

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k42-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture. The PIC18 CPU supports:

- System Arbitration which decides memory access allocation depending on user priorities
- Vectored Interrupt capability with automatic two level deep context saving
- 31-level deep hardware stack with overflow and underflow reset capabilities
- Support Direct, Indirect, and Relative Addressing modes
- 8x8 Hardware Multiplier

FIGURE 9-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

FIGURE 9-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE)

9.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

9.2.1.4 4x PLL

The oscillator module contains a 4x PLL that can be used with the external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 46-9.

The PLL can be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to 010 (enable EXTOSC with 4x PLL).
- 2. Write the NOSC bits in the OSCCON1 register to 010 (enable EXTOSC with 4x PLL).

11.3 Interrupt Priority

The final priority level for any pending source of interrupt is determined first by the user-assigned priority of that source in the IPRx register, then by the natural order priority within the IVT. The sections below detail the operation of Interrupt priorities.

11.3.1 USER (SOFTWARE) PRIORITY

User-assigned interrupt priority is enabled by setting the IPEN bit in the INTCON0 register (Register 11-1). Each peripheral interrupt source can be assigned a high or low priority level by the user. The user-assignable interrupt priority control bits for each interrupt are located in the IPRx registers (Registers 11-25 through 11-35).

The interrupts are serviced based on predefined interrupt priority scheme defined below.

- Interrupts set by the user as high-priority interrupt have higher precedence of execution. High-priority interrupts will override a low-priority request when:
 - a) A low priority interrupt has been requested or its request is already pending.
 - b) A low- and high-priority interrupt are triggered concurrently, i.e., on the same instruction cycle⁽¹⁾.
 - c) A low-priority interrupt was requested and the corresponding Interrupt Service Routine is currently executing. In this case, the lower priority interrupt routine will complete executing after the high-priority interrupt has been serviced⁽²⁾.
- 2. Interrupts set by the user as a low priority have the lower priority of execution and are preempted by any high-priority interrupt.
- Interrupts defined with the same software priority cannot preempt or interrupt each other. Concurrent pending interrupts with the same user priority are resolved using the natural order priority. (when MVECEN = ON) or in the order the interrupt flag bits are polled in the ISR (when MVECEN = OFF).

- Note 1: When a high priority interrupt preempts a concurrent low priority interrupt, the GIEL bit may be cleared in the high priority Interrupt Service Routine. If the GIEL bit is cleared, the low priority interrupt will NOT be serviced even if it was originally requested. The corresponding interrupt flag needs to be cleared in user code.
 - 2: When a high priority interrupt is requested while a low priority Interrupt Service Routine is executing, the GIEL bit may be cleared in the high priority Interrupt Service Routine. The pending low priority interrupt will resume even if the GIEL bit is cleared.

16.3 CRC Polynomial Implementation

Any polynomial can be used.The polynomial and accumulator sizes are determined by the PLEN<3:0> bits. For an n-bit accumulator, PLEN = n-1 and the corresponding polynomial is n+1 bits. Therefore the accumulator can be any size up to 16 bits with a corresponding polynomial up to 17 bits. The MSb and LSb of the polynomial are always '1' which is forced by hardware. All polynomial bits between the MSb and LSb are specified by the CRCXOR registers. For example, when using CRC-16-ANSI, the polynomial is defined as X¹⁶+X¹⁵+X²+1.

The X¹⁶ and X⁰ = 1 terms are the MSb and LSb controlled by hardware. The X¹⁵ and X² terms are specified by setting the corresponding CRCXOR<15:0> bits with the value of '0x8004'. The actual value is '0x8005' because the hardware sets the LSb to 1. However, the LSb of the CRCXORL register is unimplemented and always reads as '0'. Refer to Example 16-1.

16.4 CRC Data Sources

Data can be input to the CRC module in two ways:

- User data using the CRCDAT registers (CRCDATH and CRCDATL)
- Program memory using the Program Memory Scanner

To set the number of bits of data, up to 16 bits, the DLEN bits of CRCCON1 must be set accordingly. Only data bits in CRCDAT registers up to DLEN will be used, other data bits in CRCDAT registers will be ignored.

Data is moved into the CRCSHIFT as an intermediate to calculate the check value located in the CRCACC registers.

The SHIFTM bit is used to determine the bit order of the data being shifted into the accumulator. If SHIFTM is not set, the data will be shifted in MSb first (Big Endian). The value of DLEN will determine the MSb. If SHIFTM bit is set, the data will be shifted into the accumulator in reversed order, LSb first (Little Endian).

The CRC module can be seeded with an initial value by setting the CRCACC<15:0> registers to the appropriate value before beginning the CRC.

16.4.1 CRC FROM USER DATA

To use the CRC module on data input from the user, the user must write the data to the CRCDAT registers. The data from the CRCDAT registers will be latched into the shift registers on any write to the CRCDATL register.

16.4.2 CRC FROM FLASH

To use the CRC module on data located in Program memory, the user can initialize the Program Memory Scanner as defined in **Section 16.8, Scanner Module Overview**.

18.0 I/O PORTS

The PIC18(L)F24/25K42 devices have four I/O ports - PORTA, PORTB, PORTC and PORTE. Each port has ten registers to control the operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate control)
- ODCONx registers (open-drain control)
- CCDPx and CCDNx registers (current-controlled positive/negative)

Outside of registers to control bits of all the ports, the two following registers are also present:

- CCDCON register (current-controlled)
- RxyI2C (I²C pad control)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSELx bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 18-1.

FIGURE 18-1: GENERIC I/O PORT OPERATION

18.1 Current-Controlled Mode

Current-Controlled mode allows output currents to be regulated for both high-side and low-side drivers. All source and sink drivers for each port pin will operate at the specified current, when enabled individually by the Current-Controlled Enable registers.

Note:	Current-Control mode is available regard-
	less of which peripheral drives the output.

The Current-Controlled Configuration (CCDCON) register enables the Current-Controlled mode for all ports and sets the current levels.

Note: Setting CCDEN = 1 increases the device VDDIO current requirement by a fixed amount regardless of how many CCDPx[n] or CCDNx[n] bits are set.

The Current-Controlled Enable registers enable each individual port pin's positive-going (CCDPx) or negative-going (CCDNx) output driver.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
TMRx<7:0>									
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkn	own	wn -n/n = Value at POR and BOR/Value at all oth			other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 24-3: TxTMR: TIMERx COUNTER REGISTER

bit 7-0 TMRx<7:0>: Timerx Counter bits

REGISTER 24-4: TxPR: TIMERx PERIOD REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
PRx<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PRx<7:0>:** Timerx Period Register bits

26.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when T2PR is 255. The resolution is a function of the T2PR register value as shown by Equation 26-4.

EQUATION 26-4: PWM RESOLUTION

Resolution = $\frac{\log[4(T2PR + 1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 26-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

26.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the T2TMR register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, T2TMR will continue from its previous state.

26.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

26.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1		
SMT1PR<7:0>									
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
u = Bit is unch	anged	x = Bit is unkno	own	vn -n/n = Value at POR and BOR/Value at all othe			other Resets		
'1' = Bit is set		'0' = Bit is clea	red						

REGISTER 27-16: SMT1PRL: SMT PERIOD REGISTER – LOW BYTE

bit 7-0 SMT1PR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 27-17: SMT1PRH: SMT PERIOD REGISTER – HIGH BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMT1P	R<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimple	mented bit, read	d as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1PR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 27-18: SMT1PRU: SMT PERIOD REGISTER – UPPER BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
SMT1PR<23:16>							
bit 7 bit							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1PR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

© 2016-2017 Microchip Technology Inc.

28.14 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripheral is shown in Table 28-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 28-1:

Peripheral	Bit Name Prefix
CWG1	CWG1
CWG2	CWG2
CWG3	CWG3

REGISTER 28-1: CWGxCON0: CWG CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	—	—		MODE<2:0>	
bit 7							bit 0

I

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 EN: CWGx Enable bit

- 1 = Module is enabled
 - 0 = Module is disabled

bit 6 LD: CWGx Load Buffers bit⁽¹⁾

- 1 = Dead-band count buffers to be loaded on CWG data rising edge, following first falling edge after this bit is set
- 0 = Buffers remain unchanged
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 MODE<2:0>: CWGx Mode bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = CWG outputs operate in Push-Pull mode
 - 100 = CWG outputs operate in Half-Bridge mode
 - 011 = CWG outputs operate in Reverse Full-Bridge mode
 - 010 = CWG outputs operate in Forward Full-Bridge mode
 - 001 = CWG outputs operate in Synchronous Steering mode
 - 000 = CWG outputs operate in Asynchronous Steering mode

Note 1: This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

R/W-0/0	U-0	U-0	R/W/HC-0/0	R/W-0/0	U-0	R/W-0/0	R/W/HC-0/0
ON	—	—	WUE	RXBIMD	—	BRKOVR	SENDB
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Hardwa	are clear		
bit 7	ON: Serial Po	rt Enable bit					
	1 = Serial por	rt enabled					
	0 = Serial por	rt disabled (hel	d in Reset)				
bit 6-5	Unimplement	ted: Read as '	0'				
bit 4	WUE: Wake-u	up Enable bit					
	1 = Receiver	is waiting for f	alling RX input	t edge which w	will set the UxIF	bit. Cleared b	y hardware on
	<pre>wake eve</pre>	operates norm	es uxie dit of i ally	PIEX to enable	ewake		
hit 3		eive Break Int	errunt Mode S	elect hit			
bit 0	1 = Set RXB	<pre>KIF immediatel</pre>	v when RX in	has been low	for the minimum	Break time	
	0 = Set RXB	KIF on rising R	X input after R	X in has been	low for the mini	mum Break tir	ne
bit 2	Unimplement	ted: Read as '	0'				
bit 1	BRKOVR: Se	nd Break Softw	vare Override	bit			
	1 = TX outpu	t is forced to ne	on-idle state				
	0 = TX outpu	t is driven by tr	ansmit shift re	gister			
bit 0	SENDB: Send	d Break Contro	l bit ⁽¹⁾				
	1 = Output Bi	reak upon UxT	XB write. Writt	en byte follow	s Break. Bit is c	leared by hard	ware.
	0 = Break tra	nsmission com	pleted or disa	bled			
Note 1. This	bit is road only		and DALL may				

REGISTER 33-2: UxCON1: UART CONTROL REGISTER 1

Note 1: This bit is read-only in LIN, DMX, and DALI modes.

34.8.3.1 Shift Register Empty Interrupt

The Shift Register Empty interrupt flag and enable are the SRMTIF and SRMTIE bits respectively. This interrupt is only available in master mode and triggers when a data transfer completes and conditions are not present to start a new transfer, as dictated by the TXR and RXR bits (see Table 34-1 for conditions for starting a new Master mode data transfer with different TXR/ RXR settings). This interrupt will be triggered at the end of the last full bit period, after SCK has been low for one 1/2-baud period. See Figure 30-13 for more details of the timing of this interrupt as well as other interrupts. This bit will not clear itself when the conditions for starting a new transfer occur, and must be cleared in software.

34.8.3.2 Transfer Counter is Zero Interrupt

The Transfer Counter is zero interrupt flag and enable are the TCZIF and TCZIE bits, respectively. This interrupt will trigger when the transfer counter (defined by BMODE, SPIxTCTH/L and SPIxTWIDTH) decrements from one to zero. See Figure 30-13 for more details on the timing of this interrupt as well as other interrupts. This bit must be cleared in software. Note: The TCZIF flag only indicates that the transfer counter has decremented from one to zero, and may not indicate that the entire data transfer process is complete. Either poll the BUSY bit of SPIxCON2 and wait for it to be cleared or use the Shift Register Empty Interrupt (SRMTIF) to determine if a data transfer is fully complete.

34.8.3.3 Start of Slave Select and End of Slave Select Interrupts

The start of slave select interrupt flag and enable are the SOSIF and SOSIE bits, respectively, and the end of slave select interrupt flag and enable are similarly designated by the EOSIF and EOSIE bits. These interrupts trigger at the leading and trailing edges of the slave select input. Note that the interrupts are active in both master and slave mode, and will trigger on transitions of the slave select input regardless of which mode the SPI is in. In Master mode, PPS should be used to route the slave select input to the same pin as the slave select output, allowing these interrupts to trigger on changes to the slave select output. Also note that in slave mode, changing the SSET bit can trigger these interrupts, as it changes the effective input value of slave select. Both SOSIF and EOSIF must be cleared in software

FIGURE 34-14: TRANSFER AND SLAVE SELECT INTERRUPT TIMINGS

34.9 Register definitions: SPI

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	U-0
SRMTIF	TCZIF	SOSIF	EOSIF		RXOIF	TXUIF	_
bit 7						bit 0	
r							
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimp	lemented bit, re	ad as '0' dware	
					an be set by har	aware	
bit 7	SRMTIF: Shift	Register Empty	Interrupt Flag bi	it			
	<u>Slave mode</u> :						
	This bit is ignor	ed					
	Master mode:						
	1 = The data tr	ansfer is comple	ete				
	0 = Either no d	ata transfers ha	ve occurred or a	a data transf	er is in progress		
bit 6	TCZIF: Transfe	er Counter is Zer	o Interrupt Flag	bit			
	1 = The transfe remented to ze	er counter (as de ro	efined by BMOD	E in Registe	er 34-7, TCNTH	/L, and TWIDTH) has dec-
	0= No interrupt	pending					
bit 5	SOSIF: Start of	of Slave Select I	nterrupt Flag bit	t			
	1 = SS(in) trans	sitioned from fal	se to true				
	0 = No interrup	t pending					
bit 4	EOSIF: End of	Slave Select Int	errupt Flag bit				
	1 = SS(in) trans	sitioned from tru	e to false				
	0 = No interrup	t pending					
bit 3	Unimplemente	ed: Read as '0'					
bit 2	RXOIF: Receiv	er Overflow Inte	rrupt Flag bit				
	1 = Data transf	er completed wh	nen RXBF = 1 (e	edge trigger	ed) and RXR =	1	
	0 = No interrup	t pending					
bit 1	TXUIF: Transm	nitter Underflow	Interrupt Flag bi	t			
	1 = Slave Data	transfer started	when TXBE = 2	1 and TXR =	• 1		
	0 = No interrup	t pending					
bit 0	Unimplemente	ed: Read as '0'					

REGISTER 34-1: SPIxINTF: SPI INTERRUPT FLAG REGISTER

PIC18(L)F24/25K42

R-0/0	R-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
BUSY	SSFLT	_	_		SSET	TXR ⁽¹⁾	RXR ⁽¹⁾
bit 7						•	bit C
Legend:	1.1. I.M.		1.11				
R = Reada	DIE DIT	vv = vvritable	DIT	U = Unimple	mented bit, read	as '0'	
bit 7	BUSY: SPI M	odule Busy St	atus bit				
	1 = Data exch	ange is busy					
	0 = Data exch	ange is not ta	king place				
bit 6	SSFLT: SS(in)) Fault Status	bit				
	If SSET = 0:						
	1 = SS(in) end	ded the transa	iction unexpec	tedly, and the	data byte being	received was lo	ost
	0 = SS(in) end	ded normally					
	If SSET = 1:						
	This bit is unc	hanged.					
bit 5-3	Unimplement	ted: Read as	0'				
bit 2	SSET: Slave S	Select Enable	bit				
	Master mode:						
	1 = SS(out) is	driven to the	active state co	ntinuously			
	0 = SS(out) is	driven to the	active state wh	nile the transm	it counter is not	zero	
	Slave mode:						
	1 = SS(in) is i	gnored and da	ata is clocked o	on all SCK(in)	(as though SS =	TRUE at all tir	mes)
	0 = SS(in) ena is set (see Tat	ables/disables ble 30-2 for de	data input and tails)	d tri-states SD	O if the TRIS bit	associated wit	h the SDO pin
bit 1	TXR: Transmi	t Data-Requir	ed Control bit ⁽¹)			
	1 = TxFIFO da	ata is required	l for a transfer				
	0 = TxFIFO da	ata is not requ	ired for a trans	sfer			
bit 0	RXR: Receive	FIFO Space-	Required Cont	trol bit ⁽¹⁾			
	1 = Data trans	sfers are susp	ended if the R	kFIFO is full			
	0 = Received	data is not sto	ored in the FIF	С			
Note 1:	See Table 34-1 as pertaining to TXR	well as Section and RXR fund	on 34.5 "Mast ction.	er mode" and	Section 34.6 "S	Slave Mode" fo	or more details

2: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

35.4.1.1 7-bit Addresses Mode

In this mode, the LSb of the received data byte is ignored when determining if there is an address match. All four I2CxADR registers are independently compared to the received address byte.

35.4.1.2 7-bit Addresses with Masking

In this mode, the value in I2CxADR0 is masked with the value in I2CxADR1 to determine if an address match occurred. A second address and mask are also compared from I2CxADR2/3. When Mode<2:0> = 001 or 111, the I2CxADR1/3 registers serve as the mask value for I2CxADR0/2. All seven bits of the address can be masked

35.4.1.3 10-bit Addresses

In this mode, the values stored in I2CxADR0 and I2CxADR1 registers are used to create a 10-bit address. A second 10-bit compare address is formed from I2CxADR2 and I2CxADR3.

35.4.1.4 10-bit Address with Masking

In this mode, the I2CxADR0/1 registers are used to form a 10-bit address, and the I2CxADR2/3 registers are used to form a 10-bit mask for that address. When MODE<2:0> = 011, the I2CxADR2/3 registers serve as the mask value for the 10-bit address stored in I2CxADR0/1.

Note: Even though 10-bit addressing calls out only 10-bits used in the address comparison, all 15 address bits in I2CxADR0/1 are compared in these modes.

35.4.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an ACK. The general call address is a reserved address in the I^2C protocol, defined as address 0×00 . In order for the slave hardware to ACK this address, it must be enabled by setting the GCEN bit in the I2CxCON2 register. Setting one of the I2CxADR0/1/2/3 registers to 0×00 is not required. Figure 35-5 shows a General Call reception sequence.

If the ADRIE bit is set, the module will clock stretch after the eighth SCL pulse just like any other address match.

Note: General Call addressing is supported in only 7-bit Addressing modes

FIGURE 35-5: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE Rev. 10-000 292A Address is compared to General Call Address (I2CxADR0 = 0x00) after ACK, set interrupt Receiving Data ACK General Call Address ACK D7 D6 D5 **⟨**D4**│**D3 D0 SDA D2 D1 SCL ∫6__7\ $\sqrt{8}$ 9 ADRIF Cleared by software Matching address written to I2CxADB0

39.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- FVR Buffer
- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

- External VREF- pin
- Vss

The output of the DAC (DAC1_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- ADC input channel
- DAC1OUT1 pin
- DAC1OUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the EN bit of the DAC1CON0 register.

Rev. 10-000026H 10/12/2016 Reserved 11 VSOURCE+ DATA<4:0> FVR Buffer 5 10 R VREF+ 01 AVDD 00 R PSS 5 R R 32-to-1 MUX DACx output 32 . . To Peripherals Steps ΕN ≲ R DACxOUT1⁽¹⁾ 2 R OE1 R DACxOUT2⁽¹⁾ VREF-OE2 1 VSOURCE-AVss 0 NSS Note 1: The unbuffered DACx output is provided on the DACxOUT pin(s).

FIGURE 39-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

41.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

41.7 Operation During Idle and Doze Modes

In both Idle and Doze modes, the module is active and events are generated if peripheral is enabled.

41.8 Operation During Freeze

When in Freeze mode, no new event or interrupt can be generated. The state of the LRDY bit is frozen.

Register reads and writes through the CPU interface are allowed.

41.9 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

PIC18(L)F24/25K42

Mnemonic,		Description	Cyclos	16-	Bit Inst	ruction V	Vord	Status	Notos
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	NTED FI	LE REGISTER INSTRUCTIONS							
ADDWF	f, d ,a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	
MOVF	f, d, a	Move f to WREG or f	1	0101	00da	ffff	ffff	Z, N	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	2, 3
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVFFL	f _s , f _d	Move f _s (source) to	3	0000	0000	0110	ffff	None	2
		g (full destination)		1111	ffff	ffff	ffgg		
		f _d (full destination)3rd word		1111	dddd	dddd	dddd		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
BYTE-ORIE	NTED SI		•					•	•
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	1
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	1
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1
DECFSZ	f. d. a	Decrement f. Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1
INCFSZ	f. d. a	Increment f. Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	1
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1
BIT-ORIEN		REGISTER INSTRUCTIONS	()						
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	
BTG	f. d. a	Bit Toggle f		0111	bbba	ffff	ffff	None	
BIT-ORIEN		PINSTRUCTIONS	1	1				1	1
DTESC	fha	Dit Toot f Skin if Clear	1 (2 2)	1011	1-1-1	<i></i>	<i></i>	Nono	1
DIFSC	i, b, a f b c	Dit lest I, Skip II Clear Dit Toot f. Skip if Sot	1 (2 or 3)		bbba hhl	IIII	IIII	None	
DIFOO	i, b, a	Dir iest i, ökip il öet	1 (2 01 3)	TOTO	sdaa	IIÍÍ	IIII	NONE	

TABLE 43-1: PIC18(L)F24/25K42 INSTRUCTION SET

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3A58h	CCDPB	CCDPB7	CCDPB6	CCDPB5	CCDPB4	CCDPB3	CCDPB2	CCDPB1	CCDPB0	277
3A57h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	290
3A56h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	290
3A55h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	290
3A54h	INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	274
3A53h	SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	273
3A52h	ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	272
3A51h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	271
3A50h	ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	270
3A4Fh - 3A4Ah	_				Unimple	mented				
3A49h	CCDNA	CCDNA7	CCDNA6	CCDNA5	CCDNA4	CCDNA3	CCDNA2	CCDNA1	CCDNA0	278
3A48h	CCDPA	CCDNP7	CCDNP6	CCDNP5	CCDNP4	CCDNP3	CCDNP2	CCDNP1	CCDNP0	277
3A47h	IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	290
3A46h	IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	290
3A45h	IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	290
3A44h	INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	274
3A43h	SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	273
3A42h	ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	272
3A41h	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	271
3A40h	ANSELA	ANSELA7	ANSELA6	ANSELA5	ANSELA4	ANSELA3	ANSELA2	ANSELA1	ANSELA0	270
3A3Fh - 3A18h	—			1	Unimple	mented				
3A17h	RC7PPS	—	—	_	RC7PPS4	RC7PPS3	RC7PPS2	RC7PPS1	RC7PPS0	284
3A16h	RC6PPS		—	—	RC6PPS4	RC6PPS3	RC6PPS2	RC6PPS1	RC6PPS0	284
3A15h	RC5PPS		—	—	RC5PPS4	RC5PPS3	RC5PPS2	RC5PPS1	RC5PPS0	284
3A14h	RC4PPS			_	RC4PPS4	RC4PPS3	RC4PPS2	RC4PPS1	RC4PPS0	284
3A13h	RC3PPS			_	RC3PPS4	RC3PPS3	RC3PPS2	RC3PPS1	RC3PPS0	284
3A12h	RC2PPS			_	RC2PPS4	RC2PPS3	RC2PPS2	RC2PPS1	RC2PPS0	284
3A11h	RC1PPS		—	—	RC1PPS4	RC1PPS3	RC1PPS2	RC1PPS1	RC1PPS0	284
3A10h	RCOPPS			—	RC0PPS4	RC0PPS3	RC0PPS2	RC0PPS1	RC0PPS0	284
3A0Fh	RB7PPS		—	—	RB7PPS4	RB7PPS3	RB7PPS2	RB7PPS1	RB7PPS0	284
3A0Eh	RB6PPS		_	—	RB6PPS4	RB6PPS3	RB6PPS2	RB6PPS1	RB6PPS0	284
3A0Dh	RB5PPS		—	_	RB5PPS4	RB5PPS3	RB5PPS2	RB5PPS1	RB5PPS0	284
3A0Ch	RB4PPS	—	—	—	RB4PPS4	RB4PPS3	RB4PPS2	RB4PPS1	RB4PPS0	284
3A0Bh	RB3PPS		—	—	RB3PPS4	RB3PPS3	RB3PPS2	RB3PPS1	RB3PPS0	284
3A0Ah	RB2PPS		—	—	RB2PPS4	RB2PPS3	RB2PPS2	RB2PPS1	RB2PPS0	284
3A09h	RB1PPS		—		RB1PPS4	RB1PPS3	RB1PPS2	RB1PPS1	RB1PPS0	284
3A08h	RBOPPS		—	_	RB0PPS4	RB0PPS3	RB0PPS2	RB0PPS1	RB0PPS0	284
3A07h	RA7PPS		—	_	RA7PPS4	RA7PPS3	RA7PPS2	RA7PPS1	RA7PPS0	284
3A06h	RA6PPS		—	_	RA6PPS4	RA6PPS3	RA6PPS2	RA6PPS1	RA6PPS0	284
3A05h	RA5PPS		—	—	RA5PPS4	RA5PPS3	RA5PPS2	RA5PPS1	RA5PPS0	284
3AU4h	RA4PPS		—	—	RA4PPS4	RA4PPS3	RA4PPS2	RA4PPS1	RA4PPS0	284
3A03h	RA3PPS		—	—	RA3PPS4	RA3PPS3	RA3PPS2	RA3PPS1	RA3PPS0	284
3A02h	RAZPPS		—	—	RA2PPS4	RA2PPS3	RA2PPS2	RA2PPS1	RA2PPS0	284
3AU1h	RA1PPS		—	—	RA1PPS4	RA1PPS3	RA1PPS2	RA1PPS1	RA1PPS0	284
3AUUh	RAUPPS	—	—	—	RAUPPS4	RAUPPS3	RAUPPS2	RAUPPS1	RAUPPS0	284
39FFh - 39F8h	_				Unimple	mented				
39F7h	SCANPR	—	—	—	—	—		PR		22

TABLE 44-1:	REGISTER FILE SUMMARY	FOR PIC18(L)F24/25K42	DEVICES (CONTINUED)
-------------	------------------------------	-----------------------	----------------------------

 $\label{eq:logend: second sec$

Note 1: Not present in LF devices.

FIGURE 46-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 46-20: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standa Operati	Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteri	stic	Min.	Тур†	Max.	Units	Conditions		
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—/	Ins			
			With Prescaler	20	_	_	ns	\bigvee		
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	\checkmark		\ns 〈			
			With Prescaler	20		X	ns	}		
CC03*	TccP	CCPx Input Period		3Tcy + 40 N		X	ns	N = prescale value		

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.