
Microchip Technology - PIC18LF25K42-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-VQFN Exposed Pad

Supplier Device Package 28-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k42-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf25k42-i-ml-4402103
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F24/25K42

4.7.2 DIRECT ADDRESSING
Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-
oriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 4.5.3 “General
Purpose Register File”) or a location in the Access
Bank (Section 4.5.2 “Access Bank”) as the data
source for the instruction.

The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 4.5.1 “Bank Select Register (BSR)”) are
used with the address to determine the complete 14-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.

A few instructions, such as MOVFFL, include the entire
14-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its origi-
nal contents. When ‘d’ is ‘0’, the results are stored in
the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

4.7.3 INDIRECT ADDRESSING
Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations which are to be read
or written. Since the FSRs are themselves located in
RAM as Special File Registers, they can also be
directly manipulated under program control. This
makes FSRs very useful in implementing data struc-
tures, such as tables and arrays in data memory.

The registers for indirect addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 4-6.

EXAMPLE 4-6: HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING

4.7.3.1 FSR Registers and the INDF
Operand

At the core of indirect addressing are three sets of
registers: FSR0, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. Each FSR
pair holds a 14-bit value, therefore, the two upper bits
of the FSRnH register are not used. The 14-bit FSR
value can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect addressing is accomplished with a set of
Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers; they are
mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses the data addressed by its
corresponding FSR register pair. A read from INDF1,
for example, reads the data at the address indicated by
FSR1H:FSR1L. Instructions that use the INDF
registers as operands actually use the contents of their
corresponding FSR as a pointer to the instruction’s
target. The INDF operand is just a convenient way of
using the pointer.

Because indirect addressing uses a full 14-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

LFSR FSR0, 100h ;

NEXT CLRF POSTINC0 ; Clear INDF

; register then

; inc pointer

BTFSS FSR0H, 1 ; All done with

; Bank1?

BRA NEXT ; NO, clear next

CONTINUE ; YES, continue
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 65

PIC18(L)F24/25K42

8.11 Start-up Sequence
Upon the release of a POR or BOR, the following must
occur before the device will begin executing:

1. Power-up Timer runs to completion (if enabled).
2. Oscillator start-up timer runs to completion (if

required for selected oscillator source).
3. MCLR must be released (if enabled).

The total time out will vary based on oscillator
configuration and Power-up Timer configuration. See
Section 9.0 “Oscillator Module (with Fail-Safe
Clock Monitor)” for more information.

The Power-up Timer and oscillator start-up timer run
independently of MCLR Reset. If MCLR is kept low
long enough, the Power-up Timer and oscillator
Start-up Timer will expire. Upon bringing MCLR high,
the device will begin execution after 10 FOSC cycles
(see Figure 8-4). This is useful for testing purposes or
to synchronize more than one device operating in
parallel.

FIGURE 8-4: RESET START-UP SEQUENCE

TOST

TMCLR

TPWRT

VDD

Internal POR

Power-up Timer

MCLR

Internal RESET

Oscillator Modes

Oscillator Start-up Timer

Oscillator

FOSC

Internal Oscillator

Oscillator

FOSC

External Clock (EC)

CLKIN

FOSC

External Crystal
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 92

PIC18(L)F24/25K42
REGISTER 11-19: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

I2C2TXIE I2C2RXIE DMA2AIE DMA2ORIE DMA2DCNTIE DMA2SCNTIE C2IE INT1IE
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 I2C2TXIE: I2C2 Transmit Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 6 I2C2RXIE: I2C2 Receive Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 5 DMA2AIE: DMA2 Abort Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 4 DMA2ORIE: DMA2 Overrun Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 3 DMA2DCNTIE: DMA2 Destination Count Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 2 DMA2SCNTIE: DMA2 Source Count Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 1 C2IE: C2 Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 0 INT1IE: External Interrupt 1 Enable bit
1 = Enabled
0 = Disabled
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 157

PIC18(L)F24/25K42
REGISTER 11-36: IVTBASEU: INTERRUPT VECTOR TABLE BASE ADDRESS UPPER REGISTER
U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — — BASE<20:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 BASE<20:16>: Interrupt Vector Table Base Address bits

REGISTER 11-37: IVTBASEH: INTERRUPT VECTOR TABLE BASE ADDRESS HIGH REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

BASE<15:8>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 BASE<15:8>: Interrupt Vector Table Base Address bits

REGISTER 11-38: IVTBASEL: INTERRUPT VECTOR TABLE BASE ADDRESS LOW REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-1/1 R/W-0/0 R/W-0/0 R/W-0/0

BASE<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 BASE<7:0>: Interrupt Vector Table Base Address bits
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 171

PIC18(L)F24/25K42

TABLE 13-3: SUMMARY OF REGISTERS ASSOCIATED WITH WINDOWED WATCHDOG TIMER

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page

WDTCON0 — — PS<4:0> SEN 186

WDTCON1 — CS<2:0> — WINDOW<2:0> 187

WDTPSL PSCNT<7:0> 188

WDTPSH PSCNT<15:8> 188

WDTTMR WDTTMR<4:0> STATE PSCNT<17:16> 189
Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by

Windowed Watchdog Timer.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 190

PIC18(L)F24/25K42

Example 14-3 shows the sequence to do a 16 x 16
unsigned multiplication. Equation 14-1 shows the
algorithm that is used. The 32-bit result is stored in four
registers (RES<3:0>).

EQUATION 14-1: 16 x 16 UNSIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 14-3: 16 x 16 UNSIGNED
MULTIPLY ROUTINE

Example 14-4 shows the sequence to do a 16 x 16
signed multiply. Equation 14-2 shows the algorithm
used. The 32-bit result is stored in four registers
(RES<3:0>). To account for the sign bits of the argu-
ments, the MSb for each argument pair is tested and
the appropriate subtractions are done.

EQUATION 14-2: 16 x 16 SIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 14-4: 16 x 16 SIGNED
MULTIPLY ROUTINE

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L) +
(-1  ARG2H<7>  ARG1H:ARG1L  216) +
(-1  ARG1H<7>  ARG2H:ARG2L  216)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg?
BRA SIGN_ARG1 ; no, check ARG1
MOVF ARG1L, W ;
SUBWF RES2 ;
MOVF ARG1H, W ;
SUBWFB RES3

;
SIGN_ARG1

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVF ARG2L, W ;
SUBWF RES2 ;
MOVF ARG2H, W ;
SUBWFB RES3

;
CONT_CODE

:

 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 192

PIC18(L)F24/25K42

REGISTER 21-7: PMD6: PMD CONTROL REGISTER 6

U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — SMT1MD CLC4MD CLC3MD CLC2MD CLC1MD DSMMD

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-6 Unimplemented: Read as ‘0’
bit 5 SMT1MD: Disable SMT1 Module bit

1 = SMT1 module disabled
0 = SMT1 module enabled

bit 4 CLC1MD: Disable CLC4 Module bit
1 = CLC4 module disabled
0 = CLC4 module enabled

bit 3 CLC3MD: Disable CLC3 Module bit
1 = CLC3 module disabled
0 = CLC3 module enabled

bit 2 CLC2MD: Disable CLC2 Module bit
1 = CLC2 module disabled
0 = CLC2 module enabled

bit 1 CLC1MD: Disable CLC1 Module bit
1 = CLC1 module disabled
0 = CLC1 module enabled

bit 0 DSMMD: Disable Data Signal Modulator bit
1 = DSM module disabled
0 = DSM module enabled
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 299


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 390

PIC
18(L)F24/25K

42

27
Th
mo
so
va

FIG

Rev. 10-000189A
4/12/2016

2421 22 23 25 26

25

27
.6.9 COUNTER MODE
is mode increments the timer on each pulse of the SMT1_signal input. This
de is asynchronous to the SMT clock and uses the SMT1_signal as a time

urce. The SMT1CPW register will be updated with the current SMT1TMR
lue on the rising edge of the SMT1WIN input. See Figure 27-18.

URE 27-18: COUNTER MODE TIMING DIAGRAM

SMTx_signal

SMTxEN

SMTxWIN

0

SMTxGO

SMTxTMR

SMTxCPW

101 2 3 4 5 6 7 8 9 12 13 14 15 16 17 18 19 2011

12

PIC18(L)F24/25K42

28.10 Auto-Shutdown
Auto-shutdown is a method to immediately override the
CWG output levels with specific overrides that allow for
safe shutdown of the circuit. The shutdown state can
be either cleared automatically or held until cleared by
software. The auto-shutdown circuit is illustrated in
Figure 28-14.

28.10.1 SHUTDOWN
The shutdown state can be entered by either of the
following two methods:

• Software generated
• External Input

28.10.1.1 Software Generated Shutdown
Setting the SHUTDOWN bit of the CWGxAS0 register
will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state
will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will
clear automatically and resume operation on the next
rising edge event. The SHUTDOWN bit indicates when
a shutdown condition exists. The bit may be set or
cleared in software or by hardware.

28.10.1.2 External Input Source
External shutdown inputs provide the fastest way to
safely suspend CWG operation in the event of a Fault
condition. When any of the selected shutdown inputs
goes active, the CWG outputs will immediately go to the
specified override levels without software delay. The over-
ride levels are selected by the LSBD<1:0> and
LSAC<1:0> bits of the CWGxAS0 register (Register).
Several input sources can be selected to cause a shut-
down condition. All input sources are active-low. The
sources are:

• Pin selected by CWGxPPS
• Timer2 post-scaled output
• Timer4 post-scaled output
• Timer6 post-scaled output
• Comparator 1 output
• Comparator 2 output
• CLC2 output

Shutdown input sources are individually enabled by the
ASxE bits of the CWGxAS1 register (Register 28-7).

28.10.1.3 Pin Override Levels
The levels driven to the CWG outputs during an auto-
shutdown event are controlled by the LSBD<1:0> and
LSAC<1:0> bits of the CWGxAS0 register (Register).
The LSBD<1:0> bits control CWGxB/D output levels,
while the LSAC<1:0> bits control the CWGxA/C output
levels.

28.10.1.4 Auto-Shutdown Interrupts
When an auto-shutdown event occurs, either by soft-
ware or hardware setting SHUTDOWN, the CWGxIF
flag bit of the PIR7 register is set (Register 9-5).

28.11 Auto-Shutdown Restart
After an auto-shutdown event has occurred, there are
two ways to resume operation:
• Software controlled
• Auto-restart
In either case, the shut-down source must be cleared
before the restart can take place. That is, either the
shutdown condition must be removed, or the
corresponding ASxE bit must be cleared.

28.11.1 SOFTWARE-CONTROLLED
RESTART

If the REN bit of the CWGxAS0 register is clear
(REN = 0), the CWG module must be restarted after an
auto-shutdown event through software.

Once all auto-shutdown sources are removed, the
software must clear SHUTDOWN. Once SHUTDOWN
is cleared, the CWG module will resume operation
upon the first rising edge of the CWG data input.

28.11.2 AUTO-RESTART
If the REN bit of the CWGxAS0 register is set (REN = 1),
the CWG module will restart from the shutdown state
automatically.

Once all auto-shutdown conditions are removed, the
hardware will automatically clear SHUTDOWN. Once
SHUTDOWN is cleared, the CWG module will resume
operation upon the first rising edge of the CWG data
input.

Note: Shutdown inputs are level sensitive, not
edge sensitive. The shutdown state can-
not be cleared, except by disabling auto-
shutdown, as long as the shutdown input
level persists.

Note: The SHUTDOWN bit cannot be cleared in
software if the auto-shutdown condition is
still present.

Note: The SHUTDOWN bit cannot be cleared in
software if the auto-shutdown condition is
still present.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 423

PIC18(L)F24/25K42

30.2 FIXED DUTY CYCLE MODE
In Fixed Duty Cycle (FDC) mode, every time the
accumulator overflows (NCO_overflow), the output is
toggled. This provides a 50% duty cycle, provided that
the increment value remains constant. For more
information, see Figure 30-2.

PFM bit in the NCO1CON register.

30.3 PULSE FREQUENCY MODE
In Pulse Frequency (PF) mode, every time the
Accumulator overflows, the output becomes active for
one or more clock periods. Once the clock period
expires, the output returns to an inactive state. This
provides a pulsed output. The output becomes active
on the rising clock edge immediately following the
overflow event. For more information, see Figure 30-2.

The value of the active and inactive states depends on
the polarity bit, POL in the NCO1CON register.

The PF mode is selected by setting the PFM bit in the
NCO1CON register.

30.3.1 OUTPUT PULSE-WIDTH CONTROL
When operating in PF mode, the active state of the out-
put can vary in width by multiple clock periods. Various
pulse widths are selected with the PWS<2:0> bits in the
NCO1CLK register.

When the selected pulse width is greater than the
Accumulator overflow time frame, then DDS operation
is undefined.

30.4 OUTPUT POLARITY CONTROL
The last stage in the NCO module is the output polarity.
The POL bit in the NCO1CON register selects the
output polarity. Changing the polarity while the
interrupts are enabled will cause an interrupt for the
resulting output transition. The NCO output signal is
available to most of the other peripherals available on
the device.

30.5 Interrupts
When the accumulator overflows (NCO_overflow), the
NCO Interrupt Flag bit, NCO1IF, of the PIR4 register is
set. To enable the interrupt event (NCO_interrupt), the
following bits must be set:

• EN bit of the NCO1CON register
• NCO1IE bit of the PIE4 register
• GIE/GIEH bit of the INTCON0 register

The interrupt must be cleared by software by clearing
the NCO1IF bit in the Interrupt Service Routine.

30.6 Effects of a Reset
All of the NCO registers are cleared to zero as the
result of a Reset.

30.7 Operation in Sleep
The NCO module operates independently from the
system clock and will continue to run during Sleep,
provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the
NCO module is enabled and the HFINTOSC is
selected as the clock source, regardless of the system
clock source selected.

In other words, if the HFINTOSC is simultaneously
selected as the system clock and the NCO clock
source, when the NCO is enabled, the CPU will go idle
during Sleep, but the NCO will continue to operate and
the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 454

PIC18(L)F24/25K42

FIGURE 34-7: CLOCKING DETAIL-MASTER MODE, CKE/SMP = 0/0

FIGURE 34-8: CLOCKING DETAIL - MASTER MODE, CKE/SMP = 1/1

Rev. 10-
000276A

10/10/2016MSTEN = ,CKE = , SMP =

SCK

SDO

input sample clock

Previous bit 0 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SCK

SDO

input sample clock

A I AA IA IA IA IA I

A I

CKP =

CKP =

T FIFO
determined

Open R FIFO
latch

RXFIFO Occupancy increments
TXFIFO Occupancy decrements
SPIxRIF and SPIxTIF interrupts
trigger

I A I

A A A A A A AI I I I I I I

Previous bit 0 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Rev. 10-
000315A

10/13/2016

CKP =

MSTEN = , CKE = , SMP =

SCK

SDO

input sample clock

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

A I

SCK

SDO

input sample clock

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

tx_buf
write

tx_buf
write

next

next

T FIFO
determined

Open R FIFO
latch

RXFIFO Occupancy increments
TXFIFO Occupancy decrements
SPIxRIF and SPIxTIF interrupts
trigger

A I A IA IA IA IA IA I A I

CKP =

A I A I A I A I A I A I A I
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 528


 2016-2017 M

icrochip Technology Inc.
Prelim

inary
D

S
40001869B

-page 546

PIC
18(L)F24/25K

42

35
Th
dia
Sla

FIG

Rev. 10-000 312A
11/2/201 6

RxyPPS SDA(out)
.0 I2C MODULE
e device has two dedicated, independent I2C modules. Figure 35-1 is a block
gram of the I2C interface module. The figure shows both the Master and
ve modes together.

URE 35-1: I2C MODULE BLOCK DIAGRAM

I2C Control
Unit and
Transfer
Counter

Address Buffer
and Match

I2CxADB0/1
I2CxADD0/1/2/3

Shift Register
RX/TX

Transmit Buffer
(I2CxTXB)

Recieve Buffer
(I2CxRXB)

I2CLVL<1:0>

I2CxSDAPPSSDA(in)

ACKDT/
ACKCNT

SDA
Delay

SDAHT<1:0>

I2CLVL<1:0>

I2CxSCLPPSSCL(in)
Interrupt
Controller

RxyPPS SCL(out)

Master
Module

Slave
Module

I2CCLK<3:0>

I2CBTO<2:0>

See
I2CxCLK
Register

See
I2CxBTO
Register

8

8 8

Auto-NACK

PIC18(L)F24/25K42
REGISTER 38-15: ADCNT: ADC REPEAT COUNTER REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

CNT<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 CNT<7:0>: ADC Repeat Count bits
Determines the number of times that the ADC is triggered before the threshold is checked when the
computation is Low-pass Filter, Burst Average, or Average modes. See Table 38-2 for more details.

REGISTER 38-16: ADFLTRH: ADC FILTER HIGH BYTE REGISTER
R-x R-x R-x R-x R-x R-x R-x R-x

FLTR<15:8>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 FLTR<15:8>: ADC Filter Output Most Significant bits
In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS
bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

REGISTER 38-17: ADFLTRL: ADC FILTER LOW BYTE REGISTER
R-x R-x R-x R-x R-x R-x R-x R-x

FLTR<7:0>
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 FLTR<7:0>: ADC Filter Output Least Significant bits
In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS
bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 631

PIC18(L)F24/25K42

CPFSEQ Compare f with W, skip if f = W
Syntax: CPFSEQ f {,a}
Operands: 0  f  255

a  [0,1]
Operation: (f) – (W),

skip if (f) = (W)
(unsigned comparison)

Status Affected: None
Encoding: 0110 001a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.
If ‘f’ = W, then the fetched instruction is
discarded and a NOP is executed
instead, making this a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 43.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1
Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSEQ REG, 0

NEQUAL :

EQUAL :

Before Instruction
PC Address = HERE

W = ?
REG = ?

After Instruction
If REG = W;

PC = Address (EQUAL)
If REG  W;

PC = Address (NEQUAL)

CPFSGT Compare f with W, skip if f > W
Syntax: CPFSGT f {,a}
Operands: 0  f  255

a  [0,1]
Operation: (f) –W),

skip if (f) > (W)
(unsigned comparison)

Status Affected: None
Encoding: 0110 010a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of the W by
performing an unsigned subtraction.
If the contents of ‘f’ are greater than the
contents of WREG, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 43.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1
Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSGT REG, 0

NGREATER :

GREATER :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction
If REG  W;

PC = Address (GREATER)
If REG  W;

PC = Address (NGREATER)
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 684

PIC18(L)F24/25K42

CPFSLT Compare f with W, skip if f < W

Syntax: CPFSLT f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) < (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 000a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.
If the contents of ‘f’ are less than the
contents of W, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSLT REG, 1

NLESS :

LESS :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction
If REG < W;
PC = Address (LESS)
If REG  W;
PC = Address (NLESS)

DAW Decimal Adjust W Register

Syntax: DAW

Operands: None

Operation: If [W<3:0> > 9] or [DC = 1] then
(W<3:0>) + 6  W<3:0>;
else
(W<3:0>)  W<3:0>;

If [W<7:4> + DC > 9] or [C = 1] then
(W<7:4>) + 6 + DC  W<7:4>;
else
(W<7:4>) + DC  W<7:4>

Status Affected: C

Encoding: 0000 0000 0000 0111

Description: DAW adjusts the 8-bit value in W, result-
ing from the earlier addition of two vari-
ables (each in packed BCD format) and
produces a correct packed BCD result.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register W

Process
Data

Write
W

Example1:
DAW

Before Instruction
W = A5h
C = 0
DC = 0

After Instruction
W = 05h
C = 1
DC = 0

Example 2:
Before Instruction

W = CEh
C = 0
DC = 0

After Instruction
W = 34h
C = 1
DC = 0
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 685

PIC18(L)F24/25K42

DCFSNZ Decrement f, skip if not 0

Syntax: DCFSNZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 43.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE DCFSNZ TEMP, 1, 0

ZERO :

NZERO :

Before Instruction
TEMP = ?

After Instruction
TEMP = TEMP – 1,
If TEMP = 0;

PC = Address (ZERO)
If TEMP  0;

PC = Address (NZERO)

GOTO Unconditional Branch

Syntax: GOTO k

Operands: 0  k  1048575

Operation: k  PC<20:1>

Status Affected: None

Encoding:
1st word (k<7:0>)
2nd word(k<19:8>)

1110

1111

1111

k19kkk

k7kkk

kkkk

kkkk0
kkkk8

Description: GOTO allows an unconditional branch
anywhere within entire
2-Mbyte memory range. The 20-bit
value ‘k’ is loaded into PC<20:1>.
GOTO is always a 2-cycle
instruction.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘k’<7:0>,

No
operation

Read literal
‘k’<19:8>,

Write to PC
No

operation
No

operation
No

operation
No

operation

Example: GOTO THERE

After Instruction
PC = Address (THERE)
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 687

PIC18(L)F24/25K42

INFSNZ Increment f, skip if not 0
Syntax: INFSNZ f {,d {,a}}
Operands: 0  f  255

d  [0,1]
a  [0,1]

Operation: (f) + 1  dest,
skip if result  0

Status Affected: None
Encoding: 0100 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 43.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1
Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE INFSNZ REG, 1, 0
ZERO
NZERO

Before Instruction
PC = Address (HERE)

After Instruction
REG = REG + 1
If REG  0;
PC = Address (NZERO)
If REG = 0;
PC = Address (ZERO)

IORLW Inclusive OR literal with W

Syntax: IORLW k

Operands: 0  k  255

Operation: (W) .OR. k  W

Status Affected: N, Z

Encoding: 0000 1001 kkkk kkkk

Description: The contents of W are ORed with the 8-
bit literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: IORLW 35h

Before Instruction
W = 9Ah

After Instruction
W = BFh
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 689

PIC18(L)F24/25K42

IORWF Inclusive OR W with f

Syntax: IORWF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (W) .OR. (f)  dest

Status Affected: N, Z

Encoding: 0001 00da ffff ffff

Description: Inclusive OR W with register ‘f’. If ‘d’ is
‘0’, the result is placed in W. If ‘d’ is ‘1’,
the result is placed back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 43.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: IORWF RESULT, 0, 1

Before Instruction
RESULT = 13h
W = 91h

After Instruction
RESULT = 13h
W = 93h

LFSR Load FSR

Syntax: LFSR f, k

Operands: 0  f  2
0  k  16383

Operation: k  FSRf

Status Affected: None

Encoding: 1110

1111

1110

0000

00k13k

k7kkk

kkkk

kkkk

Description: The 14-bit literal ‘k’ is loaded into the
File Select Register pointed to by ‘f’.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘k’ MSB

Process
Data

Write
literal ‘k’
MSB to
FSRfH

Decode Read literal
‘k’ LSB

Process
Data

Write literal
‘k’ to FSRfL

Example: LFSR 2, 3ABh

After Instruction
FSR2H = 03h
FSR2L = ABh
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 690

PIC18(L)F24/25K42
45.0 DEVELOPMENT SUPPORT
The PIC® microcontrollers (MCU) and dsPIC® digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:

• Integrated Development Environment
- MPLAB® X IDE Software

• Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASMTM Assembler
- MPLINKTM Object Linker/

MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for

Various Device Families
• Simulators

- MPLAB X SIM Software Simulator
• Emulators

- MPLAB REAL ICE™ In-Circuit Emulator
• In-Circuit Debuggers/Programmers

- MPLAB ICD 3
- PICkit™ 3

• Device Programmers
- MPLAB PM3 Device Programmer

• Low-Cost Demonstration/Development Boards,
Evaluation Kits and Starter Kits

• Third-party development tools

45.1 MPLAB X Integrated Development
Environment Software

The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for high-
performance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.

With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.

Feature-Rich Editor:

• Color syntax highlighting
• Smart code completion makes suggestions and

provides hints as you type
• Automatic code formatting based on user-defined

rules
• Live parsing

User-Friendly, Customizable Interface:

• Fully customizable interface: toolbars, toolbar
buttons, windows, window placement, etc.

• Call graph window

Project-Based Workspaces:

• Multiple projects
• Multiple tools
• Multiple configurations
• Simultaneous debugging sessions

File History and Bug Tracking:

• Local file history feature
• Built-in support for Bugzilla issue tracker
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 734

PIC18(L)F24/25K42

45.11 Demonstration/Development

Boards, Evaluation Kits, and
Starter Kits

A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully
functional systems. Most boards include prototyping
areas for adding custom circuitry and provide applica-
tion firmware and source code for examination and
modification.

The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.

The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.

In addition to the PICDEM™ and dsPICDEM™
demonstration/development board series of circuits,
Microchip has a line of evaluation kits and demonstra-
tion software for analog filter design, KEELOQ® security
ICs, CAN, IrDA®, PowerSmart battery management,
SEEVAL® evaluation system, Sigma-Delta ADC, flow
rate sensing, plus many more.

Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.

Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.

45.12 Third-Party Development Tools
Microchip also offers a great collection of tools from
third-party vendors. These tools are carefully selected
to offer good value and unique functionality.

• Device Programmers and Gang Programmers
from companies, such as SoftLog and CCS

• Software Tools from companies, such as Gimpel
and Trace Systems

• Protocol Analyzers from companies, such as
Saleae and Total Phase

• Demonstration Boards from companies, such as
MikroElektronika, Digilent® and Olimex

• Embedded Ethernet Solutions from companies,
such as EZ Web Lynx, WIZnet and IPLogika®
 2016-2017 Microchip Technology Inc. Preliminary DS40001869B-page 737

http://www.microchip.com

