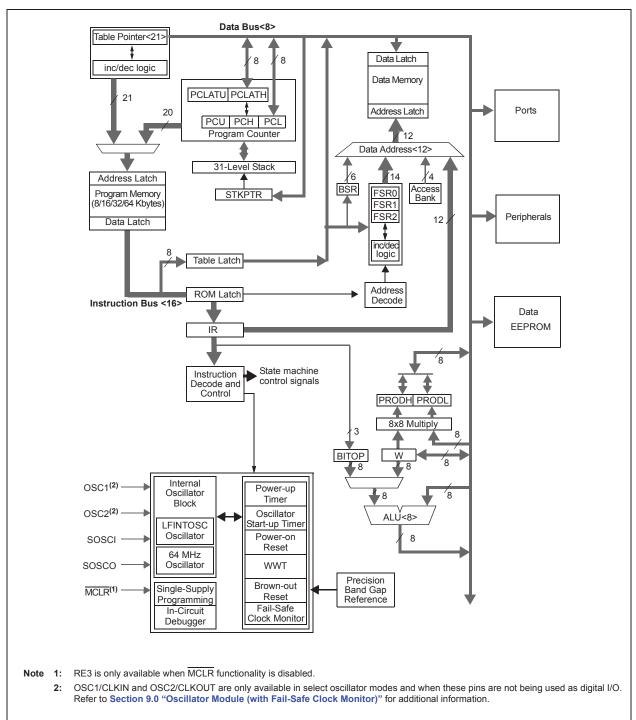


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k42t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC18(L)F24/25K42 FAMILY BLOCK DIAGRAM

PIC18(L)F24/25K42

REGISTER 3-4: DMA2PR: DMA2 PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-1/1
—	—	—	—	—	DMA2PR2	DMA2PR1	DMA2PR0
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 DMA2PR<2:0>: DMA2 Priority Selection bits

REGISTER 3-5: SCANPR: SCANNER PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
—	—	—	—	—	SCANPR2	SCANPR1	SCANPR0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 SCANPR<2:0>: DMA2 Priority Selection bits

REGISTER 3-6: PRLOCK: PRIORITY LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PRLOCKED
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-1 Unimplemented: Read as '0'

bit 0 **PRLOCKED**: PR Register Lock bit^(1, 2)

0 = Priority Registers can be modified by write operations; Peripherals do not have access to the memory

1 = Priority Registers are locked and cannot be written; Peripherals do not have access to the memory

Note 1: The PRLOCKED bit can only be set or cleared after the unlock sequence.

2: If PR1WAY = 1, the PRLOCKED bit cannot be cleared after it has been set. A system Reset will clear the bit and allow one more set.

TABLE 4-5: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F24/25K42 DEVICES BANK 61

© 2016-20	
017	
Microchip	
Technology	
Inc.	

3DFFh	_	3DDFh	U2FIFO	3DBFh	—	3D9Fh	_	3D7Fh	—	3D5Fh	I2C2CON2	3D3Fh	_	3D1Fh	—
3DFEh	—	3DDEh	U2BRGH	3DBEh	—	3D9Eh		3D7Eh	—	3D5Eh	I2C2CON1	3D3Eh	—	3D1Eh	—
3DFDh	—	3DDDh	U2BRGL	3DBDh	—	3D9Dh	—	3D7Dh	—	3D5Dh	I2C2CON0	3D3Dh	—	3D1Dh	—
3DFCh	—	3DDCh	U2CON2	3DBCh	—	3D9Ch	—	3D7Ch	I2C1BTO	3D5Ch	I2C2ADR3	3D3Ch	—	3D1Ch	SPI1CLK
3DFBh	—	3DDBh	U2CON1	3DBBh	—	3D9Bh	—	3D7Bh	I2C1CLK	3D5Bh	I2C2ADR2	3D3Bh	—	3D1Bh	SPI1INTE
3DFAh	U1ERRIE	3DDAh	U2CON0	3DBAh	—	3D9Ah	—	3D7Ah	I2C1PIE	3D5Ah	I2C2ADR1	3D3Ah	—	3D1Ah	SPI1INTF
3DF9h	U1ERRIR	3DD9h	—	3DB9h	—	3D99h	—	3D79h	I2C1PIR	3D59h	I2C2ADR0	3D39h	—	3D19h	SPI1BAUD
3DF8h	U1UIR	3DD8h	U2P3L	3DB8h	—	3D98h	—	3D78h	I2C1STAT1	3D58h	I2C2ADB1	3D38h	—	3D18h	SPI1TWIDTH
3DF7h	U1FIFO	3DD7h	—	3DB7h	—	3D97h	—	3D77h	I2C1STAT0	3D57h	I2C2ADB0	3D37h	—	3D17h	SPI1STATUS
3DF6h	U1BRGH	3DD6h	U2P2L	3DB6h	—	3D96h	—	3D76h	I2C1ERR	3D56h	I2C2CNT	3D36h	—	3D16h	SPI1CON2
3DF5h	U1BRGL	3DD5h	—	3DB5h	—	3D95h	—	3D75h	I2C1CON2	3D55h	I2C2TXB	3D35h	—	3D15h	SPI1CON1
3DF4h	U1CON2	3DD4h	U2P1L	3DB4h	—	3D94h	—	3D74h	I2C1CON1	3D54h	I2C2RXB	3D34h	—	3D14h	SPI1CON0
3DF3h	U1CON1	3DD3h	_	3DB3h	—	3D93h	_	3D73h	I2C1CON0	3D53h	_	3D33h	_	3D13h	SPI1TCNTH
3DF2h	U1CON0	3DD2h	U2TXB	3DB2h	—	3D92h	—	3D72h	I2C1ADR3	3D52h	—	3D32h	—	3D12h	SPI1TCNTL
3DF1h	U1P3H	3DD1h	—	3DB1h	—	3D91h	—	3D71h	I2C1ADR2	3D51h	—	3D31h	—	3D11h	SPI1TXB
3DF0h	U1P3L	3DD0h	U2RXB	3DB0h	—	3D90h	—	3D70h	I2C1ADR1	3D50h	—	3D30h	—	3D10h	SPI1RXB
3DEFh	U1P2H	3DCFh	—	3DAFh	—	3D8Fh	—	3D6Fh	I2C1ADR0	3D4Fh	—	3D2Fh	—	3D0Fh	—
3DEEh	U1P2L	3DCEh	—	3DAEh	—	3D8Eh	—	3D6Eh	I2C1ADB1	3D4Eh	—	3D2Eh	—	3D0Eh	—
3DEDh	U1P1H	3DCDh	—	3DADh	—	3D8Dh	—	3D6Dh	I2C1ADB0	3D4Dh	—	3D2Dh	—	3D0Dh	—
3DECh	U1P1L	3DCCh	—	3DACh	—	3D8Ch	—	3D6Ch	I2C1CNT	3D4Ch	—	3D2Ch	—	3D0Ch	—
3DEBh	U1TXCHK	3DCBh	—	3DABh	—	3D8Bh	—	3D6Bh	I2C1TXB	3D4Bh	—	3D2Bh	—	3D0Bh	—
3DEAh	U1TXB	3DCAh	—	3DAAh	—	3D8Ah	—	3D6Ah	I2C1RXB	3D4Ah	—	3D2Ah	—	3D0Ah	—
3DE9h	U1RXCHK	3DC9h	—	3DA9h	—	3D89h	—	3D69h	—	3D49h	—	3D29h	—	3D09h	—
3DE8h	U1RXB	3DC8h	—	3DA8h	—	3D88h	—	3D68h	—	3D48h	—	3D28h	—	3D08h	—
3DE7h	—	3DC7h	—	3DA7h	—	3D87h	—	3D67h	—	3D47h	—	3D27h	—	3D07h	—
3DE6h	—	3DC6h	—	3DA6h	—	3D86h	—	3D66h	I2C2BTO	3D46h	—	3D26h	—	3D06h	—
3DE5h	—	3DC5h	—	3DA5h	—	3D85h	—	3D65h	I2C2CLK	3D45h	—	3D25h	—	3D05h	—
3DE4h	—	3DC4h	—	3DA4h	—	3D84h	—	3D64h	I2C2PIE	3D44h	—	3D24h	—	3D04h	—
3DE3h	_	3DC3h	_	3DA3h	—	3D83h	_	3D63h	I2C2PIR	3D43h		3D23h	—	3D03h	—
3DE2h	U2ERRIE	3DC2h		3DA2h	—	3D82h		3D62h	I2C2STAT1	3D42h		3D22h	—	3D02h	—
3DE1h	U2ERRIR	3DC1h		3DA1h	—	3D81h		3D61h	I2C2STAT0	3D41h		3D21h	—	3D01h	—
3DE0h	U2UIR	3DC0h	_	3DA0h	—	3D80h	_	3D60h	I2C2ERR	3D40h	_	3D20h	—	3D00h	—
_eaend:	Unimpleme	ented data	memory location	ns and red	disters, read as '0'.					· -					

Legend: Unimplemented data memory locations and registers, read as '0'.

TABLE 4-8: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F24/25K42 DEVICES BANK 58

-															
3AFFh	—	3ADFh	SPI1SDIPPS	3ABFh	PPSLOCK	3A9Fh	—	3A7Fh	—	3A5Fh	—	3A3Fh	—	3A1Fh	—
3AFEh	_	3ADEh	SPI1SCKPPS	3ABEh	CCDCON	3A9Eh	_	3A7Eh	_	3A5Eh	_	3A3Eh	_	3A1Eh	—
3AFDh	—	3ADDh	ADACTPPS	3ABDh	—	3A9Dh	—	3A7Dh	—	3A5Dh	—	3A3Dh	—	3A1Dh	—
3AFCh	—	3ADCh	CLCIN3PPS	3ABCh	—	3A9Ch	—	3A7Ch	—	3A5Ch	—	3A3Ch	—	3A1Ch	—
3AFBh	—	3ADBh	CLCIN2PPS	3ABBh	—	3A9Bh	—	3A7Bh	—	3A5Bh	RB2I2C	3A3Bh	—	3A1Bh	—
3AFAh	—	3ADAh	CLCIN1PPS	3ABAh	—	3A9Ah	—	3A7Ah	—	3A5Ah	RB1I2C	3A3Ah	—	3A1Ah	—
3AF9h	—	3AD9h	CLCIN0PPS	3AB9h	—	3A99h	—	3A79h	—	3A59h	CCDNB	3A39h	—	3A19h	—
3AF8h	—	3AD8h	MD1SRCPPS	3AB8h	—	3A98h	—	3A78h	—	3A58h	CCDPB	3A38h	—	3A18h	—
3AF7h	—	3AD7h	MD1CARHPPS	3AB7h	—	3A97h	—	3A77h	—	3A57h	IOCBF	3A37h	—	3A17h	RC7PPS
3AF6h	—	3AD6h	MD1CARLPPS	3AB6h	—	3A96h	—	3A76h	—	3A56h	IOCBN	3A36h	—	3A16h	RC6PPS
3AF5h	—	3AD5h	CWG3INPPS	3AB5h	—	3A95h	—	3A75h	—	3A55h	IOCBP	3A35h	—	3A15h	RC5PPS
3AF4h	—	3AD4h	CWG2INPPS	3AB4h	—	3A94h	—	3A74h	—	3A54h	INLVLB	3A34h	—	3A14h	RC4PPS
3AF3h	—	3AD3h	CWG1INPPS	3AB3h	—	3A93h	—	3A73h	—	3A53h	SLRCONB	3A33h	—	3A13h	RC3PPS
3AF2h	—	3AD2h	SMT1SIGPPS	3AB2h	—	3A92h	—	3A72h	—	3A52h	ODCONB	3A32h	—	3A12h	RC2PPS
3AF1h	—	3AD1h	SMT1WINPPS	3AB1h	—	3A91h	—	3A71h	—	3A51h	WPUB	3A31h	—	3A11h	RC1PPS
3AF0h	—	3AD0h	CCP4PPS	3AB0h	—	3A90h	—	3A70h	—	3A50h	ANSELB	3A30h	—	3A10h	RC0PPS
3AEFh	—	3ACFh	CCP3PPS	3AAFh	—	3A8Fh	—	3A6Fh	—	3A4Fh	—	3A2Fh	—	3A0Fh	RB7PPS
3AEEh	—	3ACEh	CCP2PPS	3AAEh	—	3A8Eh	—	3A6Eh	—	3A4Eh	—	3A2Eh	—	3A0Eh	RB6PPS
3AEDh	—	3ACDh	CCP1PPS	3AADh	—	3A8Dh	—	3A6Dh	—	3A4Dh	—	3A2Dh	—	3A0Dh	RB5PPS
3AECh	—	3ACCh	T6INPPS	3AACh	—	3A8Ch	—	3A6Ch	—	3A4Ch	—	3A2Ch	—	3A0Ch	RB4PPS
3AEBh	—	3ACBh	T4INPPS	3AABh	—	3A8Bh	—	3A6Bh	RC4I2C	3A4Bh	—	3A2Bh	—	3A0Bh	RB3PPS
3AEAh	—	3ACAh	T2INPPS	3AAAh	—	3A8Ah	—	3A6Ah	RC3I2C	3A4Ah	—	3A2Ah	—	3A0Ah	RB2PPS
3AE9h	U2CTSPPS	3AC9h	T5GPPS	3AA9h	—	3A89h	—	3A69h	CCDNC	3A49h	CCDNA	3A29h	—	3A09h	RB1PPS
3AE8h	U2RXPPS	3AC8h	T5CKIPPS	3AA8h	—	3A88h	—	3A68h	CCDPC	3A48h	CCDPA	3A28h	—	3A08h	RB0PPS
3AE7h	—	3AC7h	T3GPPS	3AA7h	—	3A87h	IOCEF	3A67h	IOCCF	3A47h	IOCAF	3A27h	—	3A07h	RA7PPS
3AE6h	U1CTSPPS	3AC6h	T3CKIPPS	3AA6h	—	3A86h	IOCEN	3A66h	IOCCN	3A46h	IOCAN	3A26h	—	3A06h	RA6PPS
3AE5h	U1RXPPS	3AC5h	T1GPPS	3AA5h	—	3A85h	IOCEP	3A65h	IOCCP	3A45h	IOCAP	3A25h	—	3A05h	RA5PPS
3AE4h	I2C2SDAPPS	3AC4h	T1CKIPPS	3AA4h	—	3A84h	INLVLE	3A64h	INLVLC	3A44h	INLVLA	3A24h	—	3A04h	RA4PPS
3AE3h	I2C2SCLPPS	3AC3h	T0CKIPPS	3AA3h	—	3A83h	—	3A63h	SLRCONC	3A43h	SLRCONA	3A23h	—	3A03h	RA3PPS
3AE2h	I2C1SDAPPS	3AC2h	INT2PPS	3AA2h	—	3A82h	—	3A62h	ODCONC	3A42h	ODCONA	3A22h		3A02h	RA2PPS
3AE1h	I2C1SCLPPS	3AC1h	INT1PPS	3AA1h	—	3A81h	WPUE	3A61h	WPUC	3A41h	WPUA	3A21h		3A01h	RA1PPS
3AE0h	SPI1SSPPS	3AC0h	INT0PPS	3AA0h	—	3A80h	—	3A60h	ANSELC	3A40h	ANSELA	3A20h	_	3A00h	RA0PPS
	L L - C L		momonylocations	and an air	teres in a dise tot										

Legend: Unimplemented data memory locations and registers, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
3967h	CRCXORH	X15	X14	X13	X12	X11	X10	X9	X8	XXXXXXXX
3966h	CRCXORL	X7	X6	X5	X4	X3	X2	X1	—	xxxxxxx1
3965h	CRCSHIFTH	SHFT15	SHFT14	SHFT13	SHFT12	SHFT11	SHFT10	SHFT9	SHFT8	00000000
3964h	CRCSHIFTL	SHFT7	SHFT6	SHFT5	SHFT4	SHFT3	SHFT2	SHFT1	SHFT0	00000000
3963h	CRCACCH	ACC15	ACC14	ACC13	ACC12	ACC11	ACC10	ACC9	ACC8	00000000
3962h	CRCACCL	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	00000000
3961h	CRCDATH	DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8	XXXXXXXX
3960h	CRCDATL	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	XXXXXXXX
395Fh	WDTTMR			WDTTMR	•		STATE	PS	SCNT	00000000
395Eh	WDTPS				PSG	CNT				00000000
395Dh	WDTPS				PSG	CNT				00000000
395Ch	WDTCON1	_		CS		—		WINDOW		-000-000
395Bh	WDTCON0	_	_			PS			SEN	ddddd0
395Ah - 38A0h	—		I	1	Unimple	emented				-
389Fh	IVTADU		AD							
389Eh	IVTADH	AD								XXXXXXXX
389Dh	IVTADL	AD								XXXXXXXX
389Ch - 3891h	—	Unimplemented								-
3890h	PRODH_SHAD		PRODH							
388Fh	PRODL_SHAD				PRO	DDL				XXXXXXXX
388Eh	FSR2H_SHAD	_	—			F	SR2H			000000
388Dh	FSR2L_SHAD		•		FSI	R2L				00000000
388Ch	FSR1H_SHAD	_	—			F	SR1H			000000
388Bh	FSR1L_SHAD		•		FSI	R1L				00000000
388Ah	FSR0H_SHAD	_	_			F	SR0H			000000
3889h	FSR0L_SHAD				FSI	ROL				00000000
3888h	PCLATU SHAD	—	—	—			PCU			00000
3887h	PCLATH SHAD		L	I	PC	СН				00000000
3886h	BSR_SHAD	_	_				BSR			000000
3885h	WREG_SHAD		I		WR	EG				XXXXXXXX
3884h	STATUS SHAD	—	TO	PD	N	OV	Z	DC	С	-1100000
3883h	SHADCON	_	_	—	_	_	—	_	SHADLO	0
3882h	BSR_CSHAD	_	— BSR							000000
3881h	WREG_C- SHAD				WR	EG				*****
3880h	STATUS_C- SHAD	_	TO	PD	Ν	OV	Z	DC	С	-1100000
387Fh - 3800h	—	Unimplemented							—	

TABLE 4-11:	REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not present in LF devices.

10.1 Clock Source

The input to the reference clock output can be selected using the CLKRCLK register.

10.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

10.2 Programmable Clock Divider

The module takes the clock input and divides it based on the value of the DIV<2:0> bits of the CLKRCON register (Register 10-1).

The following configurations can be made based on the DIV<2:0> bits:

- · Base Fosc value
- · Fosc divided by 2
- Fosc divided by 4
- Fosc divided by 8
- Fosc divided by 16
- Fosc divided by 32
- Fosc divided by 64
- Fosc divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the DIV<2:0> bits should only be changed when the module is disabled (EN = 0).

10.3 Selectable Duty Cycle

The DC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the DC<1:0> bits should only be changed when the module is disabled (EN = 0).

Note: The DC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

10.4 Operation in Sleep Mode

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal. No change should occur in the module from entering or exiting from Sleep.

R-0/0	R-0/0	U-0	U-0	U-0	U-0	U-0	U-0	
STAT<1:0>		—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
HC = Bit is clea	ared by hardwa	ire						
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			ared	q = Value depends on condition				

REGISTER 11-2: INTCON1: INTERRUPT CONTROL REGISTER 1

bit 7-6 STAT<1:0>: Interrupt State Status bits

11 =High priority ISR executing, high priority interrupt was received while a low priority ISR was executing

10 =High priority ISR executing, high priority interrupt was received in main routine

01 =Low priority ISR executing, low priority interrupt was received in main routine

00 = Main routine executing

bit 5-0 **Unimplemented**: Read as '0'

14.0 8x8 HARDWARE MULTIPLIER

14.1 Introduction

All PIC18 devices include an 8x8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 14-1.

14.2 Operation

Example 14-1 shows the instruction sequence for an 8x8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 14-2 shows the sequence to do an 8x8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 14-1: 8x8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;				
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRODE	1:1	PRODL	

EXAMPLE 14-2: 8x8 SIGNED MULTIPLY

		R	JUTINE
MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time				
Routine	Multiply Method	Memory (Words)	(Max)	@ 64 MHz	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9v9 uppigpod	Without hardware multiply	13	69	4.3 μs	6.9 μs	27.6 μs	69 μs	
8x8 unsigned	Hardware multiply	1	1	62.5 ns	100 ns	400 ns	1 μs	
9v9 signed	Without hardware multiply	33	91	5.7 μs	9.1 μs	36.4 μs	91 μs	
8x8 signed	Hardware multiply	6	6	375 ns	600 ns	2.4 μs	6 μs	
16v16 unsigned	Without hardware multiply	21	242	15.1 μs	24.2 μs	96.8 μs	242 μs	
16x16 unsigned	Hardware multiply	28	28	1.8 μs	2.8 μs	11.2 μs	28 μs	
	Without hardware multiply	52	254	15.9 μs	25.4 μs	102.6 μs	254 μs	
16x16 signed	Hardware multiply	35	40	2.5 μs	4.0 μs	16.0 μs	40 μs	

TABLE 14-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

Example 14-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 14-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES<3:0>).

EQUATION 14-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	into ini. into i e i into zna into ze
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

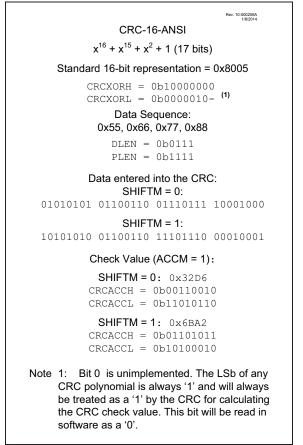
EXAMPLE 14-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L->
			; PRODH:PRODL
		PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
		ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
		PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
		ARG1L, W	
	MULWF	ARGZH	; ARG1L * ARG2H->
	NOTE	DDODT N	; PRODH:PRODL
		PRODL, W	; ; Add cross
		,	
		PRODH, W	; products
	CLRF	RES2, F	;
		RES3, F	,
	ADDWFC	RESS, F	,
;	MOVE	ARG1H, W	;
	MULWF	,	, ; ARG1H * ARG2L->
	HODME	111(021)	; PRODH: PRODL
	MOVE	PRODL, W	;
		RES1, F	; Add cross
		PRODH, W	; products
		RES2, F	;
	CLRF		;
	ADDWFC	RES3, F	;
	-		

Example 14-4 shows the sequence to do a 16 x 16 signed multiply. Equation 14-2 shows the algorithm used. The 32-bit result is stored in four registers (RES<3:0>). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 14-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

$RES3:RES0 = ARG1H:ARG1L \bullet ARG2H:ARG2L$
$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$
$(ARG1H \bullet ARG2L \bullet 2^8) +$
$(ARG1L \bullet ARG2H \bullet 2^8) +$
$(ARG1L \bullet ARG2L) +$
$(-1 \bullet ARG2H < 7 > \bullet ARG1H: ARG1L \bullet 2^{16}) +$
$(-1 \bullet ARG1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16})$


EXAMPLE 14-4: 16 x 16 SIGNED MULTIPLY ROUTINE

		INCE	
	MOVF	ARG1L, W	
	MULWF		; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;	110 1 1 1	110000, 11000	,
l '	MOVF	ARG1H, W	
	MULWF		; ARG1H * ARG2H ->
	MOLWE	ARGZII	; PRODH: PRODL
	MOVFF	PRODH, RES3	
	MOVEE		;
	MOVEE	PRODL, RES2	;
;	MOVE	ADC1T W	
	MOVE	ARG1L, W	• ADC11 * ADC211 >
	MULWF	ARGZH	; ARG1L * ARG2H ->
1	MOUTE	DDODI W	; PRODH:PRODL
1	MOVE	PRODL, W	;
	ADDWF	RES1, F	; Add cross
1	MOVE	PRODH, W RES2, F	; products
			;
	CLRF	WREG RES3, F	;
	ADDWF.C	RESJ, F	;
;		anotu	
		ARG1H, W	;
1	MULWF	ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
1	MOVF	PRODL, W	;
		RES1, F	; Add cross
	MOVF	PRODH, W	; products
1		RES2, F	;
1	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
1		ARG2H, 7	; ARG2H:ARG2L neg? ; no, check ARG1
	BRA	_	; no, check ARG1
	MOVF	ARG1L, W	;
	SUBWF	RES2	;
	MOVF	ARG1H, W	;
	SUBWFB	RES3	
;			
SIG	N_ARG1		
		ARG1H, 7	; ARG1H:ARG1L neg? ; no, done
	BRA		; no, done
	MOVF	ARG2L, W	;
	SUBWF	RES2	;
	MOVF	ARG2H, W	;
	SUBWFB	RES3	
;			
CON	r_code		
	:		

16.2 CRC Functional Overview

The CRC module can be used to detect bit errors in the program memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 16-1: CRC EXAMPLE

IADLE 17-3:	SUMMART OF REGISTERS ASSOCIATED WITH DMA								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
DMAxCON0	EN	SIRQEN	DGO	_	—	AIRQEN	_	XIP	252
DMAxCON1	DMOD	E<1:0>	DSTP	SMR	<1:0>	SMOD	E<1:0>	SSTP	253
DMAxBUF	DBUF7	DBUF6	DBUF5	DBUF4	DBUF3	DBUF2	DBUF1	DBUF0	254
DMAxSSAL				SSA	<7:0>				254
DMAxSSAH				SSA<	:15:8>				254
DMAxSSAU	—	_			SSA<	21:16>			255
DMAxSPTRL				SPTR	<7:0>				255
DMAxSPTRH				SPTR	<15:8>				255
DMAxSPTRU	—	—			SPTR<	<21:16>			256
DMAxSSZL				SSZ	<7:0>				256
DMAxSSZH	—	—	—	—		SSZ<	11:8>		256
DMAxSCNTL				SCNT	<7:0>				257
DMAxSCNTH	—	—		—		SCNT	<11:8>		257
DMAxDSAL				DSA	<7:0>				257
DMAxDSAH				DSA<	:15:8>				258
DMAxDPTRL				DPTF	R<7:0>				258
DMAxDPTRH				DPTR	<15:8>				258
DMAxDSZL		DSZ<7:0>						259	
DMAxDSZH	—	— — — DSZ<11:8>						259	
DMAxDCNTL	DCNT<7:0>						259		
DMAxDCNTH		—	—	_		DCNT	<11:8>		260
DMAxSIRQ		SIRQ6	SIRQ5	SIRQ4	SIRQ3	SIRQ2	SIRQ1	SIRQ0	260
DMAxAIRQ	_	AIRQ6	AIRQ5	AIRQ4	AIRQ3	AIRQ2	AIRQ1	AIRQ0	260

TABLE 17-3:	SUMMARY OF REGISTERS ASSOCIATED WITH DMA
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by DMA.

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			RH	<7:0>			
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
	-n = Value at POR			'0' = Bit is clea	arod	x = Bit is unkr	

REGISTER 25-5: CCPRxH: CCPx REGISTER HIGH BYTE

bit 7-0	MODE = Capture Mode:
	RH<7:0>: MSB of captured TMR1 value
	MODE = Compare Mode:
	RH<7:0>: MSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	RH<7:2>: Not used
	RH<1:0>: CCPW<9:8> – Pulse-Width MS 2 bits
	MODE = PWM Mode && FMT = 1:
	RH<7:0>: CCPW<9:2> - Pulse-Width MS 8 bits

TABLE 25-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPxCON	EN	_	OUT	FMT		MODE	=<3:0>		353
CCPxCAP	_	_	_	_	—	_	CTS<	<1:0>	355
CCPRxL		CCPRx<7:0>							355
CCPRxH	CCPRx<15:8>						356		

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

		-	-				
R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT10	CPR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknow	n	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

REGISTER 27-10: SMT1CPRL: SMT CAPTURED PERIOD REGISTER – LOW BYTE

bit 7-0 SMT1CPR<7:0>: Significant bits of the SMT Period Latch – Low Byte

'0' = Bit is cleared

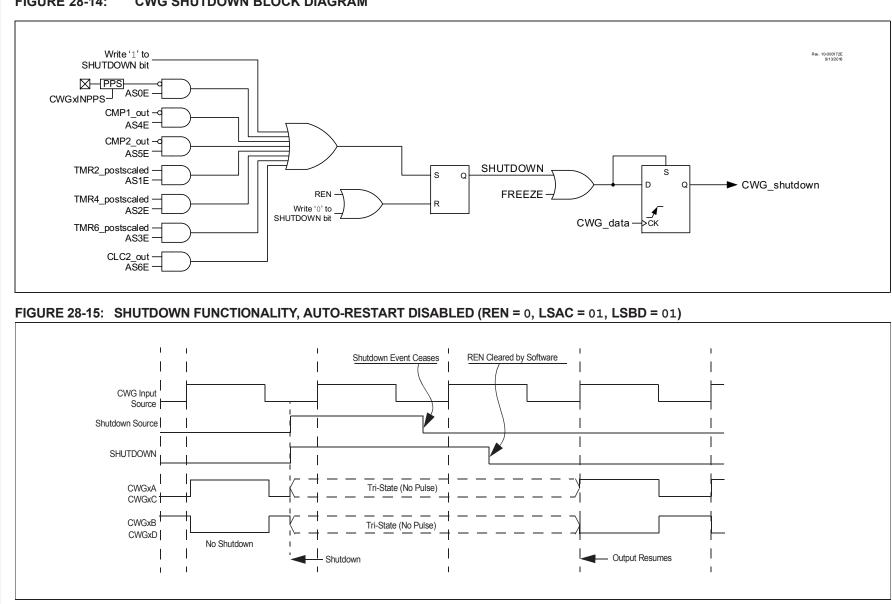
'1' = Bit is set

'1' = Bit is set

REGISTER 27-11: SMT1CPRH: SMT CAPTURED PERIOD REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1CF	PR<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

bit 7-0 SMT1CPR<15:8>: Significant bits of the SMT Period Latch – High Byte


'0' = Bit is cleared

REGISTER 27-12: SMT1CPRU: SMT CAPTURED PERIOD REGISTER – UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1CPF	R<23:16>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1CPR<23:16>: Significant bits of the SMT Period Latch – Upper Byte

PIC18(L)F24/25K42

FIGURE 28-14: CWG SHUTDOWN BLOCK DIAGRAM

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	
bit 7	·	·	·	· · · · · ·			bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unch	nanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7		e 3 Data 4 True	•					
		(true) is gated						
		(true) is not ga						
bit 6		e 3 Data 4 Neg						
		(inverted) is ga (inverted) is no						
bit 5		. ,	•					
DIL 5	G4D3T: Gate 3 Data 3 True (non-inverted) bit 1 = CLCIN2 (true) is gated into CLCx Gate 3							
		(true) is not ga						
bit 4		e 3 Data 3 Neg						
		(inverted) is ga						
	0 = CLCIN2	(inverted) is no	t gated into Cl	LCx Gate 3				
bit 3	G4D2T: Gate	e 3 Data 2 True	(non-inverted)) bit				
		(true) is gated						
		(true) is not ga						
bit 2		e 3 Data 2 Neg	. ,					
		(inverted) is ga (inverted) is no						
bit 1	G4D1T: Gate	e 4 Data 1 True	(non-inverted)) bit				
		(true) is gated into CLCx Gate 3						
	0 = CLCINO	(true) is not ga	ted into CLCx	Gate 3				
bit 0	G4D1N: Gat	e 3 Data 1 Neg	ated (inverted)) bit				
		(inverted) is ga						
	0 = CLCIN0	(inverted) is no	t gated into Cl	LCx Gate 3				

REGISTER 29-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

34.3.3 TRANSMIT AND RECEIVE FIFOS

The transmission and reception of data from the SPI module is handled by two FIFOs, one for reception and one for transmission (addressed by the SFRs SPIxRXB and SPIxTXB, respectively.). The TXFIFO is written by software and is read by the SPI module to shift the data onto the SDO pin. The RXFIFO is written by the SPI module as it shifts in the data from the SDI pin and is read by software. Setting the CLRBF bit of SPIxSTATUS resets the occupancy for both FIFOs, emptying both buffers. The FIFOs are also reset by disabling the SPI module.

Note: TXFIFO occupancy and RXFIFO occupancy simply refer to the number of bytes that are currently being stored in each FIFO. These values are used in this chapter to illustrate the function of these FIFOs and are not directly accessible through software.

The SPIxRXB register addresses the receive FIFO and is read-only. Reading from this register will read from the first FIFO location that was written to by hardware and decrease the RXFIFO occupancy. If the FIFO is empty, reading from this register will instead return a value of zero and set the RXRE (Receive Buffer Read Error) bit of the SPIxSTATUS register. The RXRE bit must then be cleared in software in order to properly reflect the status of the read error. When RXFIFO is full, the RXBF bit of the SPIxSTATUS register will be set. When the device receives data on the SDI pin, the receive FIFO may be written to by hardware and the occupancy increased, depending on the mode and receiver settings, as summarized in Table 34-1.

The SPIxTXB register addresses the transmit FIFO and is write-only. Writing to the register will write to the first empty FIFO location and increase the occupancy. If the FIFO is full, writing to this register will not affect the data and will set the TXWE bit of the SPIxSTATUS register. When the TXFIFO is empty, the TXBE bit of SPIxSTATUS will be set. When a data transfer occurs, data may be read from the first FIFO location written to and the occupancy decreases, depending on mode and transmitter settings, as summarized in Table 34-1 and Section 34.6.1 "Slave Mode Transmit options".

34.3.4 LSB VS. MSB-FIRST OPERATION

Typically, SPI communication is output Most-Significant bit first, but some devices/buses may not conform to this standard. In this case, the LSBF bit may be used to alter the order in which bits are shifted out during the data exchange. In both Master and Slave mode, the LSBF bit of SPIxCON0 controls if data is shifted MSb or LSb first. Clearing the bit (default) configures the data to transfer MSb first, which is traditional SPI operation, while setting the bit configures the data to transfer LSb first.

34.3.5 INPUT AND OUTPUT POLARITY BITS

SPIxCON1 has three bits that control the polarity of the SPI inputs and outputs. The SDIP bit controls the polarity of the SDI input, the SDOP bit controls the polarity of the SDO output, and the SSP bit controls the polarity of both the slave SS input and the master SS output. For all three bits, when the bit is clear, the input or output is active-high, and when the bit is set, the input or output is active-low. When the EN bit of SPIxCON0 is cleared, SS(out) and SCK(out) both revert to the inactive state dictated by their polarity bits. The SDO output state when the EN bit of SPIxCON0 is cleared is determined by several factors.

- When the associated TRIS bit for the SDO pin is cleared, and the SPI goes Idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.
- When the associated TRIS bit for the SDO pin is set, behavior varies in Slave and Master mode.
 - In Slave mode, the SDO pin tri-states when:
 - Slave Select is inactive,
 - the EN bit of SPIxCON0 is cleared, or when
 - the TXR bit of SPIxCON2 is cleared.
 - In Master mode, the SDO pin tri-states when TXR = 0. When TXR = 1 and the SPI goes Idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			STPT	<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemer		d as '0'	
u = Bit is unch	anged	x = Bit is unknow	wn	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

REGISTER 38-27: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

bit 7-0 **STPT<15:8>**: ADC Threshold Setpoint MSB. Upper byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 38-29 for more details.

REGISTER 38-28: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
STPT<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **STPT<7:0>**: ADC Threshold Setpoint LSB. Lower byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 38-30 for more details.

PIC18(L)F24/25K42

RET	FIE	Return fro	om Interru	upt	
Synta	ax:	RETFIE {s	;}		
Oper	ands:	$s \in [0,1]$			
Oper	ation:	(TOS) → Pd if s = 1, con STATUS, B FSR1H, FS PRODH, Pf PCLATU re correspond	text is resto SR, FSR0F R1L, FSR2 RODL, PCL gisters fron	H, FSR0 2H, FSR ATH an 1 the	L, 2L, Id
		if s = 0, the any register		ange in s	status of
Statu	s Affected:	STAT<1:0>	in INTCON	11 regist	ter
Enco	ding:	0000	0000	0001	000s
	ription:	Return from and Top-of- the PC. Inte setting eithe global intern contents of WREG, STA FSR0L, FSI FSR2L, PR PCLATU, an registers. Th registers, m The set retr execution d operation of FIE was exe of these reg	Stack (TOS errupts are er the high rupt enable the shadow ATUS, BSR R1H, FSR1 ODH, PRO re loaded in here are tw lain context ieved on Ri epends on f the CPU v ecuted. If 's	S) is load enabled or low p bit. If 's v registe t, FSR01 L, FSR01 L, FSR01 L, FSR01 L, FSR0 L, FSR01 L, FSR0 L, FSR01 L, FSR0	ded into by riority ' = 1, the ers, -1, 2H, 2H, ATH and sponding f shadow v context. nstruction e state of en RET- o update
Word	ls:	1			
Cycle	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	No operation	No operatio	n fro	OP PC m stack GIEH or GIEL
	No	No	No		No
	operation	operation	operatio	n op	peration
Exan	nple: After Interrupt WREG BSR STATUS FSR0L/H FSR1L/H FSR2L/H PROD/H		= TO; = WR = BSI = ST/ = FSI = FSI = FSI	S REG_SHAI ATUS_S ROL/H_S ROL/H_S R1L/H_S R1L/H_S OD/H_S) HAD SHAD SHAD SHAD
	PCLATH/	0	= PCI	LATH/U	_SHAD

	RETLW k				Return literal to W					
		RETLW k								
	$0 \le k \le 255$	$0 \le k \le 255$								
Operation:			$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged							
	None									
	0000	1100	kkk	.k	kkkk					
	W is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.									
	1									
	2									
/:										
	Q2	Q3	3		Q4					
	Read literal 'k'			fro	OP PC m stack, ite to W					
	No				No					
n	operation	opera	tion	ор	peration					
Example: CALL TABLE ; W contains table										
	y: n	PCLÁTU, F None 0000 W is loade program co of the stac high addre unchanged 1 2 y: Q2 e Read literal 'k' n No operation	PCLATU, PCLATH a None 0000 1100 W is loaded with the program counter is lof the stack (the retundent high address latch (unchanged. 1 2 y: Q2 Q3 e Read Process latch (Date of the stack) hiteral 'k' Date of the stack (the retundent of the stack) n No No No No n operation operation	PCLATU, PCLATH are un None 0000 1100 kkk W is loaded with the 8-bit program counter is loaded of the stack (the return ad high address latch (PCLATH) unchanged. 1 2 y: Q2 Q3 e Read Process literal 'k' Data n No No n operation operation	PCLÁTU, PCLATH are unchar None 0000 1100 kkkk W is loaded with the 8-bit litera program counter is loaded from of the stack (the return address high address latch (PCLATH) is unchanged. 1 2 y: Q2 Q3 e Read Process literal 'k' Data from No No operation n operation operation					

CAUL	י מתמאו	'	W CONCAINS CADIC
		;	offset value
		;	W now has
		;	table value
:			
TABLE			
ADDWF	PCL ,	;	W = offset
RETLW	k0	;	Begin table
RETLW	kl ,	;	
:			
:			
RETLW	kn	;	End of table

Before Instruction W = 07h After Instruction

After Instruct	lion	
W	=	value of kn

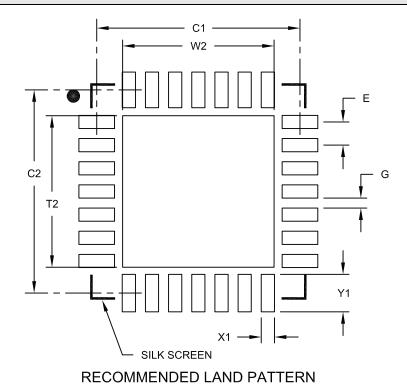

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3C6Eh	CLC2SEL2				D	S				445
3C6Dh	CLC2SEL1				D2	S				445
3C6Ch	CLC2SEL0				D1	S				445
3C6Bh	CLC2POL	POL	_	_	_	G4POL	G3POL	G2POL	G1POL	444
3C6Ah	CLC2CON	EN	OE	OUT	INTP	INTN		MODE		443
3C69h	CLC3GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	449
3C68h	CLC3GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	448
3C67h	CLC3GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	447
3C66h	CLC3GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	446
3C65h	CLC3SEL3		•	•	D4	S	•			445
3C64h	CLC3SEL2				D3	S				445
3C63h	CLC3SEL1				D2	2S				445
3C62h	CLC3SEL0		D1S						446	
3C61h	CLC3POL	POL	_	_	_	G4POL	G3POL	G2POL	G1POL	444
3C60h	CLC3CON	EN	OE	OUT	INTP	INTN		MODE		443
3C5Fh	CLC4GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	449
3C5Eh	CLC4GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	448
3C5Dh	CLC4GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	447
3C5Ch	CLC4GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	446
3C5Bh	CLC4SEL3		•		D4	S	1			445
3C5Ah	CLC4SEL2	D3S							445	
3C59h	CLC4SEL1	D2S						445		
3C58h	CLC4SEL0				D1	S				446
3C57h	CLC4POL	POL	_	_	_	G4POL	G3POL	G2POL	G1POL	444
3C56h	CLC4CON	EN	OE	OUT	INTP	INTN		MODE		443
3C55h - 3C00h	—	Unimplemented								
3BFFh	DMA1SIRQ				SIF	RQ				231
3BFEh	DMA1AIRQ				AIF	RQ				231
3BFDh	DMA1CON1	EN	SIRQEN	DGO	_	_	AIRQEN	_	XIP	231
3BFCh	DMA1CON0	DM	ODE	DSTP	SN	1R	SMC	DE	SSTP	231
3BFBh	DMA1SSAU	_	_		•		SSA	231		
3BFAh	DMA1SSAH		SSA						231	
3BF9h	DMA1SSAL	SSA						231		
3BF8h	DMA1SSZH	_	_	_	—		S	SZ		231
3BF7h	DMA1SSZL				SS	SZ				231
3BF6h	DMA1SPTRU	SPTR						231		
3BF5h	DMA1SPTRH	SPTR						231		
3BF4h	DMA1SPTRL	SPTR						231		
3BF3h	DMA1SCNTH	_	_	_	_		S	CNT		231
3BF2h	DMA1SCNTL				SC	NT				231
3BF1h	DMA1DSAH				DS	SA				231
3BF0h	DMA1DSAL				SS	A				231
3BEFh	DMA1DSZH	—	—	—	—		D	SZ		231
3BEEh	DMA1DSZL				DS	SZ				231
3BEDh	DMA1DPTRH				DP	TR				231
3BECh	DMA1DPTRL				DP					231
3BEBh	DMA1DCNTH		_	DCNT					231	
		DCNT								

TABLE 44-1: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K42 DEVICES (CONTINUED)

Note 1: Not present in LF devices.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC			
Optional Center Pad Width	W2			4.25		
Optional Center Pad Length	T2			4.25		
Contact Pad Spacing	C1		5.70			
Contact Pad Spacing	C2		5.70			
Contact Pad Width (X28)	X1			0.37		
Contact Pad Length (X28)	Y1			1.00		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A