## NXP USA Inc. - MCIMX6Y1DVM05AA Datasheet





#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | ARM® Cortex®-A7                                                         |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                          |
| Speed                           | 528MHz                                                                  |
| Co-Processors/DSP               | Multimedia; NEON™ MPE                                                   |
| RAM Controllers                 | LPDDR2, DDR3, DDR3L                                                     |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | Electrophoretic, LCD                                                    |
| Ethernet                        | 10/100Mbps (2)                                                          |
| SATA                            | -                                                                       |
| USB                             | USB 2.0 OTG + PHY (2)                                                   |
| Voltage - I/O                   | 1.8V, 2.8V, 3.3V                                                        |
| Operating Temperature           | 0°C ~ 95°C (TJ)                                                         |
| Security Features               | A-HAB, ARM TZ, CSU, SJC, SNVS                                           |
| Package / Case                  | 289-LFBGA                                                               |
| Supplier Device Package         | 289-MAPBGA (14x14)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6y1dvm05aa |
|                                 |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### i.MX 6ULL Introduction

The i.MX 6ULL processors are specifically useful for applications such as:

- Telematics
- Audio playback
- Connected devices
- IoT Gateway
- Access control panels
- Human Machine Interfaces (HMI)
- Portable medical and health care
- IP phones
- Smart appliances
- eReaders

The features of the i.MX 6ULL processors include:

- Single-core Arm Cortex-A7—The single core A7 provides a cost-effective and power-efficient solution.
- Multilevel memory system—The multilevel memory system of processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processor supports many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR Flash, NAND Flash (MLC and SLC), OneNAND<sup>™</sup>, Quad SPI, and managed NAND, including eMMC up to rev 4.4/4.41/4.5.
- Smart speed technology—Power management implemented throughout the IC that enables multimedia features and peripherals to consume minimum power in both active and various low power modes.
- Dynamic voltage and frequency scaling—The power efficiency of devices by scaling the voltage and frequency to optimize performance.
- Multimedia powerhouse—The multimedia performance of processor is enhanced by a multilevel cache system, NEON<sup>™</sup> MPE (Media Processor Engine) co-processor, a programmable smart DMA (SDMA) controller, an asynchronous audio sample rate converter, an Electrophoretic Display (EPD) controller, and a Pixel processing pipeline (PXP) to support 2D image processing, including color-space conversion, scaling, alpha-blending, and rotation.
- 2x Ethernet interfaces—2x 10/100 Mbps Ethernet controllers.
- Human-machine interface—Each processor supports one digital parallel display interface.
- Interface flexibility—Each processor supports connections to a variety of interfaces: two high-speed USB on-the-go with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), two 12-bit ADC modules with up to 10 total input channels and two CAN ports.
- Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, AES-128 encryption, SHA-1, SHA-256 HW acceleration engine, and secure software downloads. The security features are discussed in the *i.MX 6ULL Security Reference Manual* (IMX6ULLSRM).

#### i.MX 6ULL Introduction

— Cortex-A7 NEON Media Processing Engine (MPE) Co-processor

- General Interrupt Controller (GIC) with 128 interrupts support
- Global Timer
- Snoop Control Unit (SCU)
- 128 KB unified I/D L2 cache
- Single Master AXI bus interface output of L2 cache
- Frequency of the core (including Neon and L1 cache), as per Table 10, "Operating Ranges," on page 24.
- NEON MPE coprocessor
  - SIMD Media Processing Architecture
  - NEON register file with 32x64-bit general-purpose registers
  - NEON Integer execute pipeline (ALU, Shift, MAC)
  - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
  - NEON load/store and permute pipeline
  - 32 double-precision VFPv3 floating point registers

The SoC-level memory system consists of the following additional components:

- Boot ROM, including HAB (96 KB)
- Internal multimedia/shared, fast access RAM (OCRAM, 128 KB)
- External memory interfaces: The i.MX 6ULL processors support latest, high volume, cost effective handheld DRAM, NOR, and NAND Flash memory standards.
  - 16-bit LP-DDR2-800, 16-bit DDR3-800 and DDR3L-800
  - 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND<sup>™</sup> and others. BCH ECC up to 40 bits.
  - 16/8-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.

Each i.MX 6ULL processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously):

- Displays:
  - One parallel display port, support max 85 MHz display clock and up to WXGA (1366 x 768) at 60 Hz
  - Support 24-bit, 18-bit, 16-bit, and 8-bit parallel display
  - Electrophoretic display controller support direct-driver for E-Ink EPD panel, with up to 2048x1536 resolution at 106 Hz
- Camera sensors:
  - One parallel camera port, up to 24 bit and 133.3 MHz pixel clock
  - Support 24-bit, 16-bit, 10-bit, and 8-bit input
  - Support BT.656 interface
- Expansion cards:
  - Two MMC/SD/SDIO card ports all supporting:

Architectural Overview

# 2 Architectural Overview

The following subsections provide an architectural overview of the i.MX 6ULL processor system.

## 2.1 Block Diagram

Figure 2 shows the functional modules in the i.MX 6ULL processor system.

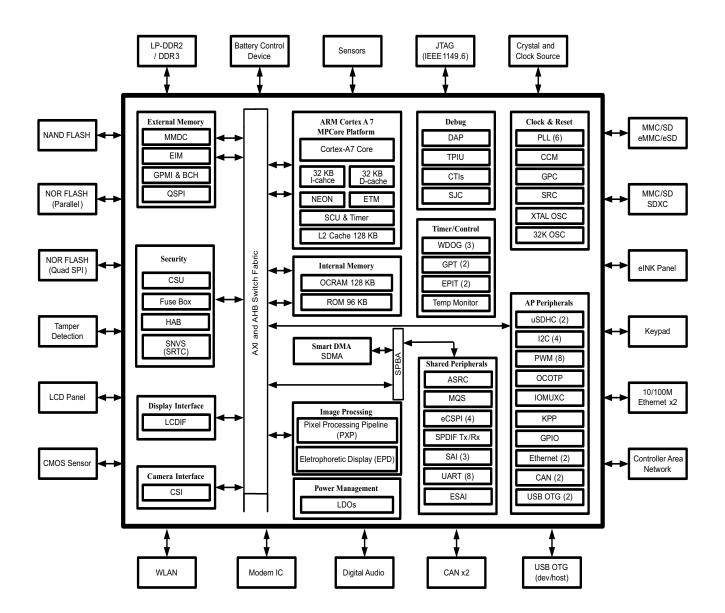



Figure 2. i.MX 6ULL System Block Diagram

### **Modules List**

| Block Mnemonic                                               | Block Name                 | Subsystem                   | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------|----------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCDIF                                                        | LCD interface              | Connectivity<br>peripherals | The LCDIF is a general purpose display controller used<br>to drive a wide range of display devices varying in size<br>and capability. The LCDIF is designed to support dumb<br>(synchronous 24-bit Parallel RGB interface) and smart<br>(asynchronous parallel MPU interface) LCD devices.                                                                                                                                                                                                                                                             |
| MQS                                                          | Medium Quality Sound       | Multimedia<br>Peripherals   | MQS is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PWM1<br>PWM2<br>PWM3<br>PWM4<br>PWM5<br>PWM6<br>PWM7<br>PWM8 | Pulse Width Modulation     | Connectivity<br>peripherals | The pulse-width modulator (PWM) has a 16-bit counter<br>and is optimized to generate sound from stored sample<br>audio images and it can also generate tones. It uses<br>16-bit resolution and a 4x16 data FIFO to generate<br>sound.                                                                                                                                                                                                                                                                                                                  |
| РХР                                                          | Pixel Processing Pipeline  | Display peripherals         | A high-performance pixel processor capable of 1<br>pixel/clock performance for combined operations, such<br>as color-space conversion, alpha blending,<br>gamma-mapping, and rotation. The PXP is enhanced<br>with features specifically for gray scale applications. In<br>addition, the PXP supports traditional pixel/frame<br>processing paths for still-image and video processing<br>applications, allowing it to interface with the integrated<br>EPD.                                                                                          |
| RNGB                                                         | Random Number<br>Generator | Security                    | Random number generating module.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| QSPI                                                         | Quad SPI                   | Connectivity<br>peripherals | <ul> <li>Quad SPI module acts as an interface to external serial flash devices. This module contains the following features:</li> <li>Flexible sequence engine to support various flash vendor devices</li> <li>Single pad/Dual pad/Quad pad mode of operation</li> <li>Single Data Rate/Double Data Rate mode of operation</li> <li>Parallel Flash mode</li> <li>DMA support</li> <li>Memory mapped read access to connected flash devices</li> <li>Multi-master access with priority and flexible and configurable buffer for each master</li> </ul> |
| SAI1<br>SAI2<br>SAI3                                         | _                          |                             | The SAI module provides a synchronous audio<br>interface (SAI) that supports full duplex serial interfaces<br>with frame synchronization, such as I2S, AC97, TDM,<br>and codec/DSP interfaces.                                                                                                                                                                                                                                                                                                                                                         |

## Table 2. i.MX 6ULL Modules List (continued)

**Modules List** 

## 3.1 Special Signal Considerations

Table 3 lists special signal considerations for the i.MX 6ULL processors. The signal names are listed in alphabetical order.

The package contact assignments can be found in Section 6, "Package Information and Contact Assignments"." Signal descriptions are provided in the *i.MX 6ULL Reference Manual* (IMX6ULLRM).

| Signal Name               | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCM_CLK1_P/<br>CCM_CLK1_N | <ul> <li>One general purpose differential high speed clock Input/output is provided.</li> <li>It can be used: <ul> <li>To feed external reference clock to the PLLs and further to the modules inside SoC.</li> <li>To output internal SoC clock to be used outside the SoC as either reference clock or as a functional clock for peripherals.</li> </ul> </li> <li>See the <i>i.MX 6ULL Reference Manual</i> (IMX6ULLRM) for details on the respective clock trees. Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. After initialization, the CLK1 input/output can be disabled (if not used). If unused, either or both of the CLK1_N/P pairs may remain unconnected.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      |
| RTC_XTALI/RTC_XTALO       | If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, ( $\leq$ 100 k $\Omega$ ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M $\Omega$ ). This will debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin should be remain unconnected or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical conditions. In case when high accuracy real time clock are not required, system may use internal low frequency ring oscillator. It is recommended to connect RTC_XTALI to GND and keep RTC_XTALO unconnected. |
| XTALI/XTALO               | A 24.0 MHz crystal should be connected between XTALI and XTALO.<br>The crystal must be rated for a maximum drive level of 250 $\mu$ W. An ESR (equivalent series resistance) of typical 80 $\Omega$ is recommended. NXP BSP (board support package) software requires 24 MHz on XTALI/XTALO.<br>The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, XTALO must be directly driven by the external oscillator and XTALI is not connected.<br>If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter requirements. See OSC24M chapter and relevant interface specifications chapters for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DRAM_VREF                 | When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 k $\Omega$ 0.5% resistor to GND and a 1 k $\Omega$ 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 µF capacitor.<br>To reduce supply current, a pair of 1.5 k $\Omega$ 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when two DDR3 ICs plus the i.MX 6ULL are drawing current on the resistor divider.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Table 3. Special Signal Considerations

### **Modules List**

| Module | Pad Name                                                                                            | Recommendations<br>if Unused                                       |
|--------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| CCM    | CCM_CLK1_N, CCM_CLK1_P                                                                              | Not connect                                                        |
| USB    | USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS,<br>USB_OTG2_DN, USB_OTG2_DP, USB_OTG2_VBUS | Not connect                                                        |
| ADC    | ADC_VREFH                                                                                           | Tie to<br>VDDA_ADC_3P3                                             |
|        | VDDA_ADC_3P3                                                                                        | VDDA_ADC_3P3<br>must be powered<br>even if the ADC is<br>not used. |

## Table 5. Recommended Connections for Unused Analog Interfaces

| ID   | ID Parameter             |                  | Parameter Symb                                   |                                           | Timing<br>T = GPMI Clock Cycle |  | Unit |
|------|--------------------------|------------------|--------------------------------------------------|-------------------------------------------|--------------------------------|--|------|
|      |                          |                  | Min.                                             | Max.                                      |                                |  |      |
| NF6  | NAND_ALE setup time      | tALS             | $(AS + DS) \times T$                             | - 0.49 [see <sup>3,2</sup> ]              | ns                             |  |      |
| NF7  | NAND_ALE hold time       | tALH             | (DH × T - 0                                      | .42 [see <sup>2</sup> ]                   | ns                             |  |      |
| NF8  | Data setup time          | tDS              | DS × T - 0.                                      | 26 [see <sup>2</sup> ]                    | ns                             |  |      |
| NF9  | Data hold time           | tDH              | DH × T - 1.37 [see <sup>2</sup> ]                |                                           | ns                             |  |      |
| NF10 | Write cycle time         | tWC              | $(DS + DH) \times T [see ^2]$                    |                                           | ns                             |  |      |
| NF11 | NAND_WE_B hold time      | tWH              | DH × T                                           | [see <sup>2</sup> ]                       | ns                             |  |      |
| NF12 | Ready to NAND_RE_B low   | tRR <sup>4</sup> | $(AS + 2) \times T \text{ [see } ^{3,2}\text{]}$ | _                                         | ns                             |  |      |
| NF13 | NAND_RE_B pulse width    | tRP              | DS × T                                           | [see <sup>2</sup> ]                       | ns                             |  |      |
| NF14 | READ cycle time          | tRC              | $(DS + DH) \times T [see ^2]$                    |                                           | ns                             |  |      |
| NF15 | NAND_RE_B high hold time | tREH             | DH × T [see <sup>2</sup> ]                       |                                           | ns                             |  |      |
| NF16 | Data setup on read       | tDSR             | —                                                | (DS $\timesT$ -0.67)/18.38 [see $^{5,6}]$ | ns                             |  |      |
| NF17 | Data hold on read        | tDHR             | 0.82/11.83 [see <sup>5,6</sup> ]                 | —                                         | ns                             |  |      |

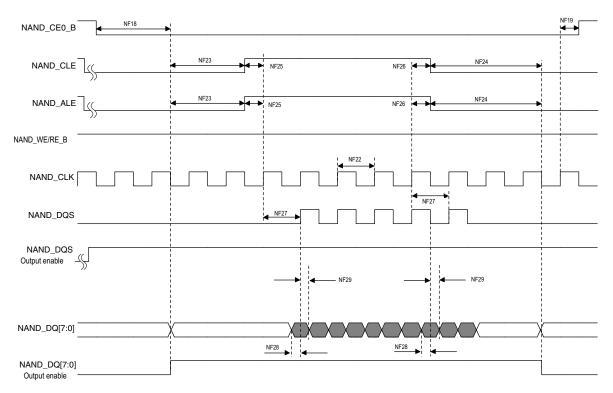
Table 42. Asynchronous Mode Timing Parameters<sup>1</sup> (continued)

<sup>1</sup> GPMI's Async Mode output timing can be controlled by the module's internal registers HW\_GPMI\_TIMING0\_ADDRESS\_SETUP, HW\_GPMI\_TIMING0\_DATA\_SETUP, and HW\_GPMI\_TIMING0\_DATA\_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

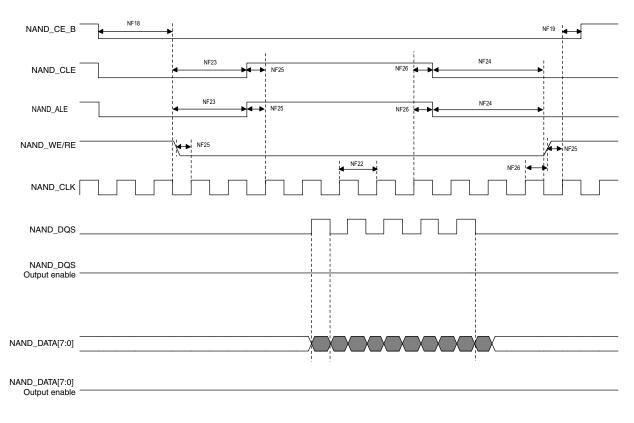
<sup>2</sup> AS minimum value can be 0, while DS/DH minimum value is 1.

<sup>3</sup> T = GPMI clock period -0.075ns (half of maximum p-p jitter).

<sup>4</sup> NF12 is guaranteed by the design.


<sup>5</sup> Non-EDO mode.

<sup>6</sup> EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI\_CTL1 [RDN\_DELAY] = 8, GPMI\_CTL1 [HALF\_PERIOD] = 0).


In EDO mode (Figure 24), NF16/NF17 is different from the definition in non-EDO mode (Figure 23). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND\_DATAxx at rising edge of delayed NAND\_RE\_B provided by an internal DPLL. The delay value can be controlled by GPMI\_CTRL1.RDN\_DELAY (see the GPMI chapter of the *i.MX 6ULL Reference Manual*). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

## 4.11.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)

Figure 26 to Figure 28 show the write and read timing of Source Synchronous Mode.







### Figure 28. Source Synchronous Mode Data Read Timing Diagram

Figure 48 shows RMII mode timings. Table 58 describes the timing parameters (M16–M21) shown in the figure.

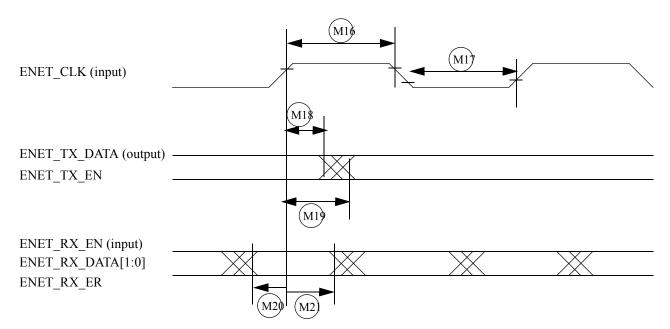
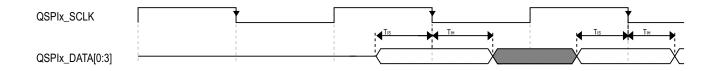



Figure 48. RMII Mode Signal Timing Diagram

| Table 58 | . RMII | Signal | Timing |
|----------|--------|--------|--------|
|----------|--------|--------|--------|

| ID  | Characteristic                                                           | Min. | Max. | Unit            |
|-----|--------------------------------------------------------------------------|------|------|-----------------|
| M16 | ENET_CLK pulse width high                                                | 35%  | 65%  | ENET_CLK period |
| M17 | ENET_CLK pulse width low                                                 | 35%  | 65%  | ENET_CLK period |
| M18 | ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid                         | 4    |      | ns              |
| M19 | ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid                           | —    | 13   | ns              |
| M20 | ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup | 2    | _    | ns              |
| M21 | ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold              | 2    | _    | ns              |


## 4.12.6 Flexible Controller Area Network (FLEXCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the *i.MX 6ULL Reference Manual* (IMX6ULLRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN\_TX and FLEXCAN\_RX, respectively.

## 4.12.10 QUAD SPI (QSPI) Timing Parameters

Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.

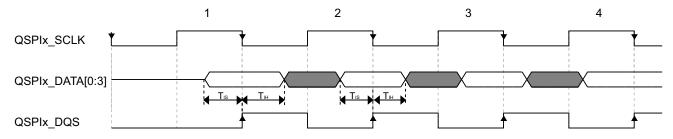
## 4.12.10.1 SDR Mode

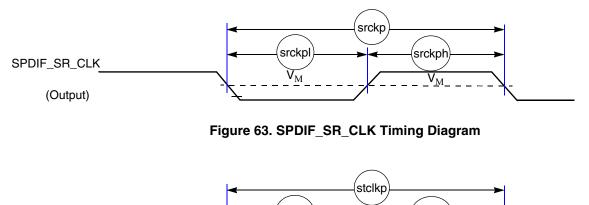


## Figure 51. QuadSPI Input/Read Timing (SDR mode with internal sampling)

| Symbol          | Parameter                               | Val  | Unit |      |
|-----------------|-----------------------------------------|------|------|------|
|                 | Falameter                               | Min  | Max  | Onic |
| T <sub>IS</sub> | Setup time for incoming data            | 8.67 | _    | ns   |
| T <sub>IH</sub> | Hold time requirement for incoming data | 0    | —    | ns   |

## Table 62. QuadSPI Input Timing (SDR mode with internal sampling)





Figure 52. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)

| Table 63. QuadSPI Input/Read Ti | ming (SDR mode with | loopback DQS sampling) |
|---------------------------------|---------------------|------------------------|
|                                 |                     | loopbuok bao bamping/  |

| Symbol Parameter | Parameter                               | Val | Unit |      |
|------------------|-----------------------------------------|-----|------|------|
|                  | Falantelei                              | Min | Max  | Onit |
| T <sub>IS</sub>  | Setup time for incoming data            | 2   | _    | ns   |
| T <sub>IH</sub>  | Hold time requirement for incoming data | 1   | —    | ns   |

## NOTE

• For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx\_SMPR[SDRSMP] = 0.



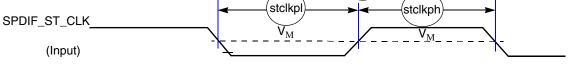



Figure 64. SPDIF\_ST\_CLK Timing Diagram

## 4.12.14 UART I/O Configuration and Timing Parameters

## 4.12.14.1 UART RS-232 Serial Mode Timing

The following sections describe the electrical information of the UART module in the RS-232 mode.

## 4.12.14.1.1 UART Transmitter

Figure 65 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 72 lists the UART RS-232 serial mode transmits timing characteristics.

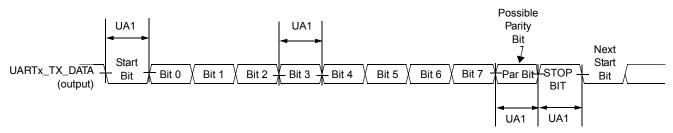
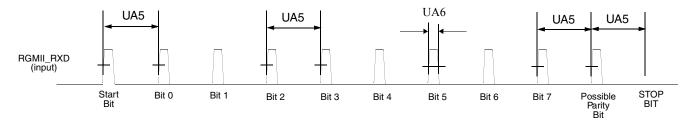



Figure 65. UART RS-232 Serial Mode Transmit Timing Diagram

| Table 72. RS-232 Serial Mode Tra | ansmit Timing Parameters |
|----------------------------------|--------------------------|
|----------------------------------|--------------------------|

| ID  | Parameter         | Symbol            | Min                                                                       | Мах                                             | Unit |
|-----|-------------------|-------------------|---------------------------------------------------------------------------|-------------------------------------------------|------|
| UA1 | Transmit Bit Time | t <sub>Tbit</sub> | 1/F <sub>baud_rate</sub> <sup>1</sup> - T <sub>ref_clk</sub> <sup>2</sup> | 1/F <sub>baud_rate</sub> + T <sub>ref_clk</sub> |      |

<sup>1</sup> F<sub>baud rate</sub>: Baud rate frequency. The maximum baud rate the UART can support is (*ipg\_perclk* frequency)/16.


<sup>2</sup> T<sub>ref clk</sub>: The period of UART reference clock *ref\_clk* (*ipg\_perclk* after RFDIV divider).

<sup>1</sup> F<sub>baud rate</sub>: Baud rate frequency. The maximum baud rate the UART can support is (*ipg\_perclk* frequency)/16.

<sup>2</sup> T<sub>ref clk</sub>: The period of UART reference clock *ref\_clk* (*ipg\_perclk* after RFDIV divider).

## **UART IrDA Mode Receiver**

Figure 68 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 75 lists the receive timing characteristics.



## Figure 68. UART IrDA Mode Receive Timing Diagram

| ID  | Parameter                                  | Symbol                | Min                                                                         | Max                                                            | Unit |
|-----|--------------------------------------------|-----------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|------|
| UA5 | Receive Bit Time <sup>1</sup> in IrDA mode | t <sub>RIRbit</sub>   | 1/F <sub>baud_rate</sub> <sup>2</sup> - 1/(16<br>x F <sub>baud_rate</sub> ) | 1/F <sub>baud_rate</sub> + 1/(16 x<br>F <sub>baud_rate</sub> ) | —    |
| UA6 | Receive IR Pulse Duration                  | t <sub>RIRpulse</sub> | 1.41 μs                                                                     | (5/16) x (1/F <sub>baud_rate</sub> )                           | —    |

The UART receiver can tolerate  $1/(16 \times F_{baud_rate})$  tolerance in each bit. But accumulation tolerance in one frame must not exceed  $3/(16 \times F_{baud_rate})$ .

<sup>2</sup> F<sub>baud rate</sub>: Baud rate frequency. The maximum baud rate the UART can support is (*ipg\_perclk* frequency)/16.

## 4.12.15 USB PHY Parameters

This section describes the USB-OTG PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG with the following amendments.

- USB ENGINEERING CHANGE NOTICE
  - Title: 5V Short Circuit Withstand Requirement Change
  - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
  - Title: Pull-up/Pull-down resistors
  - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
  - Title: Suspend Current Limit Changes
  - Applies to: Universal Serial Bus Specification, Revision 2.0

| Characteristic                    | Conditions                      | Symb              | Min | Typ <sup>1</sup> | Мах | Unit | Comment |
|-----------------------------------|---------------------------------|-------------------|-----|------------------|-----|------|---------|
| ADC Conversion Clock<br>Frequency | ADLPC=0, ADHSC=1<br>12 bit mode | f <sub>ADCK</sub> | 4   | _                | 40  | MHz  | —       |
|                                   | ADLPC=0, ADHSC=0<br>12 bit mode |                   | 4   | —                | 30  | MHz  | _       |
|                                   | ADLPC=1, ADHSC=0<br>12 bit mode |                   | 4   | —                | 20  | MHz  | —       |

Table 76. 12-bit ADC Operating Conditions (continued)

<sup>1</sup> Typical values assume VDDAD = 3.0 V, Temp = 25°C, f<sub>ADCK</sub>=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

<sup>2</sup> DC potential differences



Figure 69. 12-bit ADC Input Impedance Equivalency Diagram

| Characteristic                          | Conditions <sup>1</sup> | Symb            | Min       | Typ <sup>2</sup> | Max      | Unit | Comment |
|-----------------------------------------|-------------------------|-----------------|-----------|------------------|----------|------|---------|
| [P:][C:] Integral                       | 12 bit mode             | INL             | —         | 2.6              | —        | LSB  | —       |
| Non-Linearity                           | 10bit mode              |                 |           | 0.8              | —        |      |         |
|                                         | 8 bit mode              |                 |           | 0.3              | —        |      |         |
| Zero-Scale Error                        | 12 bit mode             | E <sub>ZS</sub> | —         | -0.3             | —        | LSB  | —       |
|                                         | 10bit mode              |                 | —         | -0.15            | —        |      |         |
|                                         | 8 bit mode              |                 | —         | -0.15            | —        |      |         |
| Full-Scale Error                        | 12 bit mode             | E <sub>FS</sub> | —         | -2.5             | —        | LSB  | —       |
|                                         | 10bit mode              |                 |           | -0.6             | —        |      |         |
|                                         | 8 bit mode              |                 |           | -0.3             | —        |      |         |
| [L:] Effective Number<br>of Bits        | 12 bit mode             | ENOB            | 10.1      | 10.7             | —        | Bits | —       |
| [L:] Signal to Noise<br>plus Distortion | See ENOB                | SINAD           | SINAD = 6 | 5.02 x ENO       | 3 + 1.76 | dB   | —       |

Table 77. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDAD}$ ,  $V_{REFL} = V_{SSAD}$ ) (continued)

 $^{1}\,$  All accuracy numbers assume the ADC is calibrated with V\_{REFH}=V\_{DDAD}

<sup>2</sup> Typical values assume  $V_{DDAD}$  = 3.0 V, Temp = 25°C,  $F_{adck}$ =20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

## NOTE

The ADC electrical spec would be met with the calibration enabled configuration.

# 5 Boot Mode Configuration

This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.

## 5.1 Boot Mode Configuration Pins

Table 78 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT\_FUSE\_SEL fuse. The boot option pins are in effect when BT\_FUSE\_SEL fuse is '0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6ULL Fuse Map document and the System Boot chapter in *i.MX 6ULL Reference Manual (IMX6ULLRM)*.

| Pin        | Direction at reset         | eFuse name | Details             |
|------------|----------------------------|------------|---------------------|
| BOOT_MODE0 | Input with 100 K pull-down | N/A        | Boot mode selection |
| BOOT_MODE1 | Input with 100 K pull-down | N/A        | Boot mode selection |

Table 78. Fuses and Associated Pins Used for Boot

### **Boot Mode Configuration**

## Table 81. SPI Boot through ECSPI2 (continued)

| LCD_VSYNC | ecspi2.SS2 | Alt 8 |  | Yes |     |
|-----------|------------|-------|--|-----|-----|
| LCD_RESET | ecspi2.SS3 | Alt 8 |  |     | Yes |

## Table 82. SPI Boot through ECSPI3

| Ball Name     | Signal Name | Mux<br>Mode | Common | BOOT_CFG4<br>[5:4]=00b | BOOT_CFG4[<br>5:4]=01b | BOOT_CFG4[<br>5:4]=10b | BOOT_CFG4<br>[5:4]=11b |
|---------------|-------------|-------------|--------|------------------------|------------------------|------------------------|------------------------|
| UART2_RTS_B   | ecspi3.MISO | Alt 8       | Yes    |                        |                        |                        |                        |
| UART2_CTS_B   | ecspi3.MOSI | Alt 8       | Yes    |                        |                        |                        |                        |
| UART2_RX_DATA | ecspi3.SCLK | Alt 8       | Yes    |                        |                        |                        |                        |
| UART2_TX_DATA | ecspi3.SS0  | Alt 8       |        | Yes                    |                        |                        |                        |
| NAND_ALE      | ecspi3.SS1  | Alt 8       |        |                        | Yes                    |                        |                        |
| NAND_RE_B     | ecspi3.SS2  | Alt 8       |        |                        |                        | Yes                    |                        |
| NAND_WE_B     | ecspi3.SS3  | Alt 8       |        |                        |                        |                        | Yes                    |

### Table 83. SPI Boot through ECSPI4

| Ball Name      | Signal Name | Mux<br>Mode | Common | BOOT_CFG4<br>[5:4]=00b | BOOT_CFG4[<br>5:4]=01b | BOOT_CFG4[<br>5:4]=10b | BOOT_CFG<br>4[5:4]=11b |
|----------------|-------------|-------------|--------|------------------------|------------------------|------------------------|------------------------|
| ENET2_TX_CLK   | ecspi4.MISO | Alt 3       | Yes    |                        |                        |                        |                        |
| ENET2_TX_EN    | ecspi4.MOSI | Alt 3       | Yes    |                        |                        |                        |                        |
| ENET2_TX_DATA1 | ecspi4.SCLK | Alt 3       | Yes    |                        |                        |                        |                        |
| ENET2_RX_ER    | ecspi4.SS0  | Alt 3       |        | Yes                    |                        |                        |                        |
| NAND_DATA01    | ecspi4.SS1  | Alt 8       |        |                        | Yes                    |                        |                        |
| NAND_DATA02    | ecspi4.SS2  | Alt 8       |        |                        |                        | Yes                    |                        |
| NAND_DATA03    | ecspi4.SS3  | Alt 8       |        |                        |                        |                        | Yes                    |

## Table 84. NAND Boot through GPMI

| Ball Name    | Signal Name     | Mux Mode | Common | BOOT_CFG1[3:2]=<br>01b | BOOT_CFG1[3:2]=<br>10b |
|--------------|-----------------|----------|--------|------------------------|------------------------|
| NAND_CLE     | rawnand.CLE     | Alt 0    | Yes    |                        |                        |
| NAND_ALE     | rawnand.ALE     | Alt 0    | Yes    |                        |                        |
| NAND_WP_B    | rawnand.WP_B    | Alt 0    | Yes    |                        |                        |
| NAND_READY_B | rawnand.READY_B | Alt 0    | Yes    |                        |                        |
| NAND_CE0_B   | rawnand.CE0_B   | Alt 0    | Yes    |                        |                        |
| NAND_CE1_B   | rawnand.CE1_B   | Alt 0    |        | Yes                    | Yes                    |
| NAND_RE_B    | rawnand.RE_B    | Alt 0    | Yes    |                        |                        |

### **Boot Mode Configuration**

| Ball Name  | Signal Name | Mux Mode | Common | ADL16<br>Non-Mux | AD16 Mux |
|------------|-------------|----------|--------|------------------|----------|
| CSI_PIXCLK | weim.OE     | Alt 4    | Yes    |                  |          |
| CSI_VSYNC  | weim.RW     | Alt 4    | Yes    |                  |          |

### Table 87. NOR/OneNAND Boot through EIM (continued)

## Table 88. Serial Download through UART1

| Ball Name     | Signal Name   | Mux Mode | Common |
|---------------|---------------|----------|--------|
| UART1_TX_DATA | uart1.TX_DATA | Alt 0    | Yes    |
| UART1_RX_DATA | uart1.RX_DATA | Alt 0    | Yes    |

### Table 89. Serial Download through UART2

| Ball Name     | Signal Name   | Mux Mode | Common |
|---------------|---------------|----------|--------|
| UART2_TX_DATA | uart2.TX_DATA | Alt 0    | Yes    |
| UART2_RX_DATA | uart2.RX_DATA | Alt 0    | Yes    |

### Package Information and Contact Assignments

Table 91 shows an alpha-sorted list of functional contact assignments for the 14 x 14 mm package.

|                   | 14-14         | Power        | Dell         |                 | Out of Reset Condit | ion              |                     |
|-------------------|---------------|--------------|--------------|-----------------|---------------------|------------------|---------------------|
| Ball Name         | 14x14<br>Ball | Group        | Ball<br>Type | Default<br>Mode | Default<br>Function | Input/<br>Output | Value               |
| BOOT_MODE0        | T10           | VDD_SNVS_IN  | GPIO         | ALT5            | GPIO5_IO10          | Input            | 100 kΩ<br>pull-down |
| BOOT_MODE1        | U10           | VDD_SNVS_IN  | GPIO         | ALT5            | GPIO5_IO11          | Input            | 100 kΩ<br>pull-down |
| CCM_CLK1_N        | P16           | VDD_HIGH_CAP | ССМ          | —               | CCM_CLK1_N          | —                | —                   |
| CCM_CLK1_P        | P17           | VDD_HIGH_CAP | ССМ          | —               | CCM_CLK1_P          | —                | —                   |
| CCM_PMIC_STBY_REQ | U9            | VDD_SNVS_IN  | ССМ          | ALT0            | CCM_PMIC_VSTBY_REQ  | Output           | —                   |
| CSI_DATA00        | E4            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO21          | Input            | Keeper              |
| CSI_DATA01        | E3            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO22          | Input            | Keeper              |
| CSI_DATA02        | E2            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO23          | Input            | Keeper              |
| CSI_DATA03        | E1            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO24          | Input            | Keeper              |
| CSI_DATA04        | D4            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO25          | Input            | Keeper              |
| CSI_DATA05        | D3            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO26          | Input            | Keeper              |
| CSI_DATA06        | D2            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO27          | Input            | Keeper              |
| CSI_DATA07        | D1            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO28          | Input            | Keeper              |
| CSI_HSYNC         | F3            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO20          | Input            | Keeper              |
| CSI_MCLK          | F5            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO17          | Input            | Keeper              |
| CSI_PIXCLK        | E5            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO18          | Input            | Keeper              |
| CSI_VSYNC         | F2            | NVCC_CSI     | GPIO         | ALT5            | GPIO4_IO19          | Input            | Keeper              |
| DRAM_ADDR00       | L5            | NVCC_DRAM    | MMDC         | ALT0            | DRAM_ADDR00         | Output           | 100 kΩ<br>pull-up   |
| DRAM_ADDR01       | H2            | NVCC_DRAM    | DDR          | ALT0            | DRAM_ADDR01         | Output           | 100 kΩ<br>pull-up   |
| DRAM_ADDR02       | K1            | NVCC_DRAM    | DDR          | ALT0            | DRAM_ADDR02         | Output           | 100 kΩ<br>pull-up   |
| DRAM_ADDR03       | M2            | NVCC_DRAM    | DDR          | ALT0            | DRAM_ADDR03         | Output           | 100 kΩ<br>pull-up   |
| DRAM_ADDR04       | K4            | NVCC_DRAM    | DDR          | ALT0            | DRAM_ADDR04         | Output           | 100 kΩ<br>pull-up   |
| DRAM_ADDR05       | L1            | NVCC_DRAM    | DDR          | ALT0            | DRAM_ADDR05         | Output           | 100 kΩ<br>pull-up   |
| DRAM_ADDR06       | G2            | NVCC_DRAM    | DDR          | ALT0            | DRAM_ADDR06         | Output           | 100 kΩ<br>pull-up   |

Table 91. 14 x 14 mm Functional Contact Assignments

### Package Information and Contact Assignments

|             |    |           |     |      | ssignments (continued) |        |                   |
|-------------|----|-----------|-----|------|------------------------|--------|-------------------|
| DRAM_ADDR07 | H4 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR07            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR08 | J4 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR08            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR09 | L2 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR09            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR10 | M4 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR10            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR11 | К3 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR11            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR12 | L4 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR12            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR13 | H3 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR13            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR14 | G1 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR14            | Output | 100 kΩ<br>pull-up |
| DRAM_ADDR15 | K5 | NVCC_DRAM | DDR | ALT0 | DRAM_ADDR15            | Output | 100 kΩ<br>pull-up |
| DRAM_CAS_B  | J2 | NVCC_DRAM | DDR | ALT0 | DRAM_CAS_B             | Output | 100 kΩ<br>pull-up |
| DRAM_CS0_B  | N2 | NVCC_DRAM | DDR | ALT0 | DRAM_CS0_B             | Output | 100 kΩ<br>pull-up |
| DRAM_CS1_B  | H5 | NVCC_DRAM | DDR | ALT0 | DRAM_CS1_B             | Output | 100 kΩ<br>pull-up |
| DRAM_DATA00 | T4 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA00            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA01 | U6 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA01            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA02 | Т6 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA02            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA03 | U7 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA03            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA04 | U8 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA04            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA05 | Т8 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA05            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA06 | T5 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA06            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA07 | U4 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA07            | Input  | 100 kΩ<br>pull-up |
| DRAM_DATA08 | U2 | NVCC_DRAM | DDR | ALT0 | DRAM_DATA08            | Input  | 100 kΩ<br>pull-up |

Table 91. 14 x 14 mm Functional Contact Assignments (continued)

## Package Information and Contact Assignments

| ٩            | z                        | Σ           |               | ×             | 7             | т             |
|--------------|--------------------------|-------------|---------------|---------------|---------------|---------------|
| DRAM_DATA08  | DRAM_DATA14              | VSS         | DRAM_CS0_B    | DRAM_SDCKE1   | DRAM_ADDR09   | DRAM_ADDR02   |
| DRAM_DATA15  | DRAM_DATA13              | DRAM_ADDR10 | DRAM_SDCKE0   | DRAM_ODT0     | DRAM_ADDR03   | DRAM_ADDR05   |
| DRAM_DATA10  | DRAM_SDQS1_P             | VSS         | DRAM_ADDR12   | DRAM_SDCLK0_P | VSS           | DRAM_SDBA0    |
| DRAM_DATA12  | DRAM_SDQS1_N DRAM_ADDR04 | DRAM_ADDR04 | DRAM_RAS_B    | DRAM_SDCLK0_N | DRAM_ADDR07   | DRAM_ADDR13   |
| DRAM_SDQS0_P | DRAM_DATA01              | NVCC_DRAM   | NVCC_DRAM     | DRAM_ADDR11   | DRAM_ADDR08   | DRAM_CSI_B    |
| SNVS_TAMPER1 | NVCC_DRAM                |             |               | NVCC_DRAM_2P5 |               | VSS           |
| SNVS_TAMPER4 | TEST_MODE                |             | VDD_SOC_CAP   | VDD_SOC_CAP   | VDD_SOC_CAP   | VDD_SOC_CAP   |
| SNVS_TAMPER5 | SNVS_TAMPER8             | VSS         | VDD_SOC_CAP   | VDD_SOC_CAP   | VDD_SOC_CAP   | VDD_SOC_CAP   |
| SNVS_TAMPER9 | SNVS_TAMPER7             |             | VDD_SOC_IN    | VDD_SOC_IN    | VDD_SOC_IN    | VDD_ARM_CAP   |
| SNVS_TAMPER3 | SNVS_DAMPER2             | NGND_KEL0   | VDD_SOC_IN    | VDD_SOC_IN    | VDD_SOC_IN    | VDD_ARM_CAP   |
| USB_OTG1_DP  | VDD_USB_CAP              |             | VDD_SOC_IN    | VDD_SOC_IN    | VDD_SOC_IN    | VDD_ARM_CAP   |
| VDD_SNVS_IN  | VDD_SNVS_CAP             |             |               | VSS           |               | VSS           |
| JTAG_TRST_B  | ADC_VREFH                | NVCC_GPIO   | NVCC_UART     | UART5_TX_DATA | UART5_RX_DATA | ENET2_RX_ER   |
| GPIO1_IO08   | GPI01_1007               | GPI01_I000  | UART1_CTS_B   | UART1_RTS_B   | UART2_RTS_B   | ENET2_TX_CLK  |
| GPI01_1005   | GPI01_1006               | GPI0_1001   | UART1_TX_DATA | UART3_RX_DATA | VSS           | UART3_RTS_B   |
| GPI01_1009   | GPI01_1003               | GPI01_I002  | UART2_TX-DATA | UART2_RX_DATA | UART4_TX_DATA | UART3_CTS_B   |
| JTAG_TDI     | GPI01_1004               | VSS         | UART1_RX_DATA | UART3_TX_DATA | UART2_CTS_B   | UART4_RX_DATA |
| ٩            | z                        | Σ           | J             | ¥             | 7             | т             |

### Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued)