
Microchip Technology - PIC18LF25K42-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k42-e-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf25k42-e-so-4402965
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F24/25K42

4.2.4 PROGRAM COUNTER
The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21-bit wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC<15:8> bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes
PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by
any operation that reads PCL. This is useful for com-
puted offsets to the PC (see Section
4.3.2.1 “Computed GOTO”).

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit of PCL is fixed to
a value of ‘0’. The PC increments by two to address
sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

4.2.5 RETURN ADDRESS STACK
The return address stack allows any combination of up
to 31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL
instruction is executed or an interrupt is Acknowledged.
The PC value is pulled off the stack on a RETURN,
RETLW or a RETFIE instruction. PCLATU and PCLATH
are not affected by any of the RETURN or CALL
instructions.

The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer. The stack space is not part of either
program or data space. The Stack Pointer is readable
and writable and the address on the top of the stack is
readable and writable through the Top-of-Stack (TOS)
Special File Registers. Data can also be pushed to, or
popped from the stack, using these registers.

A CALL, CALLW or RCALL instruction causes a push
onto the stack; the Stack Pointer is first incremented
and the location pointed to by the Stack Pointer is
written with the contents of the PC (already pointing to
the instruction following the CALL). A RETURN type
instruction causes a pop from the stack; the contents of
the location pointed to by the STKPTR are transferred
to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits in the PCON0 register
indicate if the stack has overflowed or underflowed.

4.2.5.1 Top-of-Stack Access
Only the top of the return address stack (TOS) is readable
and writable. A set of three registers, TOSU:TOSH:TOSL,
holds the contents of the stack location pointed to by the
STKPTR register (Figure 4-1). This allows users to
implement a software stack, if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed
value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user-defined software stack. At
return time, the software can return these values to
TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE)
bits while accessing the stack to prevent inadvertent
stack corruption.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 27


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 40

PIC
18(L)F24/25K

42

TA

3E 3E3Fh — 3E1Fh —
3E 3E3Eh — 3E1Eh —
3E 3E3Dh — 3E1Dh —
3E 3E3Ch — 3E1Ch —
3E 3E3Bh — 3E1Bh —
3E 3E3Ah — 3E1Ah —
3E 3E39h — 3E19h —
3E 3E38h — 3E18h —
3E 3E37h — 3E17h —
3E 3E36h — 3E16h —
3E 3E35h — 3E15h —
3E 3E34h — 3E14h —
3E 3E33h — 3E13h —
2E 3E32h — 3E12h —
3E 3E31h — 3E11h —
3E 3E30h — 3E10h —
3E 3E2Fh — 3E0Fh —
3E 3E2Eh — 3E0Eh —
3E 3E2Dh — 3E0Dh —
3E 3E2Ch — 3E0Ch —
3E 3E2Bh — 3E0Bh —
3E 3E2Ah — 3E0Ah —
3E 3E29h — 3E09h —
3E 3E28h — 3E08h —
3E 3E27h — 3E07h —
3E 3E26h — 3E06h —
3E 3E25h — 3E05h —
3E 3E24h — 3E04h —
3E 3E23h — 3E03h —
3E 3E22h — 3E02h —
3E 3E21h — 3E01h —
3E 3E20h — 3E00h —

Leg
BLE 4-4: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F24/25K42 DEVICES BANK 62

FFh ADCLK 3EDFh ADLTHH 3EBFh CM1PCH 3E9Fh — 3E7Fh — 3E5Fh —
FEh ADACT 3EDEh ADLTHL 3EBEh CM1NCH 3E9Eh DAC1CON0 3E7Eh — 3E5Eh —
FDh ADREF 3EDDh — 3EBDh CM1CON1 3E9Dh — 3E7Dh — 3E5Dh —
FCh ADSTAT 3EDCh — 3EBCh CM1CON0 3E9Ch DAC1CON1 3E7Ch — 3E5Ch —
FBh ADCON3 3EDBh — 3EBBh CM2PCH 3E9Bh — 3E7Bh — 3E5Bh —
FAh ADCON2 3EDAh — 3EBAh CM2NCH 3E9Ah — 3E7Ah — 3E5Ah —
F9h ADCON1 3ED9h — 3EB9h CM2CON1 3E99h — 3E79h — 3E59h —
F8h ADCON0 3ED8h — 3EB8h CM2CON0 3E98h — 3E78h — 3E58h —
F7h ADPREH 3ED7h ADCP 3EB7h — 3E97h — 3E77h — 3E57h —
F6h ADPREL 3ED6h — 3EB6h — 3E96h — 3E76h — 3E56h —
F5h ADCAP 3ED5h — 3EB5h — 3E95h — 3E75h — 3E55h —
F4h ADACQH 3ED4h — 3EB4h — 3E94h — 3E74h — 3E54h —
F3h ADACQL 3ED3h — 3EB3h — 3E93h — 3E73h — 3E53h —
F2h — 3ED2h — 3EB2h — 3E92h — 3E72h — 3E52h —
F1h ADPCH 3ED1h — 3EB1h — 3E91h — 3E71h — 3E51h —
F0h ADRESH 3ED0h — 3EB0h — 3E90h — 3E70h — 3E50h —
EFh ADRESL 3ECFh — 3EAFh — 3E8Fh — 3E6Fh — 3E4Fh —
EEh ADPREVH 3ECEh — 3EAEh — 3E8Eh — 3E6Eh — 3E4Eh —
EDh ADPREVL 3ECDh — 3EADh — 3E8Dh — 3E6Dh — 3E4Dh —
ECh ADRPT 3ECCh — 3EACh — 3E8Ch — 3E6Ch — 3E4Ch —
EBh ADCNT 3ECBh — 3EABh — 3E8Bh — 3E6Bh — 3E4Bh —
EAh ADACCU 3ECAh HLVDCON1 3EAAh — 3E8Ah — 3E6Ah — 3E4Ah —
E9h ADACCH 3EC9h HLVDCON0 3EA9h — 3E89h — 3E69h — 3E49h —
E8h ADACCL 3EC8h — 3EA8h — 3E88h — 3E68h — 3E48h —
E7h ADFLTRH 3EC7h — 3EA7h — 3E87h — 3E67h — 3E47h —
E6h ADFLTRL 3EC6h — 3EA6h — 3E86h — 3E66h — 3E46h —
E5h ADSTPTH 3EC5h — 3EA5h — 3E85h — 3E65h — 3E45h —
E4h ADSTPTL 3EC4h — 3EA4h — 3E84h — 3E64h — 3E44h —
E3h ADERRH 3EC3h ZCDCON 3EA3h — 3E83h — 3E63h — 3E43h —
E2h ADERRL 3EC2h — 3EA2h — 3E82h — 3E62h — 3E42h —
E1h ADUTHH 3EC1h FVRCON 3EA1h — 3E81h — 3E61h — 3E41h —
E0h ADUTHL 3EC0h CMOUT 3EA0h — 3E80h — 3E60h — 3E40h —
end: Unimplemented data memory locations and registers, read as ‘0’.

PIC18(L)F24/25K42

0--

110

000

000

000

-00

000

xxx

000

000

000

000

000

000

000

000

000

000

000

000

000

000

110

111

110

111

xxx

xxx

xxx

xxx

xxx

000

000

000

000

000

000

000

000

000

 on
BOR
3DE0h U2UIR WUIF ABDIF — — — ABDIE — — 00---

3DDFh U2FIFO TXWRE STPMD TXBE TXBF RXIDL XON RXBE RXBF 00101

3DDEh U2BRGH BRGH 00000

3DDDh U2BRGL BRGL 00000

3DDCh U2CON2 RUNOVF RXPOL STP — TXPOL FLO 0000-

3DDBh U2CON1 ON — — WUE RXBIMD — BRKOVR SENDB 0--00

3DDAh U2CON0 BRGS ABDEN TXEN RXEN MODE 0000-

3DD9h — Unimplemented —

3DD8h U2P3L P3L xxxxx

3DD7h — Unimplemented —

3DD6h U2P2L P2L 00000

3DD5h — Unimplemented —

3DD4h U2P1L P1L 00000

3DD3h — Unimplemented —

3DD2h U2TXB TXB 00000

3DD1h — Unimplemented —

3DD0h U2RXB RXB 00000

3DCFh -
3D7Dh

— Unimplemented —

3D7Ch I2C1BTO BTO -----

3D7Bh I2C1CLK CLK ----0

3D7Ah I2C1PIE CNTIE ACKTIE — WRIE ADRIE PCIE RSCIE SCIE 00000

3D79h I2C1PIR CNTIF ACKTIF — WRIF ADRIF PCIF RSCIF SCIF 00000

3D78h I2C1STAT1 TXWE — TXBE — RXRE CLRBF — RXBF 00100

3D77h I2C1STAT0 BFRE SMA MMA R D — — — 00000

3D76h I2C1ERR — BTOIF BCLIF NACKIF — BTOIE BCLIE NACKIE 00000

3D75h I2C1CON2 ACNT GCEN FME ABD SDAHT BFRET 00000

3D74h I2C1CON1 ACKCNT ACKDT ACKSTAT ACKT — RXO TXU CSD 00000

3D73h I2C1CON0 EN RSEN S CSTR MDR MODE 00000

3D72h I2C1ADR3 ADR — 11111

3D71h I2C1ADR2 ADR 11111

3D70h I2C1ADR1 ADR — 11111

3D6Fh I2C1ADR0 ADR 11111

3D6Eh I2C1ADB1 ADB xxxxx

3D6Dh I2C1ADB0 ADB xxxxx

3D6Ch I2C1CNT CNT xxxxx

3D6Bh I2C1TXB TXB xxxxx

3D6Ah I2C1RXB RXB xxxxx

3D69h -
3D67h

— Unimplemented —

3D66h I2C2BTO BTO -----

3D65h I2C2CLK CLK ----0

3D64h I2C2PIE CNTIE ACKTIE — WRIE ADRIE PCIE RSCIE SCIE 00000

3D63h I2C2PIR CNTIF ACKTIF — WRIF ADRIF PCIF RSCIF SCIF 00000

3D62h I2C2STAT1 TXWE — — — RXRE CLRBF — RXBF 00100

3D61h I2C2STAT0 BFRE — MMA — D — — — 00000

3D60h I2C2ERR — BTOIF BCLIF NACKIF — BTOIE BCLIE NACKIE 00000

3D5Fh I2C2CON2 ACNT GCEN FME ABD SDAHT BFRET 00000

3D5Eh I2C2CON1 ACKCNT ACKDT ACKSTAT ACKT — RXO TXU CSD 00000

TABLE 4-11: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value
POR,

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: Not present in LF devices.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 53

PIC18(L)F24/25K42
7.0 DEVICE CONFIGURATION
INFORMATION

The Device Configuration Information (DCI) is a
dedicated region in the Program memory space
mapped from 3FFF00h to 3FFF09h. The data stored in
these locations is ready-only and cannot be erased or
modified.

Refer to Table 7-1: Device Configuration Information
for the complete DCI table address and description.
The DCI holds information about the device which is
useful for programming and Bootloader applications.
These locations are read-only and cannot be erased or
modified.

7.1 DIA and DCI Access
The DIA and DCI addresses are read-only and cannot
be erased or modified. See Section 15.2 “Device
Information Area, Device Configuration Area, User
ID, Device ID and Configuration Word Access” for
more information on accessing these memory
locations.

Development tools, such as device programmers and
debuggers, may be used to read the DIA and DCI
regions, similar to the Device ID and Revision ID.

TABLE 7-1: DEVICE CONFIGURATION INFORMATION
ADDRESS Name DESCRIPTION VALUE UNITS

3FFF00h-3FFF01h ERSIZ Erase Row Size 32 Words
3FFF02h-3FFF03h WLSIZ Number of write latches 64
3FFF04h-3FFF05h URSIZ Number of User Rows See Table 7-2 Rows
3FFF06h-3FFF07h EESIZ EE Data memory size 256 Bytes
3FFF08h-3FFF09h PCNT Pin Count 28 Pins

TABLE 7-2: MEMORY SIZE AND NUMBER OF USER ROWS
Part Name Memory size Number of user rows

PIC18(L)F24K42 8K 256
PIC18(L)F25K42 16K 512
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 85

PIC18(L)F24/25K42

FIGURE 8-2: LPBOR, BOR, POR RELATIONSHIP

Reset

POR

logic

LPBOR

To PCON0
indicator bit

BOR
BOR Event

REARM POR
Event

POR Event
LPBOR Event
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 87


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 134

PIC
18(L)F24/25K

42

FIG

Rev. 10-000269B
9/12/2016

+2

OP

Y+4

Inst @ Y+2

Y+6

Inst @ Y+4

9 10 11

MAINOP
URE 11-8: INTERRUPT TIMING DIAGRAM - TWO WORD INSTRUCTION

System
Clock

Program
Counter Y Y+2 Y+2 0x82 0x218 0x21A 0x21C

Inst @ Y(1) FNOP FNOP FNOP Inst @ 0x218 Inst @ 0x21AInstruction
Register

Interrupt

Y

FN

RETFIE

Vector
Number 1

IVTBASE 0x80

Program Memory
0x82 0x86

Interrupt Location = Interrupt vector table entry << 2
 = 0x86 << 2 = 0x218

1 2 3 4 5 6 7 8

Y+2

Inst @ Y(1)

Routine MAIN ISRFNOP FN

BCF

Note 1: Instruction @ Y is a Two-cycle instruction.

PIC18(L)F24/25K42
REGISTER 11-36: IVTBASEU: INTERRUPT VECTOR TABLE BASE ADDRESS UPPER REGISTER
U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — — BASE<20:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 BASE<20:16>: Interrupt Vector Table Base Address bits

REGISTER 11-37: IVTBASEH: INTERRUPT VECTOR TABLE BASE ADDRESS HIGH REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

BASE<15:8>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 BASE<15:8>: Interrupt Vector Table Base Address bits

REGISTER 11-38: IVTBASEL: INTERRUPT VECTOR TABLE BASE ADDRESS LOW REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-1/1 R/W-0/0 R/W-0/0 R/W-0/0

BASE<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 BASE<7:0>: Interrupt Vector Table Base Address bits
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 171

PIC18(L)F24/25K42
17.0 DIRECT MEMORY ACCESS
(DMA)

17.1 Introduction
The Direct Memory Access (DMA) module is designed
to service data transfers between different memory
regions directly without intervention from the CPU. By
eliminating the need for CPU-intensive management of
handling interrupts intended for data transfers, the CPU
now can spend more time on other tasks.

PIC18(L)F2XK42 family has two DMA modules which
can be independently programmed to transfer data
between different memory locations, move different
data sizes, and use a wide range of hardware triggers
to initiate transfers. The two DMA registers can even be
programmed to work together, in order to carry out
more complex data transfers without CPU overhead.

Key features of the DMA module include:

• Support access to the following memory regions:
- GPR and SFR space (R/W)
- Program Flash Memory (R only)
- Data EEPROM Memory (R only)

• Programmable priority between the DMA and
CPU Operations. Refer to Section 3.1 “System
Arbitration” for details.

• Programmable Source and Destination address
modes
- Fixed address
- Post-increment address
- Post-decrement address

• Programmable Source and Destination sizes
• Source and destination pointer register,

dynamically updated and reloadable
• Source and destination count register,

dynamically updated and reloadable
• Programmable auto-stop based on Source or

Destination counter
• Software triggered transfers
• Multiple user selectable sources for hardware

triggered transfers
• Multiple user selectable sources for aborting DMA

transfers

17.2 DMA Registers
The operation of the DMA module has the following
registers:

• Control registers (DMAxCON0, DMAxCON1)
• Data buffer register (DMAxBUF)
• Source Start Address Register (DMAxSSAU:H:L)
• Source Pointer Register (DMAxSPTRU:H:L)
• Source Message Size Register (DMAxSSZH:L)
• Source Count Register (DMAxSCNTH:L)
• Destination Start Address Register

(DMAxDSAH:L)
• Destination Pointer Register (DMAxDPTRH:L)
• Destination Message Size Register

(DMAxDSZH:L)
• Destination Count Register (DMAxDCNTH:L)
• Start Interrupt Request Source Register

(DMAxSIRQ)
• Abort Interrupt Request Source Register

(DMAxAIRQ)

These registers are detailed in Section “”.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 232

PIC18(L)F24/25K42
REGISTER 24-6: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
PSYNC CKPOL CKSYNC MODE<4:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 PSYNC: Timerx Prescaler Synchronization Enable bit(1, 2)

1 = TxTMR Prescaler Output is synchronized to Fosc/4
0 = TxTMR Prescaler Output is not synchronized to Fosc/4

bit 6 CKPOL: Timerx Clock Polarity Selection bit(3)

1 = Falling edge of input clock clocks timer/prescaler
0 = Rising edge of input clock clocks timer/prescaler

bit 5 CKSYNC: Timerx Clock Synchronization Enable bit(4, 5)

1 = ON register bit is synchronized to T2TMR_clk input
0 = ON register bit is not synchronized to T2TMR_clk input

bit 4-0 MODE<4:0>: Timerx Control Mode Selection bits(6, 7)

See Table 24-1 for all operating modes.

Note 1: Setting this bit ensures that reading TxTMR will return a valid data value.
2: When this bit is ‘1’, Timer2 cannot operate in Sleep mode.
3: CKPOL should not be changed while ON = 1.
4: Setting this bit ensures glitch-free operation when the ON is enabled or disabled.
5: When this bit is set then the timer operation will be delayed by two TxTMR input clocks after the ON bit is

set.
6: Unless otherwise indicated, all modes start upon ON = 1 and stop upon ON = 0 (stops occur without

affecting the value of TxTMR).
7: When TxTMR = TxPR, the next clock clears TxTMR, regardless of the operating mode.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 342


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 421

PIC
18(L)F24/25K

42

FIG

FIG THAN DEAD BAND

In

I

URE 28-12: DEAD-BAND OPERATION, CWGxDBR = 0x01, CWGxDBF = 0x02

URE 28-13: DEAD-BAND OPERATION, CWGxDBR = 0x03, CWGxDBF = 0x06, SOURCE SHORTER

put Source

CWGxA

CWGxB

cwg_clock

source shorter than dead band

nput Source

CWGxA

CWGxB

cwg_clock

PIC18(L)F24/25K42
32.0 DATA SIGNAL MODULATOR
(DSM) MODULE

The Data Signal Modulator (DSM) is a peripheral which
allows the user to mix a data stream, also known as a
modulator signal, with a carrier signal to produce a
modulated output.

Both the carrier and the modulator signals are supplied
to the DSM module either internally, from the output of
a peripheral, or externally through an input pin.

The modulated output signal is generated by
performing a logical “AND” operation of both the carrier
and modulator signals and then provided to the MDOUT
pin.

The carrier signal is comprised of two distinct and
separate signals. A carrier high (CARH) signal and a
carrier low (CARL) signal. During the time in which the
modulator (MOD) signal is in a logic high state, the
DSM mixes the carrier high signal with the modulator
signal. When the modulator signal is in a logic low
state, the DSM mixes the carrier low signal with the
modulator signal.

Using this method, the DSM can generate the following
types of Key Modulation schemes:

• Frequency-Shift Keying (FSK)
• Phase-Shift Keying (PSK)
• On-Off Keying (OOK)

Additionally, the following features are provided within
the DSM module:

• Carrier Synchronization
• Carrier Source Polarity Select
• Programmable Modulator Data
• Modulated Output Polarity Select
• Peripheral Module Disable, which provides the

ability to place the DSM module in the lowest
power consumption mode

Figure 32-1 shows a Simplified Block Diagram of the
Data Signal Modulator peripheral.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 466

PIC18(L)F24/25K42
REGISTER 33-14: UxP2H: UART PARAMETER 2 HIGH REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0
— — — — — — — P2<8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’
bit 0 P2<8>: Most Significant Bit of Parameter 2

DMX mode:
Most Significant bit of first address of receive block
DALI mode:
Most Significant bit of number of half-bit periods of idle time in Forward Frame detection threshold
Other modes:
Not used

REGISTER 33-15: UxP2L: UART PARAMETER 2 LOW REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

P2<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 P2<7:0>: Least Significant Bits of Parameter 2
DMX mode:
Least Significant Byte of first address of receive block
LIN Slave mode:
Number of data bytes to transmit
DALI mode:
Least Significant Byte of number of half-bit periods of idle time in Forward Frame detection threshold
Asynchronous Address mode:
Receiver address
Other modes:
Not used
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 510

PIC18(L)F24/25K42

35.4.3.5 Slave Transmission (10-bit

Addressing Mode)
This section describes the sequence of events for the
I2C module configured as an I2C slave in 10-bit
Addressing mode and is transmitting data.
Figure 35-12 is used as a visual reference for this
description.

1. Master asserts Start condition (can also be a
restart) on the bus. Start condition Interrupt Flag
(SCIF) in I2CxPIR register is set. If Start condi-
tion interrupt is enabled (SCIE bit is set), generic
interrupt I2CxIF is set.

2. Master transmits high address byte with R/W = 0.
3. The received high address is compared with the

values in I2CxADR1 and I2CxADR3 registers.
4. If high address matches; R/W is copied to R/W

bit, D/A bit is cleared, high address data is cop-
ied to I2CxADB1. If the address does not match;
module becomes idle.

5. If Address hold interrupt is enabled
(ADRIE = 1), CSTR is set. I2CxIF is set.

6. Slave software can read high address from
I2CxADB1 and set/clear ACKDT before releas-
ing SCL.

7. ACKDT value is copied out to SDA for ACK
pulse. SCL line is released by clearing CSTR.

8. Master sends ninth SCL pulse for ACK
9. Slave can force a NACK at this point due to pre-

vious error not being cleared. E.g. Receive buf-
fer overflow or transmit buffer underflow errors.
In these cases the Slave hardware forces a
NACK and the module becomes idle.

10. Master transmits low address data byte
11. If the low address matches; SMA is set, ADRIF

is set, R/W is copied to R/W bit, D/A bit is
cleared, low address data is copied to
I2CxADB0, and ACTDT is copied to SDA. If the
address does not match; module becomes idle.

12. If address hold interrupt is enabled, the CSTR
bit is set as mentioned in step 6. Slave software
can read low address byte from I2CxADB0 reg-
ister and change ACKDT value before releasing
SCL.

13. Master sends 9th SCL pulse for ACK
14. If the Acknowledge interrupt and hold is enabled

(ACKTIE = 1), CSTR is set, I2CxIF is set.
15. Slave software can read address from

I2CxADB0 and I2CxADB1 registers and change
the value of ACKDT before releasing SCL by
clearing CSTR.

16. Master asserts Restart condition (cannot be
Start) on the bus. Restart Condition Interrupt
Flag (RSCIF) is set. If the Restart Condition
Interrupt is enabled, generic interrupt I2CxIF is
set

17. Master transmits high address byte with R/W = 1.

18. If SMA = 1, and if high address matches; R/W is
copied to R/W bit, D/A bit is cleared, high
address data is copied to I2CxADB1, and
ACTDT is output to SDA. If the address does not
match or SMA = 0; module become idle.

19. If ADRIE = 1, CSTR is set. I2CIF is set. Slave
software can read address from I2CxADB0/1
and set/clear ACKDT. The ACKDT value is cop-
ied out to SDA. SCL is released by clearing
CSTR bit.

20. If TXBE = 1 and I2CCNT!= 0 (I2CTXIF = 1),
CSTR is set. Slave software must load data into
I2CxTXB to release SCL.

21. Master sends SCL pulse for ACK. If
I2CCNT = 0, CNTIF is set.

22. If NACK; NACKIF is set, slave goes idle.
23. If ACKTIE = 1, CSTR is set, I2CIF is set. Slave

software can read address from I2CxADB0/1
before releasing SCL by clearing CSTR.

24. Master sends eight SCL pulses to clock out
data.

25. Go to step 20.
DS40000000A-page 563 Preliminary  2016-2017 Microchip Technology Inc.

PIC18(L)F24/25K42

REGISTER 35-16: I2CxADB0 – I2C ADDRESS DATA BUFFER 0 REGISTER(1)

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

ADB7 ADB6 ADB5 ADB4 ADB3 ADB2 ADB1 ADB0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Hardware set HC = Hardware clear

bit 7-0 MODE<2:0> = 00x
 ADB<7:1>: Address Data byte
 Received matching 7-bit slave address data
 R/W: Read/not-Write Data bit
 Received read/write value from 7-bit address byte
MODE<2:0> = 01x
 ADB<7:0>: Address Data byte
 Received matching lower 8-bits of 10-bit slave address data
MODE<2:0> = 100
 Unused in this mode; bit state is a don’t care
MODE<2:0> = 101
 ADB<7:0>: Low Address Data byte
 Low 10-bit address value copied to transmit shift register
MODE<2:0> = 11x
 ADB<7:1>: Address Data byte
 Received matching 7-bit slave address
 R/W: Read/not-Write Data bit
 Received read/write value received 7-bit slave address byte

Note 1: This register is read only except in master, 10-bit Address mode (MODE<2:0> = 101).
DS40000000A-page 595 Preliminary  2016-2017 Microchip Technology Inc.

PIC18(L)F24/25K42

38.6.5 BURST AVERAGE MODE
The Burst Average mode (ADMD = 011) acts the same
as the Average mode in most respects. The one way it
differs is that it continuously retriggers ADC sampling
until the CNT value is greater than or equal to RPT,
even if Continuous Sampling mode (see Section
38.6.8 “Continuous Sampling mode”) is not
enabled. This allows for a threshold comparison on the
average of a short burst of ADC samples.

38.6.6 LOW-PASS FILTER MODE
The Low-pass Filter mode (ADMD = 100) acts similarly
to the Average mode in how it handles samples
(accumulates samples until CNT value greater than or
equal to RPT, then triggers threshold comparison), but
instead of a simple average, it performs a low-pass
filter operation on all of the samples, reducing the effect
of high-frequency noise on the average, then performs
a threshold comparison on the results. (see Table 38-2
for a more detailed description of the mathematical
operation). In this mode, the ADCRS bits determine the
cut-off frequency of the low-pass filter (as
demonstrated by Table 38-3).

38.6.7 THRESHOLD COMPARISON
At the end of each computation:

• The conversion results are latched and held
stable at the end-of-conversion.

• The error is calculated based on a difference
calculation which is selected by the
ADCALC<2:0> bits in the ADCON3 register. The
value can be one of the following calculations
(see Register 38-4 for more details):
- The first derivative of single measurements
- The CVD result in CVD mode
- The current result vs. a setpoint
- The current result vs. the filtered/average

result
- The first derivative of the filtered/average

value
- Filtered/average value vs. a setpoint

• The result of the calculation (ERR) is compared to
the upper and lower thresholds,
UTH<ADUTHH:ADUTHL> and
LTH<ADLTHH:ADLTHL> registers, to set the
ADUTHR and ADLTHR flag bits. The threshold
logic is selected by ADTMD<2:0> bits in the
ADCON3 register. The threshold trigger option
can be one of the following:
- Never interrupt
- Error is less than lower threshold
- Error is greater than or equal to lower

threshold
- Error is between thresholds (inclusive)
- Error is outside of thresholds
- Error is less than or equal to upper threshold
- Error is greater than upper threshold

- Always interrupt regardless of threshold test
results

- If the threshold condition is met, the threshold
interrupt flag ADTIF is set.

38.6.8 CONTINUOUS SAMPLING MODE
Setting the CONT bit in the ADCON0 register
automatically retriggers a new conversion cycle after
updating the ADACC register. The GO bit remains set
and re-triggering occurs automatically.

If ADSOI = 1, a threshold interrupt condition will clear
GO and the conversions will stop.

38.6.9 DOUBLE SAMPLE CONVERSION
Double sampling is enabled by setting the ADDSEN bit
of the ADCON1 register. When this bit is set, two
conversions are required before the module will
calculate threshold error (each conversion must still be
triggered separately). The first conversion will set the
ADMATH bit of the ADSTAT register and update
ADACC, but will not calculate ERR or trigger ADTIF.
When the second conversion completes, the first value
is transferred to PREV (depending on the setting of
ADPSIS) and the value of the second conversion is
placed into ADRES. Only upon the completion of the
second conversion is ERR calculated and ADTIF
triggered (depending on the value of ADCALC).

Note 1: The threshold tests are signed
operations.

2: If ADAOV is set, a threshold interrupt is
signaled.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 620

PIC18(L)F24/25K42
REGISTER 38-9: ADPREL: ADC PRECHARGE TIME CONTROL REGISTER (LOW BYTE)
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

PRE<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PRE<7:0>: Precharge Time Select bits
See Table 38-4.

REGISTER 38-10: ADPREH: ADC PRECHARGE TIME CONTROL REGISTER (HIGH BYTE)
U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — — PRE<12:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 PRE<12:8>: Precharge Time Select bits

See Table 38-4.

Note: If PRE is not equal to ‘0’, then ADACQ = b’00000000 means Acquisition time is 256 clocks of the selected
ADC clock.

TABLE 38-4: PRECHARGE TIME
ADPRE Precharge time

1 1111 1111 1111 8191 clocks of the selected ADC clock

1 1111 1111 1110 8190 clocks of the selected ADC clock

1 1111 1111 1101 8189 clocks of the selected ADC clock

... ...
0 0000 0000 0010 2 clocks of the selected ADC clock

0 0000 0000 0001 1 clock of the selected ADC clock

0 0000 0000 0000 Not included in the data conversion cycle
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 628

PIC18(L)F24/25K42

BTG Bit Toggle f

Syntax: BTG f, b {,a}

Operands: 0  f  255
0  b < 7
a [0,1]

Operation: (f)  f

Status Affected: None

Encoding: 0111 bbba ffff ffff

Description: Bit ‘b’ in data memory location ‘f’ is
inverted.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 43.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: BTG PORTC, 4, 0

Before Instruction:
PORTC = 0111 0101 [75h]

After Instruction:
PORTC = 0110 0101 [65h]

BOV Branch if Overflow

Syntax: BOV n

Operands: -128  n  127

Operation: if OVERFLOW bit is ‘1’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0100 nnnn nnnn

Description: If the OVERFLOW bit is ‘1’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If OVERFLOW = 1;

PC = address (Jump)
If OVERFLOW = 0;

PC = address (HERE + 2)
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 680

PIC18(L)F24/25K42

45.2 MPLAB XC Compilers
The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set
• Support for fixed-point and floating-point data
• Command-line interface
• Rich directive set
• Flexible macro language
• MPLAB X IDE compatibility

45.3 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects
• User-defined macros to streamline

assembly code
• Conditional assembly for multipurpose

source files
• Directives that allow complete control over the

assembly process

45.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

45.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set
• Support for fixed-point and floating-point data
• Command-line interface
• Rich directive set
• Flexible macro language
• MPLAB X IDE compatibility
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 735

PIC18(L)F24/25K42

46.4 AC Characteristics

FIGURE 46-4: LOAD CONDITIONS

Load Condition

Legend: CL=50 pF for all pins

Pin

CL

VSS

Rev. 10-000133A
8/1/2013
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 748

PIC18(L)F24/25K42

TABLE 46-21: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Param
No. Symbol Characteristic Min. Typ† Max. Units Conditions

SP70* TSSL2SCH,
TSSL2SCL

SS to SCK or SCK input 2.25*TCY — — ns

SP71* TSCH SCK input high time (Slave mode) TCY + 20 — — ns
SP72* TSCL SCK input low time (Slave mode) TCY + 20 — — ns
SP73* TDIV2SCH,

TDIV2SCL
Setup time of SDI data input to SCK
edge

100 — — ns

SP74* TSCH2DIL,
TSCL2DIL

Hold time of SDI data input to SCK edge 100 — — ns

SP75* TDOR SDO data output rise time — 10 25 ns 3.0V  VDD  5.5V
— 25 50 ns 1.8V  VDD  5.5V

SP76* TDOF SDO data output fall time — 10 25 ns

SP77* TSSH2DOZ SS to SDO output high-impedance 10 — 50 ns
SP78* TSCR SCK output rise time

(Master mode)
— 10 25 ns 3.0V  VDD  5.5V
— 25 50 ns 1.8V  VDD  5.5V

SP79* TSCF SCK output fall time (Master mode) — 10 25 ns
SP80* TSCH2DOV,

TSCL2DOV
SDO data output valid after SCK edge — — 50 ns 3.0V  VDD  5.5V

— — 145 ns 1.8V  VDD  5.5V
SP81* TDOV2SCH,

TDOV2SCL
SDO data output setup to SCK edge 1 Tcy — — ns

SP82* TSSL2DOV SDO data output valid after SS edge — — 50 ns

SP83* TSCH2SSH,
TSCL2SSH

SS after SCK edge 1.5 TCY + 40 — — ns

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance

only and are not tested.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 764

