

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k42-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F24K42 PIC18LF24K42
- PIC18F25K42 PIC18LF25K42

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance Program Flash Memory, Universal Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), Inter-integrated Circuit (I²C), Direct Memory Access (DMA), Configurable Logic Cells (CLC), Signal Measurement Timer (SMT), Numerically Controlled Oscillator (NCO), and Analog-to-Digital Converter with Computation (ADC²). In addition to these features, the PIC18(L)F2X/4X/5XK42 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 XLP TECHNOLOGY

All of the devices in the PIC18(L)F2X/4X/5XK42 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the secondary oscillator or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- On-the-fly Mode Switching: The powermanaged modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- **Peripheral Module Disable:** Modules that are not being used in the code can be selectively disabled using the PMD module. This further reduces the power consumption.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18(L)F2X/4X/5XK42 family offer several different oscillator options. The PIC18(L)F2X/4X/5XK42 family can be clocked from several different sources:

- HFINTOSC
 - 1-16 MHz precision digitally controlled internal oscillator
- LFINTOSC
- 31 kHz internal oscillator
- EXTOSC
 - External clock (EC)
 - Low-power oscillator (LP)
 - Medium power oscillator (XT)
 - High-power oscillator (HS)
- SOSC
 - Secondary oscillator circuit operating at 31 kHz
- A Phase Lock Loop (PLL) frequency multiplier (4x) is available to External Oscillator modes enabling clock speeds of up to 64 MHz

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

• Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown.

4.2.4 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bit wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by any operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.3.2.1 "Computed GOTO").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by two to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

4.2.5 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack (TOS) Special File Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL, CALLW or RCALL instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits in the PCON0 register indicate if the stack has overflowed or underflowed.

4.2.5.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, holds the contents of the stack location pointed to by the STKPTR register (Figure 4-1). This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent inadvertent stack corruption.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR		
3DE0h	U2UIR	WUIF	ABDIF	—	—	—	ABDIE	—	—	000		
3DDFh	U2FIFO	TXWRE	STPMD	TXBE	TXBF	RXIDL	XON	RXBE	RXBF	00101110		
3DDEh	U2BRGH		BRGH									
3DDDh	U2BRGL				BR	GL				00000000		
3DDCh	U2CON2	RUNOVF	RXPOL	S	ГР	—	TXPOL	F	LO	0000-000		
3DDBh	U2CON1	ON	—	_	WUE	RXBIMD	_	BRKOVR	SENDB	000-00		
3DDAh	U2CON0	BRGS	ABDEN	TXEN	RXEN		M	DDE		0000-000		
3DD9h	—				Unimple	emented				—		
3DD8h	U2P3L				P	3L				XXXXXXXX		
3DD7h	—				Unimple	emented				—		
3DD6h	U2P2L				P2	2L				00000000		
3DD5h	—				Unimple	emented				—		
3DD4h	U2P1L				P	1L				00000000		
3DD3h	—				Unimple	emented				—		
3DD2h	U2TXB				Tک	КB				00000000		
3DD1h	—				Unimple	emented				—		
3DD0h	U2RXB				RX	КB				00000000		
3DCFh - 3D7Dh	—		Unimplemented							—		
3D7Ch	I2C1BTO	BTO								000		
3D7Bh	I2C1CLK		CLK							0000		
3D7Ah	I2C1PIE	CNTIE	ACKTIE	—	WRIE	ADRIE	PCIE	RSCIE	SCIE	00000000		
3D79h	I2C1PIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	00000000		
3D78h	I2C1STAT1	TXWE	—	TXBE	—	RXRE	CLRBF	—	RXBF	00100000		
3D77h	I2C1STAT0	BFRE	SMA	MMA	R	D	_	—		00000000		
3D76h	I2C1ERR	_	BTOIF	BCLIF	NACKIF	—	BTOIE	BCLIE	NACKIE	00000000		
3D75h	I2C1CON2	ACNT	GCEN	FME	ABD	SD	AHT	BF	RET	00000000		
3D74h	I2C1CON1	ACKCNT	ACKDT	ACKSTAT	ACKT	—	RXO	TXU	CSD	00000000		
3D73h	I2C1CON0	EN	RSEN	S	CSTR	MDR		MODE		00000000		
3D72h	I2C1ADR3				ADR				—	11111110		
3D71h	I2C1ADR2		ADR									
3D70h	I2C1ADR1		ADR —									
3D6Fh	I2C1ADR0				AD	DR				11111111		
3D6Eh	I2C1ADB1		ADB									
3D6Dh	I2C1ADB0		ADB									
3D6Ch	I2C1CNT	CNT								XXXXXXXX		
3D6Bh	I2C1TXB	ТХВ							XXXXXXXX			
3D6Ah	I2C1RXB	RXB							XXXXXXXX			
3D69h - 3D67h	—	Unimplemented							—			
3D66h	I2C2BTO	BTO							000			
3D65h	I2C2CLK				CI	K				0000		
3D64h	I2C2PIE	CNTIE	ACKTIE	_	WRIE	ADRIE	PCIE	RSCIE	SCIE	00000000		
3D63h	I2C2PIR	CNTIF	ACKTIF	_	WRIF	ADRIF	PCIF	RSCIF	SCIF	00000000		
3D62h	I2C2STAT1	TXWE	_	_		RXRE	CLRBF	_	RXBF	00100000		
3D61h	I2C2STAT0	BFRE	_	MMA	_	D	_	_		00000000		
3D60h	I2C2ERR	_	BTOIF	BCLIF	NACKIF	_	BTOIE	BCLIE	NACKIE	00000000		
3D5Fh	I2C2CON2	ACNT	GCEN	FME	ABD	SD	AHT	BF	RET	00000000		
3D5Eh	I2C2CON1	ACKCNT	ACKDT	ACKSTAT	ACKT	—	RXO	TXU	CSD	00000000		

TABLE 4-11: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

 $\label{eq:Legend: Legend: Legend: u = unchanged, --= unimplemented, q = value depends on condition$

Note 1: Not present in LF devices.

9.2.2.6 Oscillator Status and Manual Enable

The Ready status of each oscillator (including the ADCRC oscillator) is displayed in OSCSTAT (Register 9-4). The oscillators (but not the PLL) may be explicitly enabled through OSCEN (Register 9-7).

9.2.2.7 HFOR and MFOR Bits

The HFOR and MFOR bits indicate that the HFINTOSC and MFINTOSC is ready. These clocks are always valid for use at all times, but only accurate after they are ready.

When a new value is loaded into the OSCFRQ register, the HFOR and MFOR bits will clear, and set again when the oscillator is ready. During pending OSCFRQ changes the MFINTOSC clock will stall at a high or a low state, until the HFINTOSC resumes operation.

9.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the New Oscillator Source (NOSC) bits of the OSCCON1 register. The following clock sources can be selected using the following:

- External oscillator
- Internal Oscillator Block (INTOSC)

Note:	The Clock	Switch	Enable	bit	in
	Configuration	Word 1	can be	used	to
	enable or di	sable the	e clock s	switchi	ng
	capability. Wh	nen cleare	d, the NO	DSC a	nd
	NDIV bits ca	innot be	changed	by us	ser
	software. Whe	en set, wri	ting to NO	OSC a	nd
	NDIV is allow	wed and	would sv	vitch t	he
	clock frequen	су.			

9.3.1 NEW OSCILLATOR SOURCE (NOSC) AND NEW DIVIDER SELECTION REQUEST (NDIV) BITS

The New Oscillator Source (NOSC) and New Divider Selection Request (NDIV) bits of the OSCCON1 register select the system clock source and frequency that are used for the CPU and peripherals.

When new values of NOSC and NDIV are written to OSCCON1, the current oscillator selection will continue to operate while waiting for the new clock source to indicate that it is stable and ready. In some cases, the newly requested source may already be in use, and is ready immediately. In the case of a divider-only change, the new and old sources are the same, so the old source will be ready immediately. The device may enter Sleep while waiting for the switch as described in Section 9.3.2 "Clock Switch and Sleep".

When the new oscillator is ready, the New Oscillator Ready (NOSCR) bit of OSCCON3 and the Clock Switch Interrupt Flag (CSWIF) bit of the respective PIR register are set. If Clock Switch Interrupts are enabled (CSWIE = 1), an interrupt will be generated at that time. The Oscillator Ready (ORDY) bit of OSCCON3 can also be polled to determine when the oscillator is ready in lieu of an interrupt.

Note:	The CSWIF interrupt will not wake the					
system from Sleep.						

If the Clock Switch Hold (CSWHOLD) bit of OSCCON3 is clear, the oscillator switch will occur when the New Oscillator is Ready bit (NOSCR) is set, and the interrupt (if enabled) will be serviced at the new oscillator setting.

If CSWHOLD is set, the oscillator switch is suspended, while execution continues using the current (old) clock source. When the NOSCR bit is set, software should:

- Set CSWHOLD = 0 so the switch can complete, or
- Copy COSC into NOSC to abandon the switch.

If DOZE is in effect, the switch occurs on the next clock cycle, whether or not the CPU is operating during that cycle.

Changing the clock post-divider without changing the clock source (i.e., changing Fosc from 1 MHz to 2 MHz) is handled in the same manner as a clock source change, as described previously. The clock source will already be active, so the switch is relatively quick. CSWHOLD must be clear (CSWHOLD = 0) for the switch to complete.

The current COSC and CDIV are indicated in the OSCCON2 register up to the moment when the switch actually occurs, at which time OSCCON2 is updated and ORDY is set. NOSCR is cleared by hardware to indicate that the switch is complete.

15.1.4 NVM UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the NVM from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- PFM Row Erase
- Write of PFM write latches to PFM memory
- Write of PFM write latches to User IDs
- Write to Data EEPROM Memory
- Write to Configuration Words

The unlock sequence consists of the following steps and must be completed in order:

Write 55h to NVMCON2

EXAMPLE 15-2

- Write AAh to NMVCON2
- · Set the WR bit of NVMCON1

Once the WR bit is set, the processor will stall internal operations until the operation is complete and then resume with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

NVM LINI OCK SEQUENCE

BCF	INTCON0,GIE	;	Recommended so sequence is not interrupted		
BANKSEL	NVMCON1				
BSF	NVMCON1,WREN	;	Enable write/erase		
MOVLW	55h	;	Load 55h		
MOVWF	NVMCON2	;	Step 1: Load 55h into NVMCON2		
MOVLW	AAh	;	Step 2: Load W with AAh		
MOVWF	NVMCON2	;	Step 3: Load AAh into NVMCON2		
BSF	INTCON1,WR	;	Step 4: Set WR bit to begin write/erase		
BSF	INTCON0,GIE	;	Re-enable interrupts		
Note 1: Sequence begins when NVMCON2 is written; steps 1-4 must occur in the cycle-accurate order					

- Note 1: Sequence begins when NVMCON2 is written; steps 1-4 must occur in the cycle-accurate order shown. If the timing of the steps 1 to 4 is corrupted by an interrupt or a debugger Halt, the action will not take place.
 - 2: Opcodes shown are illustrative; any instruction that has the indicated effect may be used.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	—	—	—	IOCEP3 ⁽¹⁾	—	—	—
IOCEN					IOCEN3 ⁽¹⁾			
IOCEF	—	—	—	—	IOCEF3 ⁽¹⁾	—	—	—

TABLE 20-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

	TABLE 20-2:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE
--	-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	290
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	290
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	290

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

24.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the T2TMR and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC	CKPOL	CKSYNC			MODE<4:0>		
bit 7		·					bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is :	set	'0' = Bit is clea	ared				
bit 7	PSYNC: Time 1 = TxTMR F 0 = TxTMR F	erx Prescaler S Prescaler Outpu Prescaler Outpu	ynchronization ut is synchroni ut is not synch	n Enable bit ^{(1, 2} zed to Fosc/4 ronized to Fosc) 2/4		
bit 6	CKPOL: Timerx Clock Polarity Selection bit ⁽³⁾ 1 = Falling edge of input clock clocks timer/prescaler 0 = Rising edge of input clock clocks timer/prescaler						
bit 5	<pre>it 5 CKSYNC: Timerx Clock Synchronization Enable bit^(4, 5) 1 = ON register bit is synchronized to T2TMR_clk input 0 = ON register bit is not synchronized to T2TMR_clk input</pre>						
bit 4-0	4-0 MODE<4:0>: Timerx Control Mode Selection bits ^(6, 7) See Table 24-1 for all operating modes.						
Note 1:	Setting this bit er	nsures that read	ling TxTMR w	ill return a valid	data value.		
2:	When this bit is '?	1', Timer2 cann	ot operate in S	Sleep mode.			
3:	3: CKPOL should not be changed while ON = 1.						
4:	4: Setting this bit ensures glitch-free operation when the ON is enabled or disabled.						
5:	When this bit is s set.	et then the time	er operation wi	ill be delayed by	y two TxTMR ir	put clocks afte	r the ON bit is
6:	Unless otherwise affecting the value	e indicated, all le of TxTMR).	modes start u	upon ON = 1 a	nd stop upon (ON = 0 (stops	occur without
_					e		

REGISTER 24-6: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TxTMR = TxPR, the next clock clears TxTMR, regardless of the operating mode.

		Rev. 10-00018 4/22/20
SMT-M/M		
SMTx_signal		
/Tx_signalsync		
SMTx Clock		
SMTxEN		
SMTxGO		
SMTxGO_sync		
SMTxTMR 0 1	2 3 4 5	$\left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 1 \\ 2 \\ 2 \\ 13 \\ 1 \\ 2 \\ 2 \\ 2 \\ 10 \\ 11 \\ 12 \\ 13 \\ 1 \\ 2 \\ 13 \\ 1 \\ 2 \\ 2 \\ 10 \\ 11 \\ 12 \\ 13 \\ 1 \\ 1 \\ 2 \\ 13 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
SMTxCPW) 13
SMTxCPR		4
SMTxPWAIF		
SMTxPRAIF		

REGISTER 28-3: CWGxCLK: CWGx CLOCK INPUT SELECTION REGISTER II-0 II-0 II-0 II-0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

bit 0 CS: CWG Clock Source Selection Select bits

CS	CWG1	CWG2	CWG3
1	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾
0	Fosc	Fosc	Fosc

Note 1: HFINTOSC remains operating during Sleep.

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—			DBF	<<5:0>			
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable k	oit	U = Unimple	mented bit, read	as '0'		
u = Bit is unchanged		x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition				
bit 7-6	Unimplemer	nted: Read as 'o)'					
bit 5-0	DBR<5:0>: (CWG Rising Edg	ge Triggered I	Dead-Band Co	unt bits			
	11 1111 =	63-64 CWG clo	ck periods					
	11 1110 =	62-63 CWG clo	ck periods					
	•							
	00 0010 = 00 0001 = 00 0000 =	2-3 CWG clock 1-2 CWG clock 0 CWG clock pe	periods periods eriods. Dead-	band generatio	on is bypassed			

REGISTER 28-8: CWGxDBR: CWG RISING DEAD-BAND COUNT REGISTER

REGISTER 28-9: CWGxDBF: CWG FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			DBF	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'					
bit 5-0	DBF<5:0>: CWG Falling Edge Triggered Dead-Band Count bits					
	11 1111 = 63-64 CWG clock periods					
	11 1110 = 62-63 CWG clock periods					
	00 0010 = 2-3 CWG clock periods					
	00 0001 = 1-2 CWG clock periods					
	00 0000 = 0 CWG clock periods. Dead-band generation is bypassed.					

REGISTER 30-3: NCO1ACCL: NCO1 ACCUMULATOR REGISTER – LOW BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ACC | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| - | | | | | | | |
| Legend: | | | | | | | |

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<7:0>: NCO1 Accumulator, Low Byte

REGISTER 30-4: NCO1ACCH: NCO1 ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC<1	5:8>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimplem	ented hit read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: NCO1 Accumulator, High Byte

35.3.2 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent by the receiver. After the 8th falling edge of the SCL line, the device transmitting data on the SDA line releases control of that pin to an input, and reads in an acknowledge value on the next clock pulse. The clock signal is provided by the master. Data is valid to change while the SCL line is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define Start and Stop conditions on the bus which are explained further in the chapter.

35.3.3 SDA AND SCL PINS

The user must configure these pins as open drain inputs. This is done by setting the appropriate TRIS and ODCON bits. The user may also select the input threshold, slew-rate and internal pull-up settings using the RxyI2C control registers (Register 35-18).

35.3.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT<1:0> bits of the I2CxCON2 register. Hold time is the time SDA is held valid after the falling edge of SCL. These bits are used to set the hold time of 30/100/300 ns. A longer hold time setting may help on buses with large capacitance.

35.3.5 START CONDITION

The I²C specification defines a Start condition as a transition of SDA line from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 35-3 shows waveforms for Start conditions. Master hardware waits for the BFRE bit of I2CxSTAT0 to be set, before asserting a Start condition on the SCL and SDA lines. If two masters assert a start at the same time, a collision will occur during the addressing phase.

35.3.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low to high while the SCL line is high. Figure 35-3 shows waveforms for Stop conditions.

Note: At least one SCL low time must appear before a Stop is valid. Therefore if the SDA line goes low then high again while the SCL line is high, only the Start condition is detected.

FIGURE 35-3: START AND STOP CONDITIONS

PIC18(L)F24/25K42

REGISTER 35-15: I2CXADR3 – I²C ADDRESS 3 REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8	—
bit 15				•			bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set HC = Hardware clear

bit 7-0 ADR<7-0>: Address 3 bits

MODE<2:0> = 000 | 110 - 7-bit Slave/Multi-Master Modes

ADR<7:1>:7-bit Slave Address

ADR<0>: Unused in this mode; bit state is a don't care

MODE<2:0> = 001 | 111 - 7-bit Slave/Multi-Master Mode with Masking

MSK1<7:1>:7-bit Slave Address

MSK1<0>: Unused in this mode; bit state is a don't care

MODE<2:0> = 010 - 10-Bit Slave Mode

ADR<14-10>:Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, these bit values are compared by hardware to the received data to determine a match. It is up to the user to set these bits as '11110'
ADR<9-8>:Two Most Significant bits of 10-bit address

MODE<2:0> = 011 - 10-Bit Slave Mode with Masking

MSK0<14-8>:The received address byte, bit *n*, is compared to I2CxADR0 to detect I²C address match

40.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 40-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Hysteresis enable
- · Timer1 output synchronization

The CMxCON1 register (see Register 40-2) contains Control bits for the following:

· Interrupt on positive/negative edge enables

The CMxPCH and CMxNCH registers are used to select the positive and negative input channels, respectively.

40.2.1 COMPARATOR ENABLE

Setting the EN bit of the CMxCON0 register enables the comparator for operation. Clearing the EN bit disables the comparator resulting in minimum current consumption.

40.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the CxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 19-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

40.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the POL bit of the CMxCON0 register. Clearing the POL bit results in a non-inverted output.

Table 40-1 shows the output state versus input conditions, including polarity control.

TABLE 40-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	POL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3C6Eh	CLC2SEL2	D3S								
3C6Dh	CLC2SEL1	D2S								445
3C6Ch	CLC2SEL0	D1S								445
3C6Bh	CLC2POL	POL	—	—	—	G4POL	G3POL	G2POL	G1POL	444
3C6Ah	CLC2CON	EN	OE	OUT	INTP	INTN		MODE		443
3C69h	CLC3GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	449
3C68h	CLC3GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	448
3C67h	CLC3GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	447
3C66h	CLC3GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	446
3C65h	CLC3SEL3	D4S								
3C64h	CLC3SEL2	D3S								445
3C63h	CLC3SEL1	D2S								445
3C62h	CLC3SEL0	D1S								
3C61h	CLC3POL	POL	—	-	—	G4POL	G3POL	G2POL	G1POL	444
3C60h	CLC3CON	EN	OE	OUT	INTP	INTN		MODE	r	443
3C5Fh	CLC4GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	449
3C5Eh	CLC4GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	448
3C5Dh	CLC4GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	447
3C5Ch	CLC4GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	446
3C5Bh	CLC4SEL3	D4S								
3C5Ah	CLC4SEL2	D3S								445
3C59h	CLC4SEL1	D2S								445
3C58h	CLC4SEL0				D	S			1	446
3C57h	CLC4POL	POL		—	—	G4POL	G3POL	G2POL	G1POL	444
3C56h	CLC4CON	EN	OE	OUT	INTP	INTN		MODE		443
3C55h - 3C00h	_	Unimplemented								
3BFFh	DMA1SIRQ				SI	RQ				231
3BFEh	DMA1AIRQ			1	Alf	RQ			1	231
3BFDh	DMA1CON1	EN	SIRQEN	DGO — — AIRQEN — XIP						231
3BFCh	DMA1CON0	DMODE DSTP SMR SMODE SSTP								231
3BFBh	DMA1SSAU	SSA								
3BFAh	DMA1SSAH	SSA								
3BF9h	DMA1SSAL	SSA								231
3BF8h	DMA1SSZH	SSZ								231
3BF7h	DMA1SSZL	SSZ								231
3BF6h	DMA1SPTRU	SPTR								231
3BF5h	DMA1SPTRH	SPTR								231
3BF4h	DMA1SPTRL	SPTR								231
3BF3h	DMA1SCNTH	SCNT								231
3BF2h	DMA1SCNTL				SC	NI				231
3BF1h	DMA1DSAH	DSA								231
3BF0h	DMA1DSAL	SSA								231
3BEFh	DMA1DSZH	DSZ								231
3BEEh	DMA1DSZL	DSZ								231
3BEDh	DMA1DPTRH	DPTR								231
3BECh	DMA1DPTRL	DPTR								231
3BEBh										231
3BEAN	AN DUNIDUNIL DUNI 231									231

TABLE 44-1: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

egend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition

Note 1: Not present in LF devices.

TABLE 46-6: THERMAL CHARACTERISTICS

standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package		
			80	°C/W	28-pin SOIC package		
			90	°C/W	28-pin SSOP package		
			27.5	°C/W	28-pin UQFN 4x4 mm package		
			27.5	°C/W	28-pin QFN 6x6mm package		
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package		
			24	°C/W	28-pin SOIC package		
			24	°C/W	28-pin SSOP package		
			24	°C/W	28-pin UQEN 4x4pm package		
			24	°C/W	28-pin QFN 6x6mm package		
TH03	TJMAX	Maximum Junction Temperature	150	°C	\sim		
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/Q(3)		
TH05	PINTERNAL	Internal Power Dissipation	_	W	RINTERMAL = IDD X YDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PIQ = \sum (IOL * VOL) + \sum (IOH * (VDD - VOH))$		
TH07	PDER	Derated Power	_	W	Pder = RÓmax (Tj - Ta)/θja ⁽²⁾		

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

3: See absolute maximum ratings for total power dissipation.

TABLE 46-13: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C, TAD = 1μs								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	Nr	Resolution	—		12	bit		
AD02	EIL	Integral Error	—	±0.1	±2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD04	EOFF	Offset Error	—	0.5	6.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD05	Egn	Gain Error	—	±0.2	±6.0	LSb	ADCREF+ = 3.0V, ADCREF-=\0\	
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8	_	Vdd	V		
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	V		
AD08	Zain	Recommended Impedance of Analog Voltage Source	_	10	—	kΩ		
AD09	RVREF	ADC Voltage Reference Ladder Impedance	_	50	—	kΩ	Note 3	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.
2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

ADC CONVERSION TIMING (ADC CLOCK FROM ADCRC) FIGURE 46-11:

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch			1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A