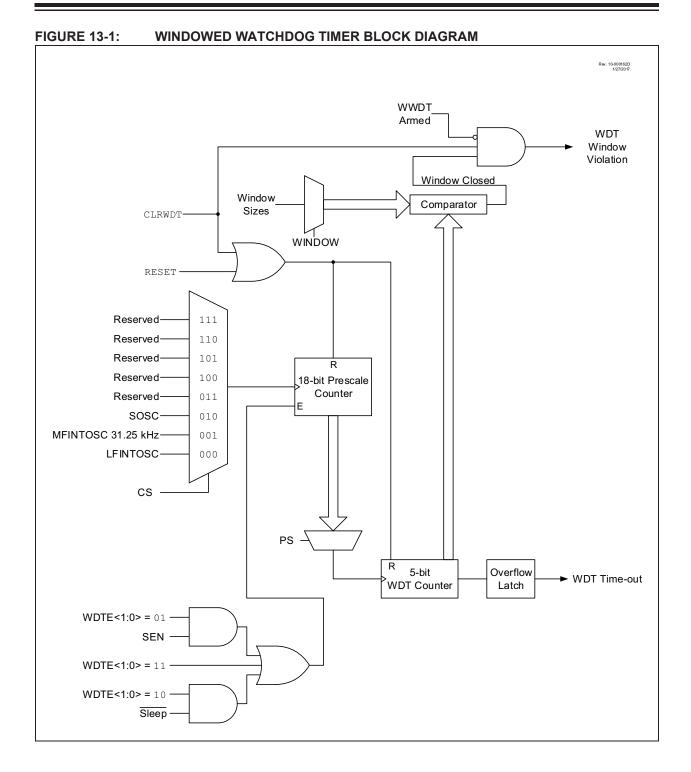
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	CLC3IE	CWG3IE	CCP3IE	TMR6IE
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	CLC3IE: CLC3 Interrupt Enable bit
	1 = Enabled 0 = Disabled
bit 2	CWG3IE: CWG3 Interrupt Enable bit
	1 = Enabled 0 = Disabled
bit 1	CCP3IE: CCP3 Interrupt Enable bit
	1 = Enabled
	0 = Disabled
bit 0	TMR6IE: TMR6 Interrupt Enable bit
	1 = Enabled
	0 = Disabled

PIC18(L)F24/25K42

R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
IDLEN	DOZEN	ROI	DOE			DOZE<2:0>		
bit 7			1				bit C	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimple	emented bit, re	ead as '0'		
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value Resets	e at POR and I	BOR/Value at a	III other	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is o	cleared by har	dware		
bit 7	IDLEN: Idle Ena 1 = A SLEEP ins 0 = A SLEEP ins	struction inhibits		•		ock(s)		
bit 6	DOZEN: Doze Enable bit ^(1,2) 1 = The CPU executes instruction cycles according to DOZE setting 0 = The CPU executes all instruction cycles (fastest, highest power operation)							
bit 5	ROI: Recover-O 1 = Entering the operation 0 = Interrupt ent	Interrupt Servi		SR) makes DC	DZEN = 0 bit, b	pringing the CP	U to full-speed	
bit 4	DOE: Doze-On- 1 = Executing R 0 = RETFIE doe	ETFIE makes		pringing the C	PU to reduced	d speed operati	ion	
bit 3	Unimplemented	I: Read as '0'						
bit 2-0	DOZE<2:0>: Ra 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4 000 =1:2	tio of CPU Inst	ruction Cycles	to Periphera	I Instruction C	ycles		


Note 1: When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.

2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREGCON	-	-	_	_	_		VREGPM	Reserved	180
CPUDOZE	IDLEN	DOZEN	ROI	DOE	—		DOZE<2:0>		181

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

15.1.2 CONTROL REGISTERS

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the following registers:

- NVMCON1 register
- NVMCON2 register
- TABLAT register
- TBLPTR registers

15.1.2.1 NVMCON1 and NVMCON2 Registers

The NVMCON1 register (Register 15-1) is the control register for memory accesses. The NVMCON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading NVMCON2 will read all '0's.

The REG<1:0> control bits determine if the access will be to Data EEPROM Memory locations. PFM locations or User IDs, Configuration bits, Rev ID and Device ID. When REG<1:0> = 00, any subsequent operations will operate on the Data EEPROM Memory. When REG<1:0> = 10, any subsequent operations will operate on the program memory. When REG<1:0> = x1, any subsequent operations will operate on the Configuration bits, User IDs, Rev ID and Device ID.

The FREE bit allows the program memory erase operation. When the FREE bit is set, an erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. This bit is applicable only to the PFM and not to data EEPROM.

When set, the WREN bit will allow a program/erase operation. The WREN bit is cleared on power-up.

The WRERR bit is set by hardware when the WR bit is set and is cleared when the internal programming timer expires and the write operation is successfully complete.

The WR control bit initiates erase/write cycle operation when the REG<1:0> bits point to the Data EEPROM Memory location, and it initiates a write operation when the REG<1:0> bits point to the PFM location. The WR bit cannot be cleared by firmware; it can only be set by firmware. Then the WR bit is cleared by hardware at the completion of the write operation.

The NVMIF Interrupt Flag bit is set when the write is complete. The NVMIF flag stays set until cleared by firmware.

15.1.2.2 TABLAT – Table Latch Register

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

15.1.2.3 TBLPTR – Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

15.1.2.4 Table Pointer Boundaries

TBLPTR is used in reads, writes and erases of the Program Flash Memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 15-3). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during memory writes. For more detail, see Section 15.1.6 "Writing to Program Flash Memory".

Figure 15-3 describes the relevant boundaries of TBLPTR based on Program Flash Memory operations.

REGISTER 16-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DATA	<15:8>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable k	oit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR				R/Value at all o	ther Resets		

bit 7-0 DATA<15:8>: CRC Input/Output Data bits

'1' = Bit is set

REGISTER 16-4: CRCDATL: CRC DATA LOW BYTE REGISTER

'0' = Bit is cleared

R/W-xx	R/W-x/x						
DATA<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **DATA<7:0>**: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 16-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ACC<15:8>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

21.0 PERIPHERAL MODULE DISABLE (PMD)

Sleep, Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume some amount of power. There may be cases where the application needs what these modes do not provide: the ability to allocate limited power resources to the CPU while eliminating power consumption from the peripherals.

The PIC18(L)F2x/4xK42 family addresses this requirement by allowing peripheral modules to be selectively enabled or disabled, placing them into the lowest possible power mode.

All modules are ON by default following any Reset.

21.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- · The module is held in Reset.
- · Any SFR becomes "unimplemented"
 - Writing is disabled
 - Reading returns 00h
- I/O functionality is prioritized as per Section 18.2, I/O Priorities
- All associated Input Selection registers are also disabled

21.2 Enabling a Module

When the PMD register bit is cleared, the module is re-enabled and will be in its Reset state (Power-on Reset). SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

21.3 Effects of a Reset

Following any Reset, each control bit is set to '0', enabling all modules.

21.4 System Clock Disable

Setting SYSCMD (PMD0, Register 21-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

23.3 Timer1/3/5 Prescaler

Timer1/3/5 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The CKPS bits of the TxCON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMRxH or TMRxL.

23.4 Timer1/3/5 Operation in Asynchronous Counter Mode

If control bit SYNC of the TxCON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 23.4.1 "Reading and Writing Timer1/3/5 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

23.4.1 READING AND WRITING TIMER1/3/5 IN ASYNCHRONOUS COUNTER MODE

Reading TMRxH or TMRxL while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMRxH:TMRxL register pair.

23.5 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16 bits of data, to and from, the 8-bit TMRxL and TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the RD16 bit of the TxCON register.

To accomplish this function, the TMRxH register value is mapped to a buffer register called the TMRxH buffer register. While in 16-Bit mode, the TMRxH register is not directly readable or writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRxL register is requested, the value of the TMRxH register is simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is requested, the value is provided from the TMRxH buffer register instead. This provides the user with the ability to accurately read all 16 bits of the Timer1/3/5 value from a single instance in time. Reference the block diagram in Figure 23-2 for more details.

In contrast, when not in 16-Bit mode, the user must read each register separately and determine if the values have become invalid due to a rollover that may have occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1/3/5 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

24.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the T2TMR_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 24-5 illustrates the Hardware Gating mode for MODE<4:0>= 00001 in which a high input level starts the counter.

	Rev 10000199C 9122016
MODE	0600001
TMRx_clk	
TMRx_ers	
TxPR	5
TxTMR 0	$\left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$
TMRx_postscaled	
PWM Duty Cycle	3
PWM Output	

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7			•				bit C
Legend:							
R = Readable		W = Writable			nented bit, read		
u = Bit is uncl	0	x = Bit is unkr			at POR and BO		other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
b :+ 7		ring Data D bit					
bit 7		ring Data D bit					
bit 6		ring Data C bit					
bit 5		ring Data B bit					
bit 4		ring Data A bit					
bit 3		ing Enable bit D					
		output has the			th polarity contr	ol from POLD	bit
		output is assigr		OVRD bit			
bit 2	STRC: Steer	ing Enable bit C	;(2)				
	1 = CWGxC	output has the	CWG data inp	ut waveform wi	th polarity contr	ol from POLC	bit
	0 = CWGxC	output is assigr	ed to value of	OVRC bit			
bit 1	STRB: Steer	ing Enable bit E	3(2)				
	1 = CWGxB	output has the	CWG data inpu	ut waveform wi	th polarity contr	ol from POLB I	oit
	0 = CWGxB	output is assign	ed to value of	OVRB bit			
bit 0	STRA: Steer	ing Enable bit A	(2)				
	1 = CWGxA	output has the	CWG data inpi	ut waveform wi	th polarity contr	ol from POLA I	oit
	0 = CWGxA	output is assigr	ed to value of	OVRA bit			
Note 1: Th	e bits in this reg	gister apply only	when MODE	<2:0> = 00x (R	egister 28-1, St	eering modes)	
2. Th	ia hit ia daubla	hufforod when I	VODE - 2005 -	0.0.1			

REGISTER 28-5: CWGxSTR⁽¹⁾: CWG STEERING CONTROL REGISTER

2: This bit is double-buffered when MODE < 2:0 > = 0.01.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
SPIxINTF	SRMTIF	TCZIF	SOSIF	EOSIF	-	RXOIF	TXUIF	—	537	
SPIxINTE	SRMTIE	TCZIE	SOSIE	EOSIE	—	RXOIE	TXUIE	_	538	
SPIxTCNTH	_	—	_	_	-	TCNT10	TCNT9	TCNT8	539	
SPIxTCNTL	TCNT7	TCNT6	TCNT5	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0	538	
SPIxTWIDTH	_	—	_	_	_	TWIDTH2	TWIDTH1	TWITDH0	539	
SPIxBAUD	BAUD7	BAUD6	BAUD5	BAUD4	BAUD3	BAUD2	BAUD1	BAUD0	540	
SPIxCON0	EN	—	_	_	_	LSBF	MST	BMODE	540	
SPIxCON1	SMP	CKE	CKP	FST	_	SSP	SDIP	SDOP	541	
SPIxCON2	BUSY	SSFLT	_	_	-	SSET	TXR	RXR	542	
SPIxSTATUS	TXWE	—	TXBE	_	RXRE	CLRBF	_	RXBF	543	
SPIxRXB	RXB7	RXB6	RXB5	RXB4	RXB3	RXB2	RXB1	RXB0	543	
SPIxTXB	TXB7	TXB6	TXB5	TXB4	TXB3	TXB2	TXB1	TXB0	544	
SPIxCLK	_	—	_	_	CLKSEL3	CLKSEL2	CLKSEL1	CLKSEL0	544	
SPIxSCKPPS	_	_	_		SPIxSCKPPS<4:0>					
SPIxSSPPS	_	_	_		SPIxSSPPS<4:0>					
SPIxSDIPPS	_	_	_		SPIxSDIPPS<4:0>					

TABLE 34-3: SUMMARY OF REGISTERS ASSOCIATED WITH SPI

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the SPI module.

38.6.1 DIGITAL FILTER/AVERAGE

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 16-bit wide register which can be accessed through the ADACCH:ADACCL register pair.

Upon each trigger event (the GO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the accumulated result exceeds $2^{(accumulator_width)} = 18 = 262143$, the overflow bit ADAOV in the ADSTAT register is set.

The number of samples to be accumulated is determined by the RPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. Once RPT samples are accumulated (CNT = RPT), an accumulator clear command can be issued by the software by setting the ADACLR bit in the ADCON2 register. Setting the ADACLR bit will also clear the ADAOV (Accumulator overflow) bit in the ADSTAT register, as well as the

ADCNT register. The ADACLR bit is cleared by the hardware when accumulator clearing action is complete.

Note: When ADC is operating from FRC, five FRC clock cycles are required to execute the ACC clearing operation.

The ADCRS <2:0> bits in the ADCON2 register control the data shift on the accumulator result, which effectively divides the value in accumulator (ADACCU:ADACCH:ADACCL) register pair. For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average mode, the shift bits are used to determine the number of logical right shifts to be performed on the accumulated result. For the Low-pass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. Table 38-3 shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

	TABLE 38-3 :	LOW-PASS FILTER -3 dB CUT-OFF FREQUENCY
--	---------------------	---

ADCRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0
6	0.016	-42.0
7	0.0078	-48.1

38.6.2 BASIC MODE

Basic mode (ADMD = 000) disables all additional computation features. In this mode, no accumulation occurs but threshold error comparison is performed. Double sampling, Continuous mode, and all CVD features are still available, but no features involving the digital filter/average features are used.

38.6.3 ACCUMULATE MODE

In Accumulate mode (ADMD = 001), after every conversion, the ADC result is added to the ADACC register. The ADACC register is right-shifted by the value of the ADCRS bits in the ADCON2 register. This right-shifted value is copied in to the ADFLT register. The Formatting mode does not affect the right-justification of the ACC value. Upon each sample, CNT is also incremented, incrementing the number of samples accumulated. After each sample and accumulation, the ACC value has a threshold comparison performed on it (see Section 38.6.7 "Threshold Comparison") and the ADTIF interrupt may trigger.

38.6.4 AVERAGE MODE

In Average mode (ADMD = 010), the ADACC registers accumulate with each ADC sample, much as in Accumulate mode, and the ADCNT register increments with each sample. The ADFLT register is also updated with the right-shifted value of the ADACC register. The value of the ADCRS bits governs the number of right shifts. However, in Average mode, the threshold comparison is performed upon CNT being greater than or equal to a user-defined RPT value. In this mode when RPT = 2^{CNT} , then the final accumulated value will be divided by number of samples, allowing for a threshold comparison operation on the average of all gathered samples.

41.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

41.7 Operation During Idle and Doze Modes

In both Idle and Doze modes, the module is active and events are generated if peripheral is enabled.

41.8 Operation During Freeze

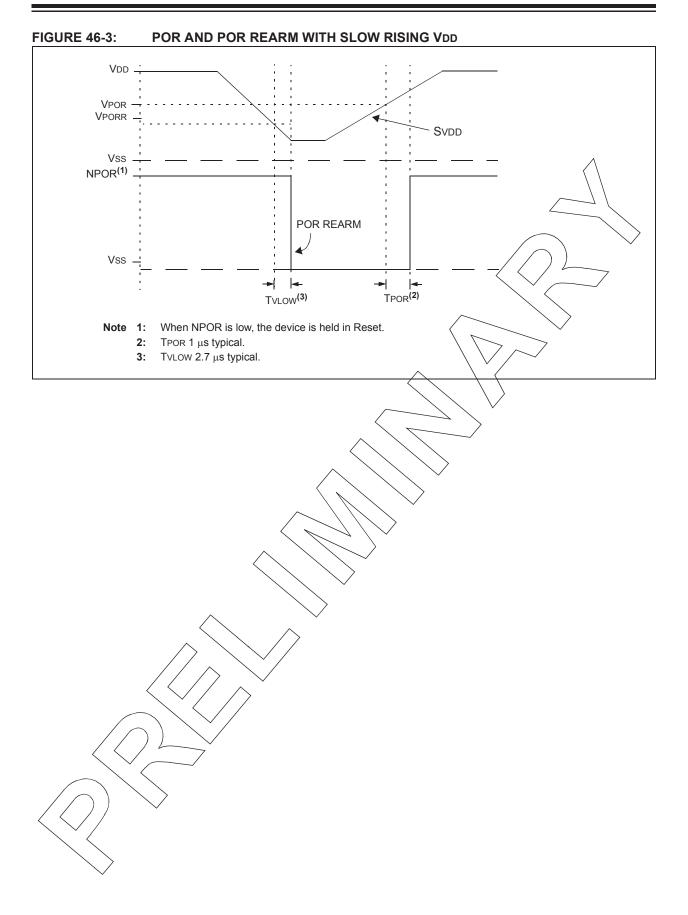
When in Freeze mode, no new event or interrupt can be generated. The state of the LRDY bit is frozen.

Register reads and writes through the CPU interface are allowed.

41.9 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

PIC18(L)F24/25K42


IORWF	Inclusive	OR W v	vith f	
Syntax:	IORWF f	{,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	(W) .OR. (f)	\rightarrow dest		
Status Affected:	N, Z			
Encoding:	0001	00da	ffff	ffff
Description:	Inclusive Ol '0', the result is (default). If 'a' is '0', tt If 'a' is '1', tt GPR bank. If 'a' is '0' an set is enabl in Indexed I mode when tion 43.2.3 Oriented In eral Offset	It is placed I placed I the Access he BSR i and the ex- ed, this i Literal Of ever f ≤ 1 "Byte-O the struction	ed in W. I pack in re as Bank is s used to as used to as used to fiset Addr as (5Fh). riented a ns in Ind	f 'd' is '1', gister 'f' selected. select the astruction operates essing See Sec- nd Bit- exed Lit-
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce Data		Write to estination
Example: Before Instruct	ction	ESULT,	0, 1	

LFSR		Load FS	Load FSR				
Syntax:		LFSR f, k	LFSR f, k				
Operands:		$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 16 \end{array}$	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 16383 \end{array}$				
Operation:		$k\toFSRf$	$k \to FSRf$				
Status Affected:		None	None				
Encoding:		1110 1111	1110 0000	00k ₁₃ k k ₇ kkk	kkkk kkkk		
Description:			The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.				
Words:		2	2				
Cycles:		2	2				
Q Cycle Activity:							
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k' MSB	Proce Data	a li	Write teral 'k' MSB to FSRfH		
	Decode	Read literal 'k' LSB	Proce Data		rite literal to FSRfL		

Example: LFSR 2, 3ABh

After Instruction		
FSR2H FSR2L	= =	03h ABh

Before Instructi	on				
RESULT	=	13h			
W	=	91h			
After Instruction					
RESULT	=	13h			
W	=	93h			

