

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k42-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Register and Bit naming conventions

1.4.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.4.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

1.4.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

1.4.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral thereby making every long bit name unique. The long bit name for the COG1 enable bit is the COG1 prefix, G1, appended with the enable bit short name, EN, resulting in the unique bit name G1EN.

Long bit names are useful in both C and assembly programs. For example, in C the COG1CON0 enable bit can be set with the G1EN = 1 instruction. In assembly, this bit can be set with the BSF COG1CON0, G1EN instruction.

1.4.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention. For example, the three Least Significant bits of the COG1CON0 register contain the mode control bits. The short name for this field is MD. There is no long bit name variant. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the COG1 to the Push-Pull mode:

COG1CONObits.MD = 0x5;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name MD2 and the long bit name is G1MD2. The following two examples demonstrate assembly program sequences for setting the COG1 to Push-Pull mode:

Example 1:

MOVLW ~(1<<G1MD1) ANDWF COG1CON0,F MOVLW 1<<G1MD2 | 1<<G1MD0 IORWF COG1CON0,F

Example 2:

BSF COG1CON0,G1MD2 BCF COG1CON0,G1MD1 BSF COG1CON0,G1MD0

1.4.3 REGISTER AND BIT NAMING EXCEPTIONS

1.4.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

Register Definitions: Status Registers 4.6

U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u		
_	TO	PD	Ν	OV	Z	DC	С		
pit 7							bit		
_egend:									
R = Readable bi		W = Writable		•	nented bit, read				
n = Value at PC	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN		
pit 7	Unimplemen	ted: Read as '	0'						
-	TO: Time-Out		-						
	•	wer-up or by e me-out occurre		RWDT or SLEE	₽ instruction				
	PD : Power-Do		eu						
1 = Set at power-up or by execution of CLRWDT instruction									
	0 = Set by ex	ecution of the	SLEEP instruc	tion					
	N: Negative b (ALU MSb = 1	•	ned arithmetic	(2's compleme	ent); indicates if	the result is ne	gative,		
	1 = The resul								
	0 = The resul								
					nent); indicates	an overflow of	the 7-bit		
	-			7) to change st arithmetic oper					
	0 = No overfl		5 5 5						
	Z: Zero bit								
		lt of an arithme It of an arithme		eration is zero eration is not z	ero				
						1)			
	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾ 1 = A carry-out from the 4th low-order bit of the result occurred								
		out from the 4							
				W, SUBWF instr i					
 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 									
	0 = No carry-	out from the N	lost Significan	t bit of the resu	It occurred				

2: For Rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the Source register.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
BOREN<1:0>		LPBOREN	IVT1WAY	MVECEN	PWRT	S<1:0>	MCLRE
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '1'	
-n = Value fo	or blank device	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7-6 bit 5	When enabled 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou LPBOREN: Lo	Brown-out Res l, Brown-out Re ut Reset is enab ut Reset is enab ut Reset is enab ut Reset is disal ow-Power BOR	set Voltage (\ oled, SBOREI oled while run oled according oled Enable bit	/BOR) is set by N bit is ignored ning, disabled			ed
oit 4	 1 = Low-Power BOR is disabled 0 = Low-Power BOR is enabled IVT1WAY: IVTLOCK bit One-Way Set Enable bit 1 = IVTLOCK bit can be cleared and set only once; IVT registers remain locked after one clear/set cycle 0 = IVTLOCK bit can be set and cleared repeatedly (subject to the unlock sequence) 						
bit 3	MVECEN: Mu 1 = Multi-vect	lti-vector Enable or enabled; Vec or disabled; Vec	e bit tor table used	for interrupts			
bit 2-1	11 = PWRT is 10 = PWRT se 01 = PWRT se	PWRTS<1:0>: Power-up Timer Selection bits 11 = PWRT is disabled 10 = PWRT set at 64 ms 01 = PWRT set at 16 ms					
bit 0	00 = PWRT set at 1 ms MCLRE: Master Clear (\overline{MCLR}) Enable bit <u>If LVP = 1:</u> RE3 pin function is \overline{MCLR} . <u>If LVP = 0:</u> 1 = \overline{MCLR} pin is \overline{MCLR} 0 = \overline{MCLR} pin function is a port defined function						

10.1 Clock Source

The input to the reference clock output can be selected using the CLKRCLK register.

10.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

10.2 Programmable Clock Divider

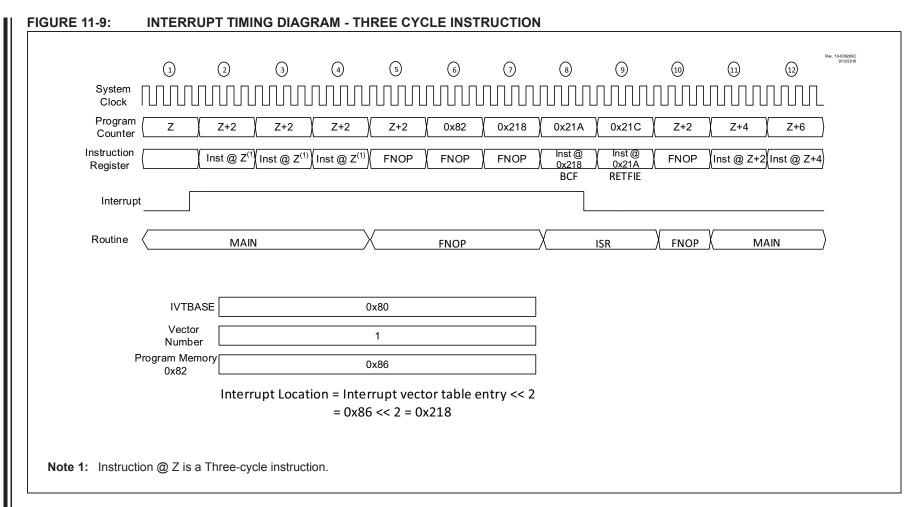
The module takes the clock input and divides it based on the value of the DIV<2:0> bits of the CLKRCON register (Register 10-1).

The following configurations can be made based on the DIV<2:0> bits:

- · Base Fosc value
- · Fosc divided by 2
- Fosc divided by 4
- Fosc divided by 8
- Fosc divided by 16
- Fosc divided by 32
- Fosc divided by 64
- Fosc divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the DIV<2:0> bits should only be changed when the module is disabled (EN = 0).

10.3 Selectable Duty Cycle


The DC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the DC<1:0> bits should only be changed when the module is disabled (EN = 0).

Note: The DC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

10.4 Operation in Sleep Mode

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal. No change should occur in the module from entering or exiting from Sleep.

R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0	U-0	U-0	
TMR5GIF	TMR5IF	—	—	—	—	_	—	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set in hardware				
bit 7	TMR5GIF: TN	/IR5 Gate Inter	rupt Flag bit					
	•	has occurred (I		ed by software)			
		event has not o						
bit 6	bit 6 TMR5IF: TMR5 Interrupt Flag bit							
	1 = Interrupt	has occurred (I	nust be cleare	ed by software)			
	0 = Interrupt	event has not o	occurred					

REGISTER 11-11: PIR8: PERIPHERAL INTERRUPT REGISTER 8

bit 5-0 Unimplemented: Read as '0'

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 11-12: PIR9: PERIPHERAL INTERRUPT REGISTER 9

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	—	CLC3IF	CWG3IF	CCP3IF	TMR6IF
bit 7							bit 0

Legend:			
R = Read	able bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is	s set	'0' = Bit is cleared	
bit 7-4	Unimpleme	nted: Read as '0'	
bit 3	•		
bit 3 CLC3IF: CLC3 Interrupt Flag bit 1 = Interrupt has occurred (must be cleared by software) 0 = Interrupt event has not occurred			
bit 2	CWG3IF: C	WG3 Interrupt Flag bit	
		ot has occurred (must be c ot event has not occurred	leared by software)
bit 1	CCP3IF: CO	CP3 Interrupt Flag bit	
		ot has occurred (must be c ot event has not occurred	leared by software)
bit 0	TMR6IF: TN	/IR6 Interrupt Flag bit	
		ot has occurred (must be c ot event has not occurred	leared by software)
Note:	Interrupt flag bits	s get set when an interrupt	t condition occurs, regardless of the state of its correspondin

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1		
—	—	INT2IP	CLC2IP	CWG2IP	—	CCP2IP	TMR4IP		
bit 7		·					bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
u = Bit is une	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is se	et	'0' = Bit is cle	ared						
bit 7-6	Unimplemen	nted: Read as '	0'						
bit 5	INT2IP: Exter	rnal Interrupt 2	Interrupt Prior	rity bit					
	01	1 = High priority							
	0 = Low prior								
bit 4	CLC2IP: CLC	C2 Interrupt Priority bit							
	U 1	1 = High priority							
	0 = Low prio								
bit 3		VG2 Interrupt P	riority bit						
	0 1	1 = High priority							
	0 = Low prio	2							
bit 2	-	nted: Read as '							
bit 1		C Interrupt Prio	rity bit						
	U 1	1 = High priority							
	0 = Low prio								
bit 0		R4 Interrupt Pri	iority bit						
	1 = High pric								
	0 = Low prior	rity							

REGISTER 11-32: IPR7: PERIPHERAL INTERRUPT Priority REGISTER 7

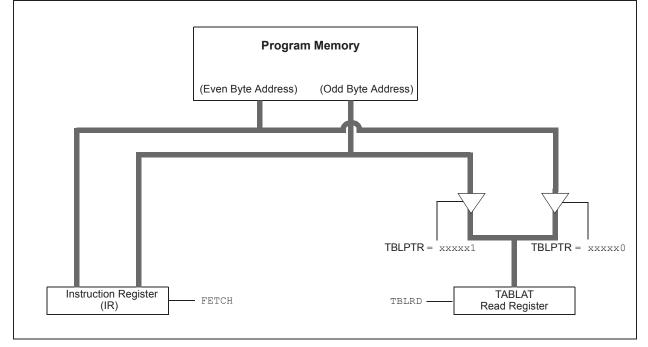
REGISTER 11-33: IPR8: PERIPHERAL INTERRUPT Priority REGISTER 8

R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0	U-0	U-0
TMR5GIP	TMR5IP	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	TMR5GIP: TMR5 Gate Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 6	TMR5IP: TMR5 Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 5-0	Unimplemented: Read as '0'

15.1.3 READING THE PROGRAM FLASH MEMORY


The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The CPU operation is suspended during the read, and it resumes immediately after. From the user point of view, TABLAT is valid in the next instruction cycle.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word.

Figure 15-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 15-4: READS FROM PROGRAM FLASH MEMORY

EXAMPLE 15-1: READING A PROGRAM FLASH MEMORY WORD

	BCF	NVMCON1, REG0	; point to Program Flash Memory	
	BSF	NVMCON1, REG1	; access Program Flash Memory	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base	
	MOVWF	TBLPTRU	; address of the word	
	MOVLW	CODE ADDR HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE ADDR LOW		
	MOVWF	TBLPTRL		
READ WORD				
_	TBLRD*+		; read into TABLAT and increment	
	MOVF	TABLAT, W	; get data	
	MOVWF	WORD EVEN		
	TBLRD*+	—	; read into TABLAT and increment	
	MOVFW	TABLAT, W	; get data	
	MOVF	WORD ODD		
			, get data	

EXAMPLE 15-4: WRITING TO PROGRAM FLASH MEMORY (CONTINUED)

WRITE_BYTE	TO_HREGS		
	MOVF	POSTINCO, W	; get low byte of buffer data
l	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until holding registers are full
	BRA	WRITE_WORD_TO_HREGS	
PROGRAM_MEN	10RY		
	BCF	NVMCON1, REG0	; point to Program Flash Memory
	BSF	NVMCON1, REG1	; point to Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BCF	NVMCON1, FREE	; enable write to memory
	BCF	INTCON0, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	NVMCON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	NVMCON2	; write OAAh
	BSF	NVMCON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE_BYTE_TO_HREGS	
	BSF	INTCONO, GIE	; re-enable interrupts
	BCF	NVMCON1, WREN	; disable write to memory

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMCC	ON2<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	nented bit, read	d as '0'	
x = Bit is unkno	wn	'0' = Bit is cleare	ed	'1' = Bit is set	:		
-n = Value at P	OR						

REGISTER 15-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

bit 7-0 NVMCON2<7:0>:

Refer to Section 15.1.4 "NVM Unlock Sequence".

Note 1: This register always reads zeros, regardless of data written.

Register 15-3: NVMADRL: Data EEPROM Memory Address Low

•							
R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0
ADR<7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-0 ADR<7:0>: EEPROM Read Address bits

REGISTER 15-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u
—	—	—	—	—	_	ADR∙	<9:8>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ADR<9:8>: EEPROM Read Address bits

Note 1: The NVMADRH register is not implemented on PIC18(L)F24/25K42.

TRIGEN	BURSTMD	Scanner Operation
0	0	Memory access is requested when the CRC module is ready to accept data; the request is granted if no other higher priority source request is pending.
1	0	Memory access is requested when the CRC module is ready to accept data and trigger selection is true; the request is granted if no other higher priority source request is pending.
х	1	Memory access is always requested, the request is granted if no other higher priority source request is pending.

TABLE 16-2: SCANNER OPERATING MODES⁽¹⁾

Note 1: See Section 3.1 "System Arbitration" for Priority selection and Section 3.2 "Memory Access Scheme" for Memory Access Scheme.

REGISTER 16-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	LADR<21:16> ^(1,2)					
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0

LADR<21:16>: Scan Start/Current Address bits^(1,2)

Upper bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 16-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LADR<15:8> ^(1, 2)							
bit 7 bit 0						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - **2:** While SGO = 1 (SCANCON0 register), writing to this register is ignored.

FIGURE 17-3: DMA COUNTERS BLOCK DIAGRAM

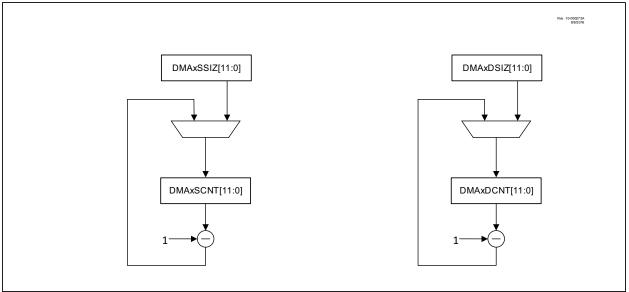


Table 17-2 has a few examples of configuring DMA Message sizes.

TABLE 17-2: EXAMPLE MESSAGE SIZE TABLE						
Operation	Example	SCNT	DCNT	Comments		
Read from single SFR location to RAM	U1RXB	1	N	N equals the number of bytes desired in the destination buffer. N >= 1.		
Write to single SFR location from RAM	U1TXB	Ν	1	N equals the number of bytes desired in the source buffer. N >= 1.		
	ADRES[H:L]	2	2*N	N equals the number of ADC results to be stored in memory. N>= 1		
Read from multiple SFR location	TMR1[H:L]	2	2*N	N equals the number of TMR1 Acquisition results to be stored in memory. N>= 1		
	SMT1CPR[U:H:L]	3	3*N	N equals the number of Capture Pulse Width measurements to be stored in memory. N>= 1		
Write to Multiple SFR regis-	PWMDC[H:L]	2*N	2	N equals the number of PWM duty cycle val- ues to be loaded from a memory table. N>= 1		
ters	All ADC registers	N*31	31	Using the DMA to transfer a complete ADC		

N*31

31

All ADC registers

context from RAM to the ADC registers.N>= 1

23.12 Register Definitions: Timer1/3/5

Long bit name prefixes for the Timer1/3/5 are shown in Table 24-2. Refer to **Section 1.4.2.2 "Long Bit Names**" for more information.

TABLE 23-3:

Peripheral	Bit Name Prefix
Timer1	T1
Timer3	Т3
Timer5	Т5

REGISTER 23-1: TXCON: TIMERx CONTROL REGISTER

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/0	R/W-0/u
—	—	CKPS	<1:0>	—	SYNC	RD16	ON
bit 7							bit 0

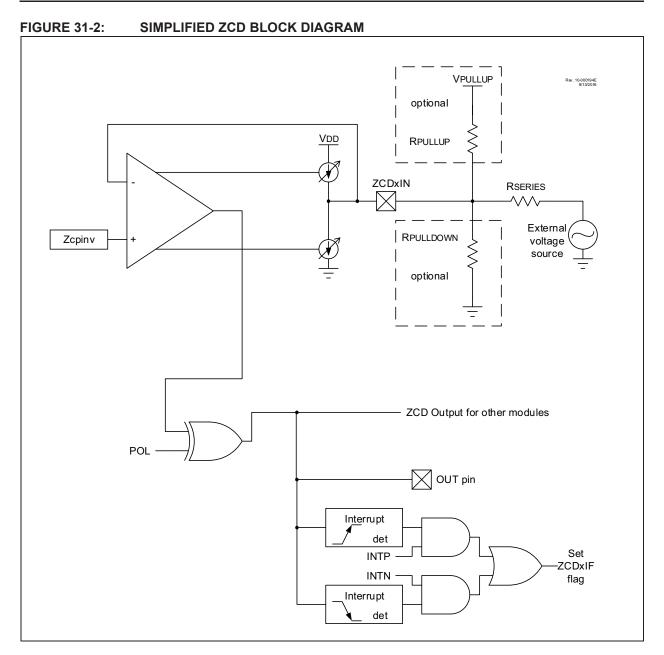
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-6	Unimplemented: Read as '0'
bit 5-4	CKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	Unimplemented: Read as '0'
bit 2	SYNC: Timerx External Clock Input Synchronization Control bit <u>TMRxCLK = Fosc/4 or Fosc</u> : This bit is ignored. Timer1 uses the incoming clock as is. <u>Else</u> : 1 = Do not synchronize external clock input 0 = Synchronize external clock input with system clock
bit 1	 RD16: 16-Bit Read/Write Mode Enable bit 1 = Enables register read/write of Timerx in one 16-bit operation 0 = Enables register read/write of Timerx in two 8-bit operation
bit 0	ON: Timerx On bit 1 = Enables Timerx 0 = Disables Timerx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
SMT1CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT1P	S<1:0>	399
SMT1CON1	GO	REPEAT	—	—		MODE	<3:0>		400
SMT1STAT	CPRUP	CPWUP	RST	—	_	TS	WS	AS	401
SMT1CLK	—	_	—	—	_		CSEL<2:0>		402
SMT1SIG	_	—	—			SSEL<4:0>			404
SMT1WIN	_	WSEL<4:0>						403	
SMT1TMRL	TMR<7:0>							405	
SMT1TMRH	TMR<15:8>							405	
SMT1TMRU	TMR<23:16>							405	
SMT1CPRL	CPR<7:0>							406	
SMT1CPRH	CPR<15:8>							406	
SMT1CPRU		CPR<23:16>							406
SMT1CPWL		CPW<7:0>							407
SMT1CPWH		CPW<15:8>							407
SMT1CPWU	CPW<23:16>							407	
SMT1PRL	PR<7:0>							408	
SMT1PRH	PR<15:8>						408		
SMT1PRU	PR<23:16>							408	

TABLE 27-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMT1

Legend:


- = unimplemented read as '0'. Shaded cells are not used for SMT1 module.

30.8 NCO Control Registers

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT	POL	—	—	—	PFM
bit 7 bit 0							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7 bit 6 bit 5	1 = NCO1 module is enabled 0 = NCO1 module is disabled Unimplemented : Read as '0'						
bit 4	POL: NCO1 Polarity 1 = NCO1 output signal is inverted 0 = NCO1 output signal is not inverted						
bit 3-1	Unimplemented: Read as '0'						
bit 0	 PFM: NCO1 Pulse Frequency Mode bit 1 = NCO1 operates in Pulse Frequency mode 0 = NCO1 operates in Fixed Duty Cycle mode, divide by 2 						

REGISTER 30-1: NCO1CON: NCO CONTROL REGISTER

PIC18(L)F24/25K42

31.2 ZCD Logic Output

The ZCD module includes a Status bit, which can be read to determine whether the current source or sink is active. The OUT bit of the ZCDCON register is set when the current sink is active, and cleared when the current source is active. The OUT bit is affected by the polarity bit, even if the module is disabled.

The OUT signal can also be used as input to other modules. This is controlled by the registers of the corresponding module. OUT can be used as follows:

- Gate source for TMR1/3/5
- Clock source for TMR2/4/6
- Reset source for TMR2/4/6

31.3 ZCD Logic Polarity

The POL bit of the ZCDCON register inverts the OUT bit relative to the current source and sink output. When the POL bit is set, a OUT high indicates that the current source is active, and a low output indicates that the current sink is active.

The POL bit affects the ZCD interrupts.

32.0 DATA SIGNAL MODULATOR (DSM) MODULE

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal.

Using this method, the DSM can generate the following types of Key Modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- Carrier Source Polarity Select
- Programmable Modulator Data
- · Modulated Output Polarity Select
- Peripheral Module Disable, which provides the ability to place the DSM module in the lowest power consumption mode

Figure 32-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

35.4.1.1 7-bit Addresses Mode

In this mode, the LSb of the received data byte is ignored when determining if there is an address match. All four I2CxADR registers are independently compared to the received address byte.

35.4.1.2 7-bit Addresses with Masking

In this mode, the value in I2CxADR0 is masked with the value in I2CxADR1 to determine if an address match occurred. A second address and mask are also compared from I2CxADR2/3. When Mode<2:0> = 001 or 111, the I2CxADR1/3 registers serve as the mask value for I2CxADR0/2. All seven bits of the address can be masked

35.4.1.3 10-bit Addresses

In this mode, the values stored in I2CxADR0 and I2CxADR1 registers are used to create a 10-bit address. A second 10-bit compare address is formed from I2CxADR2 and I2CxADR3.

35.4.1.4 10-bit Address with Masking

In this mode, the I2CxADR0/1 registers are used to form a 10-bit address, and the I2CxADR2/3 registers are used to form a 10-bit mask for that address. When MODE<2:0> = 011, the I2CxADR2/3 registers serve as the mask value for the 10-bit address stored in I2CxADR0/1.

Note: Even though 10-bit addressing calls out only 10-bits used in the address comparison, all 15 address bits in I2CxADR0/1 are compared in these modes.

35.4.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an ACK. The general call address is a reserved address in the I^2C protocol, defined as address 0×00 . In order for the slave hardware to ACK this address, it must be enabled by setting the GCEN bit in the I2CxCON2 register. Setting one of the I2CxADR0/1/2/3 registers to 0×00 is not required. Figure 35-5 shows a General Call reception sequence.

If the ADRIE bit is set, the module will clock stretch after the eighth SCL pulse just like any other address match.

Note: General Call addressing is supported in only 7-bit Addressing modes

FIGURE 35-5: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE Rev. 10-000 292A Address is compared to General Call Address (I2CxADR0 = 0x00) after ACK, set interrupt Receiving Data ACK General Call Address ACK D7 D6 D5 **⟨**D4**│**D3 D0 SDA D2 D1 SCL ∫6__7\ $\sqrt{8}$ 9 ADRIF Cleared by software Matching address written to I2CxADB0

				EGIGIEI			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8	_
bit 7							bit 0
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	_
bit 7							bit 0

REGISTER 35-13: I2CxADR1 – I²C ADDRESS 1 REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set HC = Hardware clear

bit 7-1 **ADR[7-1]:** Address or Divider bits

MODE<2:0> = 000 | 110 - 7-bit Slave/Multi-Master Modes ADR<7:1>:7-bit Slave Address

ADR<0>: Unused in this mode; bit state is a don't care

MODE<2:0> = 001 | 111 - 7-bit Slave/Multi-Master modes w/Masking

MSK0<7:1>:7-bit Slave Address

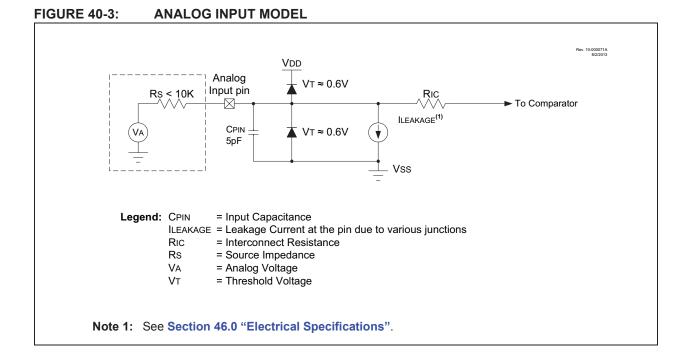
MSK0<0>: Unused in this mode; bit state is a don't care

MODE<2:0> = 01x - 10-bit Slave Modes

ADR<14-10>:Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, these bit values are compared by hardware to the received data to determine a match. It is up to the user to set these bits as '11110'.
 ADR<9-8>:Two Most Significant bits of 10-bit address

bit 0 Unimplemented: Read as '0'.

40.7 Comparator Response Time


The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 46-15 and Table 46-17 for more details.

40.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 40-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

 Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.