

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                          |
| Core Size                  | 8-Bit                                                                        |
| Speed                      | 64MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                    |
| Peripherals                | Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT                             |
| Number of I/O              | 25                                                                           |
| Program Memory Size        | 16KB (8K x 16)                                                               |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | 256 x 8                                                                      |
| RAM Size                   | 1K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                  |
| Data Converters            | A/D 24x12b; D/A 1x5b                                                         |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                               |
| Supplier Device Package    | 28-SOIC                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k42t-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **TABLE 4-5**: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F24/25K42 DEVICES BANK 61

| © 2016-2017 |  |
|-------------|--|
| Microchip   |  |
| Technology  |  |
| Inc.        |  |

| 3DFFh    | —               | 3DDFh      | U2FIFO        | 3DBFh      | —                    | 3D9Fh | _ | 3D7Fh | —         | 3D5Fh | I2C2CON2 | 3D3Fh | — | 3D1Fh | —          |
|----------|-----------------|------------|---------------|------------|----------------------|-------|---|-------|-----------|-------|----------|-------|---|-------|------------|
| 3DFEh    | —               | 3DDEh      | U2BRGH        | 3DBEh      | —                    | 3D9Eh | _ | 3D7Eh | —         | 3D5Eh | I2C2CON1 | 3D3Eh | — | 3D1Eh | —          |
| 3DFDh    | —               | 3DDDh      | U2BRGL        | 3DBDh      | —                    | 3D9Dh | — | 3D7Dh | —         | 3D5Dh | I2C2CON0 | 3D3Dh | — | 3D1Dh | —          |
| 3DFCh    | —               | 3DDCh      | U2CON2        | 3DBCh      | —                    | 3D9Ch | — | 3D7Ch | I2C1BTO   | 3D5Ch | I2C2ADR3 | 3D3Ch | — | 3D1Ch | SPI1CLK    |
| 3DFBh    | —               | 3DDBh      | U2CON1        | 3DBBh      | —                    | 3D9Bh | — | 3D7Bh | I2C1CLK   | 3D5Bh | I2C2ADR2 | 3D3Bh | — | 3D1Bh | SPI1INTE   |
| 3DFAh    | U1ERRIE         | 3DDAh      | U2CON0        | 3DBAh      | —                    | 3D9Ah | — | 3D7Ah | I2C1PIE   | 3D5Ah | I2C2ADR1 | 3D3Ah | _ | 3D1Ah | SPI1INTF   |
| 3DF9h    | U1ERRIR         | 3DD9h      | —             | 3DB9h      | —                    | 3D99h | — | 3D79h | I2C1PIR   | 3D59h | I2C2ADR0 | 3D39h | _ | 3D19h | SPI1BAUD   |
| 3DF8h    | U1UIR           | 3DD8h      | U2P3L         | 3DB8h      | —                    | 3D98h | — | 3D78h | I2C1STAT1 | 3D58h | I2C2ADB1 | 3D38h | — | 3D18h | SPI1TWIDTH |
| 3DF7h    | U1FIFO          | 3DD7h      | —             | 3DB7h      | —                    | 3D97h | — | 3D77h | I2C1STAT0 | 3D57h | I2C2ADB0 | 3D37h | _ | 3D17h | SPI1STATUS |
| 3DF6h    | U1BRGH          | 3DD6h      | U2P2L         | 3DB6h      | —                    | 3D96h | _ | 3D76h | I2C1ERR   | 3D56h | I2C2CNT  | 3D36h | — | 3D16h | SPI1CON2   |
| 3DF5h    | U1BRGL          | 3DD5h      | _             | 3DB5h      | —                    | 3D95h | _ | 3D75h | I2C1CON2  | 3D55h | I2C2TXB  | 3D35h | — | 3D15h | SPI1CON1   |
| 3DF4h    | U1CON2          | 3DD4h      | U2P1L         | 3DB4h      | —                    | 3D94h | _ | 3D74h | I2C1CON1  | 3D54h | I2C2RXB  | 3D34h | — | 3D14h | SPI1CON0   |
| 3DF3h    | U1CON1          | 3DD3h      | _             | 3DB3h      | —                    | 3D93h | _ | 3D73h | I2C1CON0  | 3D53h | —        | 3D33h | — | 3D13h | SPI1TCNTH  |
| 3DF2h    | U1CON0          | 3DD2h      | U2TXB         | 3DB2h      | —                    | 3D92h | _ | 3D72h | I2C1ADR3  | 3D52h | —        | 3D32h | — | 3D12h | SPI1TCNTL  |
| 3DF1h    | U1P3H           | 3DD1h      | —             | 3DB1h      | —                    | 3D91h | — | 3D71h | I2C1ADR2  | 3D51h | —        | 3D31h |   | 3D11h | SPI1TXB    |
| 3DF0h    | U1P3L           | 3DD0h      | U2RXB         | 3DB0h      | —                    | 3D90h | _ | 3D70h | I2C1ADR1  | 3D50h | —        | 3D30h | — | 3D10h | SPI1RXB    |
| 3DEFh    | U1P2H           | 3DCFh      | _             | 3DAFh      | —                    | 3D8Fh | _ | 3D6Fh | I2C1ADR0  | 3D4Fh | —        | 3D2Fh | — | 3D0Fh | _          |
| 3DEEh    | U1P2L           | 3DCEh      | —             | 3DAEh      | —                    | 3D8Eh | — | 3D6Eh | I2C1ADB1  | 3D4Eh | —        | 3D2Eh |   | 3D0Eh | —          |
| 3DEDh    | U1P1H           | 3DCDh      | _             | 3DADh      | —                    | 3D8Dh | — | 3D6Dh | I2C1ADB0  | 3D4Dh | —        | 3D2Dh |   | 3D0Dh | —          |
| 3DECh    | U1P1L           | 3DCCh      | _             | 3DACh      | —                    | 3D8Ch | — | 3D6Ch | I2C1CNT   | 3D4Ch | —        | 3D2Ch |   | 3D0Ch | —          |
| 3DEBh    | U1TXCHK         | 3DCBh      | _             | 3DABh      | —                    | 3D8Bh | — | 3D6Bh | I2C1TXB   | 3D4Bh | —        | 3D2Bh |   | 3D0Bh | —          |
| 3DEAh    | U1TXB           | 3DCAh      | _             | 3DAAh      | —                    | 3D8Ah | — | 3D6Ah | I2C1RXB   | 3D4Ah | —        | 3D2Ah |   | 3D0Ah | —          |
| 3DE9h    | U1RXCHK         | 3DC9h      | _             | 3DA9h      | —                    | 3D89h | _ | 3D69h | _         | 3D49h | _        | 3D29h |   | 3D09h | _          |
| 3DE8h    | U1RXB           | 3DC8h      | _             | 3DA8h      | —                    | 3D88h | — | 3D68h | —         | 3D48h | —        | 3D28h |   | 3D08h | —          |
| 3DE7h    | —               | 3DC7h      | _             | 3DA7h      | —                    | 3D87h | — | 3D67h | —         | 3D47h | —        | 3D27h |   | 3D07h | —          |
| 3DE6h    | —               | 3DC6h      | _             | 3DA6h      | —                    | 3D86h | — | 3D66h | I2C2BTO   | 3D46h | —        | 3D26h |   | 3D06h | —          |
| 3DE5h    | —               | 3DC5h      | _             | 3DA5h      | —                    | 3D85h | — | 3D65h | I2C2CLK   | 3D45h | —        | 3D25h |   | 3D05h | —          |
| 3DE4h    | —               | 3DC4h      |               | 3DA4h      | —                    | 3D84h | _ | 3D64h | I2C2PIE   | 3D44h | _        | 3D24h | _ | 3D04h | _          |
| 3DE3h    |                 | 3DC3h      | _             | 3DA3h      | —                    | 3D83h | — | 3D63h | I2C2PIR   | 3D43h | —        | 3D23h |   | 3D03h | —          |
| 3DE2h    | U2ERRIE         | 3DC2h      |               | 3DA2h      | —                    | 3D82h |   | 3D62h | I2C2STAT1 | 3D42h | _        | 3D22h |   | 3D02h |            |
| 3DE1h    | U2ERRIR         | 3DC1h      | _             | 3DA1h      | —                    | 3D81h | _ | 3D61h | I2C2STAT0 | 3D41h |          | 3D21h |   | 3D01h | _          |
| 3DE0h    | U2UIR           | 3DC0h      | —             | 3DA0h      | —                    | 3D80h | — | 3D60h | I2C2ERR   | 3D40h |          | 3D20h | — | 3D00h | —          |
| بام مر م | I Inimania na a | wheed dete | momonylooptic | na and raa | viotoro, road as 'a' |       |   |       |           |       |          |       |   |       |            |

Legend: Unimplemented data memory locations and registers, read as '0'.

# 7.0 DEVICE CONFIGURATION INFORMATION

The Device Configuration Information (DCI) is a dedicated region in the Program memory space mapped from 3FFF00h to 3FFF09h. The data stored in these locations is ready-only and cannot be erased or modified.

Refer to Table 7-1: Device Configuration Information for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and Bootloader applications. These locations are read-only and cannot be erased or modified.

#### TABLE 7-1:DEVICE CONFIGURATION INFORMATION

| ADDRESS         | Name  | DESCRIPTION             | VALUE         | UNITS |
|-----------------|-------|-------------------------|---------------|-------|
| 3FFF00h-3FFF01h | ERSIZ | Erase Row Size          | 32            | Words |
| 3FFF02h-3FFF03h | WLSIZ | Number of write latches | 64            |       |
| 3FFF04h-3FFF05h | URSIZ | Number of User Rows     | See Table 7-2 | Rows  |
| 3FFF06h-3FFF07h | EESIZ | EE Data memory size     | 256           | Bytes |
| 3FFF08h-3FFF09h | PCNT  | Pin Count               | 28            | Pins  |

#### TABLE 7-2:MEMORY SIZE AND NUMBER OF USER ROWS

| Part Name      | Memory size | Number of user rows |
|----------------|-------------|---------------------|
| PIC18(L)F24K42 | 8K          | 256                 |
| PIC18(L)F25K42 | 16K         | 512                 |

#### 7.1 DIA and DCI Access

The DIA and DCI addresses are read-only and cannot be erased or modified. See Section 15.2 "Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the DIA and DCI regions, similar to the Device ID and Revision ID.

# 8.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for selected oscillator source).
- 3. MCLR must be released (if enabled).

The total time out will vary based on oscillator configuration and Power-up Timer configuration. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator Start-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 8-4). This is useful for testing purposes or to synchronize more than one device operating in parallel.



FIGURE 8-4: RESET START-UP SEQUENCE

| U-0                                     | U-0                               | U-0                                                   | U-0                            | U-0                                | U-0 | R/W/HC-1/u | U-0   |  |  |
|-----------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------------|------------------------------------|-----|------------|-------|--|--|
|                                         |                                   | _                                                     | _                              | _                                  |     | MEMV       | _     |  |  |
| bit 7                                   |                                   |                                                       |                                |                                    |     |            | bit 0 |  |  |
|                                         |                                   |                                                       |                                |                                    |     |            |       |  |  |
| Legend:                                 |                                   |                                                       |                                |                                    |     |            |       |  |  |
| R = Readable b                          | R = Readable bit W = Writable bit |                                                       | oit                            | U = Unimplemented bit, read as '0' |     |            |       |  |  |
| u = Bit is unchanged x = Bit is unknown |                                   | -m/n = Value at POR and BOR/Value at all other Resets |                                |                                    |     |            |       |  |  |
| '1' = Bit is set '0' = Bit is cleared   |                                   |                                                       | q = Value depends on condition |                                    |     |            |       |  |  |

#### REGISTER 8-3: PCON1: POWER CONTROL REGISTER 1

| bit 7-2 | Unimplemented:                          | Read as '0' |
|---------|-----------------------------------------|-------------|
|         | ••••••••••••••••••••••••••••••••••••••• | 10044 40 0  |

bit 1 **MEMV:** Memory Violation Flag bit

1 = No memory violation Reset occurred or set to '1' by firmware

0 = A memory violation Reset occurred (set to '0' in hardware when a Memory Violation occurs)

bit 0 Unimplemented: Read as '0'

#### TABLE 8-4: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

| Name   | Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0  | Register<br>on Page |
|--------|--------|--------|-------|-------|-------|-------|-------|--------|---------------------|
| BORCON | SBOREN | _      |       |       | _     |       | _     | BORRDY | 90                  |
| PCON0  | STKOVF | STKUNF | WDTWV | RWDT  | RMCLR | RI    | POR   | BOR    | 95                  |
| PCON1  | _      | _      |       |       | _     | _     | MEMV  | _      | 96                  |

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

| U-0                                     | U-0                         | R/W-0/0           | R/W-0/0    | R/W-0/0        | U-0              | R/W-0/0          | R/W-0/0     |  |  |
|-----------------------------------------|-----------------------------|-------------------|------------|----------------|------------------|------------------|-------------|--|--|
|                                         | -                           | INT2IE            | CLC2IE     | CWG2IE         |                  | CCP2IE           | TMR4IE      |  |  |
| bit 7                                   |                             |                   |            |                |                  |                  | bit 0       |  |  |
|                                         |                             |                   |            |                |                  |                  |             |  |  |
| Legend:                                 |                             |                   |            |                |                  |                  |             |  |  |
| R = Readable                            | bit                         | W = Writable      | bit        | U = Unimpler   | mented bit, read | as '0'           |             |  |  |
| u = Bit is uncha                        | anged                       | x = Bit is unkr   | nown       | -n/n = Value a | at POR and BO    | R/Value at all o | ther Resets |  |  |
| '1' = Bit is set                        |                             | '0' = Bit is clea | ared       |                |                  |                  |             |  |  |
|                                         |                             |                   |            |                |                  |                  |             |  |  |
| bit 7-6                                 | Unimplemen                  | ted: Read as '    | ) <b>'</b> |                |                  |                  |             |  |  |
| bit 5                                   | INT2IE: Exter               | nal Interrupt 2   | Enable bit |                |                  |                  |             |  |  |
|                                         | 1 = Enabled                 |                   |            |                |                  |                  |             |  |  |
|                                         |                             |                   |            |                |                  |                  |             |  |  |
| bit 4                                   | CLC2IE: CLC                 | 2 Interrupt Ena   | able bit   |                |                  |                  |             |  |  |
|                                         | 1 = Enabled<br>0 = Disabled |                   |            |                |                  |                  |             |  |  |
| bit 3                                   | CWG2IE: CW                  | /G2 Interrupt E   | nable bit  |                |                  |                  |             |  |  |
|                                         | 1 = Enabled                 |                   |            |                |                  |                  |             |  |  |
|                                         | 0 = Disabled                |                   |            |                |                  |                  |             |  |  |
| bit 2                                   | Unimplemen                  | ted: Read as '    | )'         |                |                  |                  |             |  |  |
| bit 1                                   | CCP2IE: CCF                 | P2 Interrupt En   | able bit   |                |                  |                  |             |  |  |
| 1 = Enabled                             |                             |                   |            |                |                  |                  |             |  |  |
|                                         | 0 = Disabled                |                   |            |                |                  |                  |             |  |  |
| bit 0 TMR4IE: TMR4 Interrupt Enable bit |                             |                   |            |                |                  |                  |             |  |  |
|                                         | 1 = Enabled                 |                   |            |                |                  |                  |             |  |  |
|                                         | 0 = Disabled                |                   |            |                |                  |                  |             |  |  |

# REGISTER 11-21: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

### 17.5 DMA Message Transfers

Once the Enable bit is set to start DMA message transfers, the Source/Destination pointer and counter registers are initialized to the conditions shown in Table 17-3.

#### TABLE 17-3: DMA INITIAL CONDITIONS

| Register       | Value loaded  |
|----------------|---------------|
| DMAxSPTR<21:0> | DMAxSSA<21:0> |
| DMAxSCNT<11:0> | DMAxSSZ<11:0> |
| DMAxDPTR<15:0> | DMAxDSA<15:0> |
| DMAxDCNT<11:0> | DMAxDSZ<11:0> |

During the DMA Operation after each transaction, Table 17-4, and Table 17-5 indicate how the Source/ Destination pointer and counter registers are modified

#### TABLE 17-4: DMA SOURCE POINTER/COUNTER DURING OPERATION

| Register            | Modified Source Counter/Pointer Value |
|---------------------|---------------------------------------|
| DMAxSCNT<11:0> != 1 | DMAxSCNT = DMAxSCNT -1                |
|                     | SMODE = 00: DMAxSPTR = DMAxSPTR       |
|                     | SMODE = 01: DMAxSPTR = DMAxSPTR + 1   |
|                     | SMODE = 10: DMAxSPTR = DMAxSPTR - 1   |
| DMAxSCNT<11:0> == 1 | DMAxSCNT = DMAxSSZ                    |
|                     | DMAxSPTR = DMAxSSA                    |

#### TABLE 17-5: DMA DESTINATION POINTER/COUNTER DURING OPERATION

| Register            | Modified Destination Counter/Pointer Value |
|---------------------|--------------------------------------------|
| DMAxDCNT<11:0> != 1 | DMAxDCNT = DMAxDCNT -1                     |
|                     | DMODE = 00: DMAxDPTR = DMAxDPTR            |
|                     | DMODE = 01: DMAxDPTR = DMAxDPTR + 1        |
|                     | DMODE = 10: DMAxDPTR = DMAxDPTR - 1        |
| DMAxDCNT<11:0> == 1 | DMAxDCNT = DMAxDSZ                         |
|                     | DMAxDPTR = DMAxDSA                         |

The following sections discuss how to initiate and terminate DMA transfers.

#### 17.5.1 STARTING DMA MESSAGE TRANSFERS

The DMA can initiate data transactions by either of the following two conditions:

- 1. User software control
- 2. Hardware trigger, SIRQ

17.5.1.1 User Software Control

Software starts or stops DMA transaction by setting/ clearing the DGO bit. The DGO bit is also used to indicate whether a DMA hardware trigger has been received and a message is in progress.

- Note 1: Software start can only occur if the EN bit (DMAxCON1) is set.
  - 2: If the CPU writes to the DGO bit while it is already set, there is no effect on the system, the DMA will continue to operate normally.

# 19.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 19-1.

The peripheral input is selected with the peripheral xxxPPS register (Register 19-1), and the peripheral output is selected with the PORT RxyPPS register (Register 19-2). For example, to select PORTC<7> as the UART1 RX input, set U1RXPPS to 5'b1 0111, and to select PORTC<6> as the UART1 TX output set RC6PPS to 6'b01 0011.

# 19.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the pin level regardless of peripheral PPS selection. If a pin also has analog functions associated, the ANSEL bit for that pin must be cleared to enable the digital input buffer.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 19-1.

| Note: | The notation "xxx" in the register name is    |
|-------|-----------------------------------------------|
|       | a place holder for the peripheral identifier. |
|       | For example, INT0PPS.                         |

#### FIGURE 19-1: SIMPLIFIED PPS BLOCK DIAGRAM

# AOCPPS Peripheral abc RxyPPS Rxy Korpes Rxy Rxy Rxy Korpes Rxy

# 19.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

- UART
- I<sup>2</sup>C

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 19-2.

**Note:** The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

| R/W-0/0          | R/W-0/0     | R/W-0/0           | U-0      | U-0            | U-0              | U-0              | U-0          |
|------------------|-------------|-------------------|----------|----------------|------------------|------------------|--------------|
| CWG3MD           | CWG2MD      | CWG1MD            | —        | _              | —                | _                | —            |
| bit 7            |             |                   |          |                |                  |                  | bit 0        |
|                  |             |                   |          |                |                  |                  |              |
| Legend:          |             |                   |          |                |                  |                  |              |
| R = Readable     | e bit       | W = Writable      | bit      | U = Unimplen   | nented bit, read | l as '0'         |              |
| u = Bit is unch  | nanged      | x = Bit is unkn   | iown     | -n/n = Value a | t POR and BO     | R/Value at all c | other Resets |
| '1' = Bit is set |             | '0' = Bit is clea | ared     | q = Value dep  | ends on condit   | ion              |              |
|                  |             |                   |          |                |                  |                  |              |
| bit 7            | CWG3MD: Dis | able CWG3 Mo      | dule bit |                |                  |                  |              |
|                  | 1 = CWG3 m  | odule disabled    |          |                |                  |                  |              |
|                  | 0 = CWG3 mc | odule enabled     |          |                |                  |                  |              |
| bit 6            | CWG2MD: Dis | sable CWG2 Mo     | dule bit |                |                  |                  |              |
|                  | 1 = CWG2mc  | odule disabled    |          |                |                  |                  |              |
| bit 5            |             |                   | dule bit |                |                  |                  |              |
| DIL J            | 1 = CWG1 m  | odule disabled    |          |                |                  |                  |              |
|                  | 0 = CWG1 m  | odule enabled     |          |                |                  |                  |              |
| bit 4-0          | Unimplement | ed: Read as '0'   |          |                |                  |                  |              |

#### REGISTER 21-5: PMD4: PMD CONTROL REGISTER 4

# 23.0 TIMER1/3/5 MODULE WITH GATE CONTROL

Timer1/3/5 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMRxH:TMRxL)
- Programmable internal or external clock source
- · 2-bit prescaler
- · Dedicated Secondary 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1/3/5 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock,

Asynchronous mode only)

- 16-Bit Read/Write Operation
- Time base for the Capture/Compare function with the CCP modules
- Special Event Trigger (with CCP)
- · Selectable Gate Source Polarity
- Gate Toggle mode
- · Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt

Figure 23-1 is a block diagram of the Timer1/3/5 module.





# FIGURE 27-11: WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F24/25K42

| U-0                                    | U-0            | R-x               | U-0      | R/W-0/0      | R/W-0/0          | R/W-0/0          | R/W-0/0      |
|----------------------------------------|----------------|-------------------|----------|--------------|------------------|------------------|--------------|
| _                                      | _              | IN                | —        | POLD         | POLC             | POLB             | POLA         |
| bit 7                                  |                | •                 |          |              |                  | •                | bit 0        |
|                                        |                |                   |          |              |                  |                  |              |
| Legend:                                |                |                   |          |              |                  |                  |              |
| R = Readable                           | bit            | W = Writable      | bit      | U = Unimpler | mented bit, read | as '0'           |              |
| u = Bit is unch                        | anged          | x = Bit is unkr   | nown     | -n/n = Value | at POR and BO    | R/Value at all o | other Resets |
| '1' = Bit is set                       |                | '0' = Bit is clea | ared     | q = Value de | pends on condit  | ion              |              |
|                                        |                |                   |          |              |                  |                  |              |
| bit 7-6                                | Unimplemen     | ted: Read as '    | 0'       |              |                  |                  |              |
| bit 5                                  | IN: CWG Inpu   | ut Value bit (rea | ad-only) |              |                  |                  |              |
| bit 4                                  | Unimplemen     | ted: Read as '    | 0'       |              |                  |                  |              |
| bit 3                                  | POLD: CWG      | xD Output Pola    | rity bit |              |                  |                  |              |
|                                        | 1 = Signal ou  | tput is inverted  | polarity |              |                  |                  |              |
|                                        | 0 = Signal ou  | tput is normal p  | olarity  |              |                  |                  |              |
| bit 2                                  | POLC: CWG      | xC Output Pola    | rity bit |              |                  |                  |              |
|                                        | 1 = Signal out | tput is inverted  | polarity |              |                  |                  |              |
| bit 1                                  |                | vB Output Pola    | rity hit |              |                  |                  |              |
| 1 = Signal output is inverted polarity |                |                   |          |              |                  |                  |              |
|                                        | 0 = Signal ou  | tput is normal p  | olarity  |              |                  |                  |              |
| bit 0                                  | POLA: CWG      | xA Output Pola    | rity bit |              |                  |                  |              |
|                                        | 1 = Signal ou  | tput is inverted  | polarity |              |                  |                  |              |
|                                        | 0 = Signal ou  | tput is normal p  | olarity  |              |                  |                  |              |

### REGISTER 28-2: CWGxCON1: CWG CONTROL REGISTER 1

# 31.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 31-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- Accurate long term time measurement
- Dimmer phase delayed drive
- Low EMI cycle switching

# 31.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300  $\mu$ A. Refer to Equation 31-1 and Figure 31-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

### EQUATION 31-1: EXTERNAL RESISTOR

$$RSERIES = \frac{V_{PEAK}}{3 \times 10^{-4}}$$

FIGURE 31-1: EXTERNAL VOLTAGE





#### FIGURE 33-5: ASYNCHRONOUS RECEPTION

| R/W-0/0          | R/W-0/0 | R/W-0/0            | R/W-0/0 | R/W-0/0        | R/W-0/0          | R/W-0/0        | R/W-0/0      |
|------------------|---------|--------------------|---------|----------------|------------------|----------------|--------------|
|                  |         |                    | STPT    | <15:8>         |                  |                |              |
| bit 7            |         |                    |         |                |                  |                | bit 0        |
|                  |         |                    |         |                |                  |                |              |
| Legend:          |         |                    |         |                |                  |                |              |
| R = Readable     | bit     | W = Writable b     | it      | U = Unimpler   | nented bit, read | d as '0'       |              |
| u = Bit is unch  | anged   | x = Bit is unkno   | own     | -n/n = Value a | at POR and BC    | R/Value at all | other Resets |
| '1' = Bit is set |         | '0' = Bit is clear | red     |                |                  |                |              |

#### REGISTER 38-27: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

bit 7-0 **STPT<15:8>**: ADC Threshold Setpoint MSB. Upper byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 38-29 for more details.

#### REGISTER 38-28: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

| R/W-0/0   | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |  |  |  |
|-----------|---------|---------|---------|---------|---------|---------|---------|--|--|--|
| STPT<7:0> |         |         |         |         |         |         |         |  |  |  |
| bit 7     |         |         |         |         |         |         | bit 0   |  |  |  |
|           |         |         |         |         |         |         |         |  |  |  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 **STPT<7:0>**: ADC Threshold Setpoint LSB. Lower byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 38-30 for more details.

# 41.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

# 41.7 Operation During Idle and Doze Modes

In both Idle and Doze modes, the module is active and events are generated if peripheral is enabled.

# 41.8 Operation During Freeze

When in Freeze mode, no new event or interrupt can be generated. The state of the LRDY bit is frozen.

Register reads and writes through the CPU interface are allowed.

# 41.9 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

| TBLWT             | Table W                                                                                                                                                                                                                                                                                                                                                                          | rite                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Syntax:           | TBLWT ( '                                                                                                                                                                                                                                                                                                                                                                        | *; *+; *-; +*                                                                                                                                                                                                                                                               | <sup>r</sup> )                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  |  |  |  |
| Operands:         | None                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |  |  |
| Operation:        | if TBLWT*,<br>(TABLAT) $\rightarrow$ Holding Register;<br>TBLPTR – No Change;<br>if TBLWT*+,<br>(TABLAT) $\rightarrow$ Holding Register;<br>(TBLPTR) + 1 $\rightarrow$ TBLPTR;<br>if TBLWT*-,<br>(TABLAT) $\rightarrow$ Holding Register;<br>(TBLPTR) – 1 $\rightarrow$ TBLPTR;<br>if TBLWT+*,<br>(TBLPTR) + 1 $\rightarrow$ TBLPTR;<br>(TABLAT) $\rightarrow$ Holding Register; |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |  |  |
| Status Affected:  | None                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |  |  |
| Encoding:         | 0000                                                                                                                                                                                                                                                                                                                                                                             | 0000                                                                                                                                                                                                                                                                        | 0000                                                                                                                                                                                                                                                                 | 11nn<br>nn=0 *<br>=1 *+<br>=2 *-<br>=3 +*                                                                                                                                                                                                                        |  |  |  |
| Description:      | This instru<br>TBLPTR t<br>holding re<br>The holdin<br>the conter<br>(Refer to \$<br><b>Memory</b> "<br>gramming<br>The TBLP<br>each byte<br>TBLPTR t<br>The LSb of<br>byte of the<br>access.<br>TBLF<br>TBLF<br>TBLF<br>TBLF<br>Value of T<br>• no char<br>• post-inc                                                                                                           | uction uses<br>o determin<br>gisters the<br>ng registers<br>the of Prog<br>Section 1!<br>for addition<br>Flash me<br>PTR (a 21-1<br>in the pro-<br>pas a 2-ME<br>of the TBLI<br>e program<br>PTR[0] = 0<br>PTR[0] = 1<br>T instruct<br>BLPTR as<br>nge<br>crement<br>rement | s the three<br>he which c<br>a TABLAT<br>s are used<br>gram Mem<br>5.1 "Prog<br>onal details<br>mory.)<br>bit pointer<br>gram men<br>3yte addre<br>PTR selec<br>memory l<br>: Least S<br>Byte of<br>Memor<br>: Most S<br>Byte of<br>Memor<br>ion can m<br>s follows: | e LSBs of<br>of the eight<br>is written to.<br>d to program<br>ory (P.M.).<br>ram Flash<br>s on pro-<br>) points to<br>nory.<br>ess range.<br>ets which<br>ocation to<br>Significant<br>f Program<br>ry Word<br>Significant<br>f Program<br>ry Word<br>odify the |  |  |  |
| Words:            | 1                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |  |  |
| Cycles:           | 2                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |  |  |
| Q Cycle Activity: |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |  |  |
|                   | Q1                                                                                                                                                                                                                                                                                                                                                                               | Q2                                                                                                                                                                                                                                                                          | Q3                                                                                                                                                                                                                                                                   | Q4                                                                                                                                                                                                                                                               |  |  |  |
|                   | Decode                                                                                                                                                                                                                                                                                                                                                                           | No                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                               |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                  | operation                                                                                                                                                                                                                                                                   | operation                                                                                                                                                                                                                                                            | operation                                                                                                                                                                                                                                                        |  |  |  |
|                   | operation                                                                                                                                                                                                                                                                                                                                                                        | operation<br>(Read                                                                                                                                                                                                                                                          | operation                                                                                                                                                                                                                                                            | operation<br>(Write to                                                                                                                                                                                                                                           |  |  |  |

#### TBLWT Table Write (Continued)

| Example1:   | TBLWT *+;                |        |         |
|-------------|--------------------------|--------|---------|
| Before In:  | struction                |        |         |
| TAB         | LAT                      | =      | 55h     |
| TBL         |                          | =      | 00A356h |
| HOL<br>(00  | A356h)                   | =      | FFh     |
| After Inst  | ructions (table write    | e comp | letion) |
| TAB         | LAT                      | =      | 55h     |
| TBL         | PTR                      | =      | 00A357h |
| HOL<br>(00  | .DING REGISTER<br>A356h) | =      | 55h     |
| Example 2:  | TBLWT +*;                |        |         |
| Before In:  | struction                |        |         |
| TAB         | LAT                      | =      | 34h     |
| TBL         | PTR                      | =      | 01389Ah |
| HOL         | DING REGISTER            | _      | EEb     |
| HOI         | DING REGISTER            | -      |         |
| (01         | 389Bh)                   | =      | FFh     |
| After Instr | ruction (table write     | comple | etion)  |
| TAB         | LAT                      | =      | 34h     |
| TBL         | PTR                      | =      | 01389Bh |
| (01         | 389Ah)                   | =      | FFh     |
| HÕL         | DING REGISTER            |        |         |
| (01         | 389Bh)                   | =      | 34h     |

TABLAT)

Holding

Register)

#### 43.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

| Note: | Enabling  | the                                  | PIC18     | instruction   | set  |  |  |
|-------|-----------|--------------------------------------|-----------|---------------|------|--|--|
|       | extension | may                                  | cause leg | gacy applicat | ions |  |  |
|       | to behave | behave erratically or fail entirely. |           |               |      |  |  |

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 4.8.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0), or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 43.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

# 43.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM<sup>TM</sup> assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option,  $/_{Y}$ , or the PE directive in the source listing.

# 43.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18(L)F2x/ 4xK42, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

# 44.0 REGISTER SUMMARY

### TABLE 44-1: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES

| Address          | Name     | Bit 7         | Bit 6                                      | Bit 5         | Bit 4          | Bit 3           | Bit 2           | Bit 1           | Bit 0       | Register<br>on page |
|------------------|----------|---------------|--------------------------------------------|---------------|----------------|-----------------|-----------------|-----------------|-------------|---------------------|
| 3FFFh            | TOSU     | —             | —                                          | —             |                | Тор             | o of Stack Uppe | er byte         |             | 29                  |
| 3FFEh            | TOSH     |               | Top of Stack High byte                     |               |                |                 |                 |                 |             |                     |
| 3FFDh            | TOSL     |               |                                            |               | Top of Stac    | k Low byte      |                 |                 |             | 30                  |
| 3FFCh            | STKPTR   | —             | —                                          | _             |                |                 | Stack Pointe    | r               |             | 29                  |
| 3FFBh            | PCLATU   | —             | —                                          | _             |                | Holding F       | Register for PC | Upper byte      |             | 27                  |
| 3FFAh            | PCLATH   |               |                                            | Hol           | lding Register | for PC High b   | yte             |                 |             | 27                  |
| 3FF9h            | PCL      |               |                                            |               | PC Lo          | w byte          |                 |                 |             | 27                  |
| 3FF8h            | TBLPTRU  | —             | —                                          |               | Progr          | am Memory Ta    | able Pointer Up | oper byte       |             | 196                 |
| 3FF7h            | TBLPTRH  |               |                                            | Progra        | m Memory Ta    | ble Pointer Hig | gh byte         |                 |             | 196                 |
| 3FF6h            | TBLPTRL  |               |                                            | Progra        | m Memory Ta    | ble Pointer Lo  | w byte          |                 |             | 196                 |
| 3FF5h            | TABLAT   |               |                                            |               | Table          | Latch           |                 |                 |             | 196                 |
| 3FF4h            | PRODH    |               |                                            |               | Product Regis  | ster High byte  |                 |                 |             | 191                 |
| 3FF3h            | PRODL    |               |                                            |               | Product Regi   | ster Low byte   |                 |                 |             | 191                 |
| 3FF2h            | —        |               |                                            |               | Unimple        | mented          |                 |                 |             |                     |
| 3FF1h            | PCON1    | —             | —                                          | —             | —              |                 | —               | MEMV            | —           | 96                  |
| 3FF0h            | PCON0    | STKOVF        | STKUNF                                     | WDTWV         | RWDT           | RMCLR           | RI              | POR             | BOR         | 95                  |
| 3FEFh            | INDF0    | Uses contents | of FSR0 to add                             | ress data men | nory – value o | f FSR0 not ch   | anged           |                 |             | 65                  |
| 3FEEh            | POSTINC0 | Uses contents | of FSR0 to add                             | ress data men | nory – value o | f FSR0 post-ir  | ncremented      |                 |             | 66                  |
| 3FEDh            | POSTDEC0 | Uses contents | of FSR0 to add                             | ress data men | nory – value o | f FSR0 post-d   | ecremented      |                 |             | 66                  |
| 3FECh            | PREINC0  | Uses contents | of FSR0 to add                             | ress data men | nory – value o | f FSR0 pre-ind  | cremented       |                 |             | 66                  |
| 3FEBh            | PLUSW0   | Uses contents | of FSR0 to add                             | ress data men | nory – value o | f FSR0 pre-ind  | cremented – va  | alue of FSR0 o  | offset by W | 66                  |
| 3FEAh            | FSR0H    | —             | —                                          |               | Indirec        | t Data Memory   | y Address Poin  | ter 0 High      |             | 66                  |
| 3FE9h            | FSR0L    |               | Indirect Data Memory Address Pointer 0 Low |               |                |                 |                 |                 |             |                     |
| 3FE8h            | WREG     |               |                                            |               | Working        | Register        |                 |                 |             |                     |
| 3FE7h            | INDF1    | Uses contents | of FSR1 to add                             | ress data men | nory – value o | f FSR1 not ch   | anged           |                 |             | 66                  |
| 3FE6h            | POSTINC1 | Uses contents | of FSR1 to add                             | ress data men | nory – value o | f FSR1 post-ir  | ncremented      |                 |             | 66                  |
| 3FE5h            | POSTDEC1 | Uses contents | of FSR1 to add                             | ress data men | nory – value o | f FSR1 post-d   | ecremented      |                 |             | 66                  |
| 3FE4h            | PREINC1  | Uses contents | of FSR1 to add                             | ress data men | nory – value o | f FSR1 pre-ind  | cremented       |                 |             | 66                  |
| 3FE3h            | PLUSW1   | Uses contents | of FSR1 to add                             | ress data men | nory – value o | f FSR1 pre-ind  | cremented – va  | alue of FSR1 o  | offset by W | 66                  |
| 3FE2h            | FSR1H    | —             | —                                          |               | Indirec        | t Data Memory   | y Address Poin  | ter 1 High      |             | 66                  |
| 3FE1h            | FSR1L    |               |                                            | Indirect [    | Data Memory    | Address Point   | er 1 Low        |                 |             | 66                  |
| 3FE0h            | BSR      | —             | —                                          |               |                | Bank Se         | lect Register   |                 |             | 35                  |
| 3FDFh            | INDF2    | Uses contents | of FSR2 to add                             | ress data men | nory – value o | f FSR2 not ch   | anged           |                 |             | 66                  |
| 3FDEh            | POSTINC2 | Uses contents | of FSR2 to add                             | ress data men | nory – value o | f FSR2 post-ir  | ncremented      |                 |             | 66                  |
| 3FDDh            | POSTDEC2 | Uses contents | of FSR2 to add                             | ress data men | nory – value o | f FSR2 post-d   | ecremented      |                 |             | 66                  |
| 3FDCh            | PREINC2  | Uses contents | of FSR2 to add                             | ress data men | nory – value o | f FSR2 pre-ind  | cremented       |                 |             | 66                  |
| 3FDBh            | PLUSW2   | Uses contents | of FSR2 to add                             | ress data men | nory – value o | f FSR2 pre-ind  | cremented – va  | alue of FSR2 of | offset by W | 66                  |
| 3FDAh            | FSR2H    | _             | —                                          |               | Indirec        | t Data Memory   | y Address Poin  | ter 2 High      |             | 66                  |
| 3FD9h            | FSR2L    |               |                                            | Indirect [    | Data Memory    | Address Point   | er 2 Low        | -               |             | 66                  |
| 3FD8h            | STATUS   | —             | TO                                         | PD            | N              | OV              | Z               | DC              | С           | 63                  |
| 3FD7h            | IVTBASEU | —             | —                                          | —             | BASE20         | BASE19          | BASE18          | BASE17          | BASE16      | 171                 |
| 3FD6h            | IVTBASEH | BASE15        | BASE14                                     | BASE13        | BASE12         | BASE11          | BASE10          | BASE9           | BASE8       | 171                 |
| 3FD5h            | IVTBASEL | BASE7         | BASE6                                      | BASE5         | BASE4          | BASE3           | BASE2           | BASE1           | BASE0       | 171                 |
| 3FD4h            | IVTLOCK  | —             | —                                          | —             | —              | —               | —               | —               | IVTLOCKED   | 173                 |
| 3FD3h            | INTCON1  | ST            | AT                                         | —             | —              | —               | —               | —               | —           | 141                 |
| 3FD2h            | INTCON0  | GIE           | GIEL                                       | IPEN          | —              | —               | INT2EDG         | INT1EDG         | INT0EDG     | 140                 |
| 3FD1h -<br>3FCFh | —        |               |                                            |               | Unimple        | emented         |                 |                 |             |                     |

 $\label{eq:Legend: Legend: Legend: u = unchanged, --= unimplemented, \ q = value \ depends \ on \ condition$ 

Note 1: Not present in LF devices.

| Address          | Name     | Bit 7 | Bit 6 | Bit 5  | Bit 4   | Bit 3   | Bit 2       | Bit 1 | Bit 0 | Register<br>on page |
|------------------|----------|-------|-------|--------|---------|---------|-------------|-------|-------|---------------------|
| 3F97h            | T6RST    | _     | _     | —      |         |         | RSEL        |       |       | 339                 |
| 3F96h            | T6CLK    | —     | —     | —      | —       |         | (           | CS    |       | 318                 |
| 3F95h            | T6HLT    | PSYNC | CKPOL | CKSYNC |         |         | MODE        |       |       | 342                 |
| 3F94h            | T6CON    | ON    |       | CKPS   |         |         | OL          | ITPS  |       | 341                 |
| 3F93h            | T6PR     |       |       |        | PF      | 76      |             |       |       | 340                 |
| 3F92h            | T6TMR    |       |       |        | TM      | R6      |             |       |       | 340                 |
| 3F91h -<br>3F80h | —        |       |       |        | Unimple | emented |             |       |       |                     |
| 3F7Fh            | CCP1CAP  |       |       |        | CT      | rs      |             |       |       | 355                 |
| 3F7Eh            | CCP1CON  | EN    | —     | OUT    | FMT     |         | M           | DDE   |       | 353                 |
| 3F7Dh            | CCPR1H   |       |       |        | R       | Н       |             |       |       | 356                 |
| 3F7Ch            | CCPR1L   |       |       |        | R       | L       |             |       |       | 355                 |
| 3F7Bh            | CCP2CAP  |       |       |        | CT      | rs      |             |       |       | 355                 |
| 3F7Ah            | CCP2CON  | EN    | —     | OUT    | FMT     |         | M           | DDE   |       | 353                 |
| 3F79h            | CCPR2H   |       |       |        | R       | Н       |             |       |       | 356                 |
| 3F78h            | CCPR2L   |       |       |        | R       | L       |             |       |       | 355                 |
| 3F77h            | CCP3CAP  |       |       |        | CT      | rs      |             |       |       | 355                 |
| 3F76h            | CCP3CON  | EN    | —     | OUT    | FMT     |         | M           | DDE   |       | 353                 |
| 3F75h            | CCPR3H   |       |       |        | R       | Н       |             |       |       | 356                 |
| 3F74h            | CCPR3L   |       |       |        | R       | L       |             |       |       | 355                 |
| 3F73h            | CCP4CAP  |       |       |        | CT      | rs      |             |       |       | 355                 |
| 3F72h            | CCP4CON  | EN    | —     | OUT    | FMT     |         | M           | DDE   |       | 353                 |
| 3F71h            | CCPR4H   |       |       |        | R       | Н       |             |       |       | 356                 |
| 3F70h            | CCPR4L   | RL    |       |        |         |         |             |       | 355   |                     |
| 3F6Fh            |          |       |       |        | Unimple | emented |             |       |       |                     |
| 3F6Eh            | PWM5CON  | EN    | _     | OUT    | POL     | —       | —           | —     | —     | 361                 |
| 3F6Dh            | PWM5DCH  | DC9   | DC8   | DC7    | DC6     | DC5     | DC4         | DC3   | DC2   | 363                 |
| 3F6Dh            | PWM5DCH  |       |       |        | DC      | C8      |             |       |       | 363                 |
| 3F6Ch            | PWM5DCL  | DC1   | DC0   | —      | —       | —       | —           | —     | —     | 363                 |
| 3F6Ch            | PWM5DCL  | D     | С     | —      | —       | —       | —           | —     | —     | 363                 |
| 3F6Bh            | —        |       |       | 1      | Unimple | emented | 1           |       |       |                     |
| 3F6Ah            | PWM6CON  | EN    | —     | OUT    | POL     | —       | —           | —     | —     | 361                 |
| 3F69h            | PWM6DCH  | D     | C9    | DC7    | DC6     | DC5     | DC4         | DC3   | DC2   | 363                 |
| 3F69h            | PWM6DCH  |       |       |        | D       | С       |             |       |       | 363                 |
| 3F68h            | PWM6DCL  | DC1   | DC0   | _      |         |         | _           | _     | _     | 363                 |
| 3F68h            | PWM6DCL  | D     | С     | —      | _       | _       | —           | —     | _     | 363                 |
| 3F67h            | —        |       |       | ľ      | Unimple | emented |             |       |       |                     |
| 3F66h            | PWM7CON  | EN    | _     | OUT    | POL     | —       | —           | —     | —     | 361                 |
| 3F65h            | PWM7DCH  | DC9   | DC8   | DC7    | DC6     | DC5     | DC4         | DC3   | DC2   | 363                 |
| 3F65h            | PWM7DCH  |       |       |        | D       | С       |             |       |       | 363                 |
| 3F64h            | PWM7DCL  | DC1   | DC0   | _      |         |         | _           | _     | _     | 363                 |
| 3F64h            | PWM7DCL  | DC    |       | —      | _       | _       | —           | —     | _     | 363                 |
| 3F63h            | —        |       |       |        | Unimple | emented |             |       |       |                     |
| 3F62h            | PWM8CON  | EN    | —     | OUT    | POL     | —       | —           | —     |       | 361                 |
| 3F61h            | PWM8DCH  | DC9   | DC8   | DC7    | DC6     | DC5     | DC4         | DC3   | DC2   | 363                 |
| 3F61h            | PWM8DCH  |       |       |        | D       | С       |             |       |       | 363                 |
| 3F60h            | PWM8DCL  | DC1   | DC0   | —      | —       | —       | —           | —     | _     | 363                 |
| 3F60h            | PWM8DCL  | D     | С     | —      | —       | —       | —           | —     | _     | 363                 |
| 3F5Fh            | CCPTMRS1 | P8T   | SEL   | P7T    | SEL     | P61     | <b>ISEL</b> | P5    | TSEL  | 362                 |

TABLE 44-1: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

**Legend:** x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Not present in LF devices.





