NXP USA Inc. - MCIMX6Y2DVM05AA Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-A7
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	528MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR2, DDR3, DDR3L
Graphics Acceleration	No
Display & Interface Controllers	Electrophoretic, LCD
Ethernet	10/100Mbps (2)
SATA	· ·
USB	USB 2.0 OTG + PHY (2)
Voltage - I/O	1.8V, 2.8V, 3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	A-HAB, ARM TZ, CSU, SJC, SNVS
Package / Case	289-LFBGA
Supplier Device Package	289-MAPBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6y2dvm05aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

i.MX 6ULL Introduction

revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field.

• The i.MX 6ULL Applications Processors for Consumer Products Data Sheet (IMX6ULLCEC) covers parts listed with a "D (Commercial temp)"

Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there will be any questions, visit the web page NXP.com/imx6series or contact a NXP representative for details.

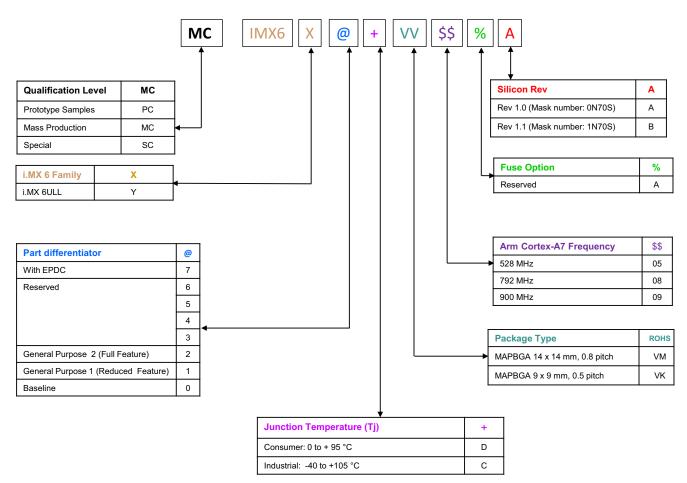


Figure 1. Part Number Nomenclature—i.MX 6ULL

1.2 Features

The i.MX 6ULL processors are based on Arm Cortex-A7 MPCore[™] Platform, which has the following features:

- Supports single Arm Cortex-A7 MPCore (with TrustZone) with:
 - 32 KB L1 Instruction Cache
 - 32 KB L1 Data Cache
 - Private Timer and Watchdog

i.MX 6ULL Introduction

— Cortex-A7 NEON Media Processing Engine (MPE) Co-processor

- General Interrupt Controller (GIC) with 128 interrupts support
- Global Timer
- Snoop Control Unit (SCU)
- 128 KB unified I/D L2 cache
- Single Master AXI bus interface output of L2 cache
- Frequency of the core (including Neon and L1 cache), as per Table 10, "Operating Ranges," on page 24.
- NEON MPE coprocessor
 - SIMD Media Processing Architecture
 - NEON register file with 32x64-bit general-purpose registers
 - NEON Integer execute pipeline (ALU, Shift, MAC)
 - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
 - NEON load/store and permute pipeline
 - 32 double-precision VFPv3 floating point registers

The SoC-level memory system consists of the following additional components:

- Boot ROM, including HAB (96 KB)
- Internal multimedia/shared, fast access RAM (OCRAM, 128 KB)
- External memory interfaces: The i.MX 6ULL processors support latest, high volume, cost effective handheld DRAM, NOR, and NAND Flash memory standards.
 - 16-bit LP-DDR2-800, 16-bit DDR3-800 and DDR3L-800
 - 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND[™] and others. BCH ECC up to 40 bits.
 - 16/8-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.

Each i.MX 6ULL processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously):

- Displays:
 - One parallel display port, support max 85 MHz display clock and up to WXGA (1366 x 768) at 60 Hz
 - Support 24-bit, 18-bit, 16-bit, and 8-bit parallel display
 - Electrophoretic display controller support direct-driver for E-Ink EPD panel, with up to 2048x1536 resolution at 106 Hz
- Camera sensors:
 - One parallel camera port, up to 24 bit and 133.3 MHz pixel clock
 - Support 24-bit, 16-bit, 10-bit, and 8-bit input
 - Support BT.656 interface
- Expansion cards:
 - Two MMC/SD/SDIO card ports all supporting:

Signal Name	Remarks
ZQPAD	DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND.
GPANAIO	This signal is reserved for NXP manufacturing use only. This output must remain unconnected.
JTAG_nnnn	The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up.
	JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and should be avoided.
	JTAG_MOD is referenced as SJC_MOD in the i.MX 6ULL reference manual. Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k Ω) is allowed. JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain.
NC	These signals are No Connect (NC) and should be disconnected by the user.
POR_B	This cold reset negative logic input resets all modules and logic in the IC. May be used in addition to internally generated power on reset signal (logical AND, both internal and external signals are considered active low).
ONOFF	ONOFF can be configured in debounce, off to on time, and max time-out configurations. The debounce and off to on time configurations supports 0, 50, 100 and 500 ms. Debounce is used to generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than the debounce time, the power off interrupt is generated. Off to on time supports the time it takes to request power on after a configured button press time has been reached. While in the OFF state, if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON. Max time-out configuration supports 5, 10, 15 seconds and disable. Max time-out configuration supports the time it takes to request power down after ONOFF button has been pressed for the defined time.
TEST_MODE	TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.

Table 4. JTAG Controller Interface Summary

JTAG	I/О Туре	On-chip Termination
JTAG_TCK	Input	47 kΩ pull-up
JTAG_TMS	Input	47 kΩ pull-up
JTAG_TDI	Input	47 kΩ pull-up
JTAG_TDO	3-state output	Keeper
JTAG_TRSTB	Input	47 kΩ pull-up
JTAG_MOD	Input	100 kΩ pull-up

3.2 Recommended Connections for Unused Analog Interfaces

Table 5 shows the recommended connections for unused analog interfaces.

² In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the *i.MX 6ULL Hardware Development Guide* (IMX6ULLHDG).

Table 11 shows on-chip LDO regulators that can supply on-chip loads.

Table 11. On-Chip LDOs¹ and their On-Chip Loads

Voltage Source	Load	Comment
VDD_HIGH_CAP	NVCC_DRAM_2P5	Board-level connection to VDD_HIGH_CAP

¹ On-chip LDOs are designed to supply i.MX 6ULL loads and must not be used to supply external loads.

4.1.4 External Clock Sources

Each i.MX 6ULL processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI).

The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.

The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier.

Table 12 shows the interface frequency requirements.

Table 12	. External	Input	Clock	Frequency
----------	------------	-------	-------	-----------

Parameter Description	Symbol	Min	Тур	Мах	Unit
RTC_XTALI Oscillator ^{1,2}	f _{ckil}	_	32.768 ³ /32.0	—	kHz
XTALI Oscillator ^{2,4}	f _{xtal}	_	24	_	MHz

¹ External oscillator or a crystal with internal oscillator amplifier.

² The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware Development Guide for *i.MX 6ULL Applications Processors* (IMX6ULLHDG).

³ Recommended nominal frequency 32.768 kHz.

⁴ External oscillator or a fundamental frequency crystal with internal oscillator amplifier.

The typical values shown in Table 12 are required for use with NXP BSPs to ensure precise time keeping and USB operation. For RTC_XTALI operation, two clock sources are available.

- On-chip 40 kHz ring oscillator—this clock source has the following characteristics:
 - Approximately 25 µA more Idd than crystal oscillator
 - Approximately $\pm 50\%$ tolerance
 - No external component required
 - Starts up quicker than 32 kHz crystal oscillator
- External crystal oscillator with on-chip support circuit:

4.1.6.1 RUN Mode

In RUN mode, the CPU is active and running, and the analog / digital peripheral modules inside the processor will be enabled. In this mode, all the external power rails to the processor have to be ON and the

SoC will be able to draw as many current.

Typically, when the CPU is doing DVFS, it switches the VDD_ARM voltage according to Table 10.

4.1.6.2 Low Power Mode

When the CPU is not running, the processor can enter low power mode. i.MX 6ULL processor supports a very flexible set of power mode configurations in low power mode.

Typically there are three low power modes used, System IDLE, Low Power IDLE, and SUSPEND:

- System IDLE—This is a mode that the CPU can automatically enter when there is no thread running. All the peripherals can keep working and the CPU's state is retained so the interrupt response can be very short. The cores are able to individually enter the WAIT state.
- Low Power IDLE—This mode is for the case when the system needs to have lower power but still keep some of the peripherals alive. Most of the peripherals, analog modules, and PHYs are shut off. The interrupt response in this mode is expected to be longer than the System IDLE, but its power is much lower.
- Suspend—This mode has the greatest power savings; all clocks, unused analog/PHYs, and peripherals are off. The external DRAM stays in Self-Refresh mode. The exit time from this mode is much longer.

Table 15 shows the current core consumption (not including I/O) of i.MX 6ULL processors in selected low power modes.

Mode	Test Conditions	Supply	Typical	Units
SYSTEM IDLE:	• LDO_ARM and LDO_SOC are set to 1.15 V	VDD_SOC_IN (1.275 V)	9	mA
LDO Enabled	 LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V CPU in WFI, CPU clock gated 	VDD_HIGH_IN (3.0 V)	9.7	
	 DDR is in self refresh 24 MHz XTAL is ON 	VDD_SNVS_IN (3.0 V)	0.04	
	 528 PLL is active, other PLLs are power down High-speed peripheral clock gated, but remain powered 	Total	40.7	mW
SYSTEM IDLE:	LDO_ARM and LDO_SOC are set to bypass	VDD_SOC_IN (1.25 V)	8.5	mA
LDO Bypassed	mode LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V 	VDD_HIGH_IN (3.0 V)	8.8	
	CPU in WFI, CPU clock gated DDB is in self refresh	VDD_SNVS_IN (3.0 V)	0.04	
	 DDR is in self refresh 24 MHz XTAL is ON 528 PLL is active, other PLLs are power down High-speed peripheral clock gated, but remain powered 	Total	37.15	mW

Table 15. Low Power Mode Current and Power Consumption

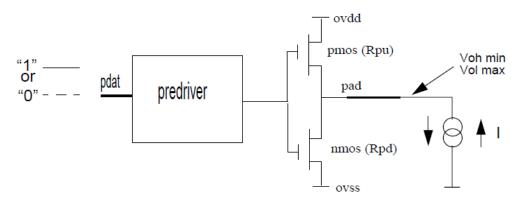


Figure 3. Circuit for Parameters Voh and Vol for I/O Cells

4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters

Table 23 shows the DC parameters for the clock inputs.

Parameter	Symbol	Test Conditions	Min	Мах	Unit
XTALI high-level DC input voltage	Vih	_	0.8 x NVCC_PLL	NVCC_PLL	V
XTALI low-level DC input voltage	Vil	_	0	0.2	V
RTC_XTALI high-level DC input voltage	Vih	_	0.8	1.1	V
RTC_XTALI low-level DC input voltage	Vil	_	0	0.2	V

Table 23. XTALI and RTC_XTALI DC Parameters ¹

¹ The DC parameters are for external clock input only.

4.6.2 Single Voltage General Purpose I/O (GPIO) DC Parameters

Table 24 shows DC parameters for GPIO pads. The parameters in Table 24 are guaranteed per the operating ranges in Table 10, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Max	Units
High-level output voltage ¹	V _{OH}	loh= -0.1mA (ipp_dse=001,010) loh= -1mA (ipp_dse=011,100,101,110,111)	OVDD-0.15	_	V
Low-level output voltage ¹	VOL	lol= 0.1mA (ipp_dse=001,010) lol= 1mA (ipp_dse=011,100,101,110,111)	-	0.15	V
High-Level input voltage ^{1,2}	VIH	—	0.7 x OVDD	OVDD	V
Low-Level input voltage ^{1,2}	VIL	_	0	0.3 x OVDD	V
Input Hysteresis (OVDD= 1.8V)	VHYS_LowVDD	OVDD=1.8V	200	_	mV
Input Hysteresis (OVDD=3.3V	VHYS_HighVDD	OVDD=3.3V	200		mV

Table 24. Single Voltage GPIO DC Parameters

i.MX 6ULL Applications Processors for Consumer Products, Rev. 1.2, 11/2017

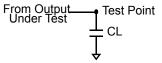
³ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

4.6.4 LVDS I/O DC Parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

Table 28 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Output Differential Voltage	VOD	Rload-100 Ω Diff	250	350	450	mV
Output High Voltage	VOH	IOH = 0 mA	1.25	1.375	1.6	V
Output Low Voltage	VOL	IOL = 0 mA	0.9	1.025	1.25	V
Offset Voltage	VOS	_	1.125	1.2	1.375	V


Table 28. LVDS I/O DC Characteristics

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

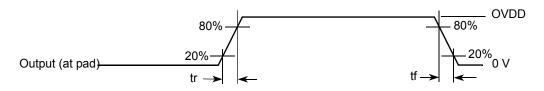


Figure 5. Output Transition Time Waveform

Parameter	Symbol	Test Condition	Min	Мах	Unit
AC input logic high	Vih(ac)	—	Vref + 0.22	OVDD	V
AC input logic low	Vil(ac)	—	0	Vref - 0.22	V
AC differential input high voltage ²	Vidh(ac)	—	0.44		V
AC differential input low voltage	Vidl(ac)	—	_	0.44	V
Input AC differential cross point voltage ³	Vix(ac)	Relative to Vref	-0.12	0.12	V
Over/undershoot peak	Vpeak	—	_	0.35	V
Over/undershoot area (above OVDD or below OVSS)	Varea	400 MHz	_	0.3	V-ns
Single output slew rate, measured between Vol (ac) and Voh (ac)	tsr	50 Ω to Vref. 5 pF load. Drive impedance = 40 Ω ± 30%	1.5	3.5	V/ns
		50 Ω to Vref. 5pF load.Drive impedance = 60 $\Omega \pm$ 30%	1	2.5	
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 400 MHz		0.1	ns

Table 31. DDR I/O LPDDR2 Mode AC Parameters¹

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) - Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.

Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
AC input logic high	Vih(ac)	_	Vref + 0.175	_	OVDD	V
AC input logic low	Vil(ac)	_	0	_	Vref - 0.175	V
AC differential input voltage ²	Vid(ac)	_	0.35	_	—	V
Input AC differential cross point voltage ³	Vix(ac)	Relative to Vref	Vref - 0.15	—	Vref + 0.15	V
Over/undershoot peak	Vpeak	—	_	—	0.4	V
Over/undershoot area (above OVDD or below OVSS)	Varea	400 MHz	_	—	0.5	V-ns
Single output slew rate, measured between Vol (ac) and Voh (ac)	tsr	Driver impedance = 34 Ω	2.5	—	5	V/ns
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 400 MHz	—	—	0.1	ns

4.9.3.1 EIM Interface Pads Allocation

EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 38 provides EIM interface pads allocation in different modes.

	Non Mult	tiplexed Address/D	ata Mode	Multiplexed Add	Iress/Data mode
Setup	8	Bit	16 Bit	16 Bit	32 Bit
	MUM = 0, DSZ = 100	MUM = 0, DSZ = 101	MUM = 0, DSZ = 001	MUM = 1, DSZ = 001	MUM = 1, DSZ = 011
A[15:0]	EIM_DA[15:0]	EIM_DA[15:0]	EIM_DA[15:0]	EIM_DA[15:0]	EIM_DA[15:0]
A[25:16]	EIM_A[25:16]	EIM_A[25:16]	EIM_A[25:16]	EIM_A[25:16]	EIM_D[9:0]
D[7:0], EIM_EB0	EIM_D[7:0]	_	EIM_D[7:0]	EIM_DA[7:0]	EIM_DA[7:0]
D[15:8], EIM_EB1	_	EIM_D[15:8]	EIM_D[15:8]	EIM_DA[15:8]	EIM_DA[15:8]
D[23:16], EIM_EB2	_	—	—	—	EIM_D[7:0]
D[31:24], EIM_EB3	_	_	—	—	EIM_D[15:8]

Table 38. EIM Multiplexing¹

¹ For more information on configuration ports mentioned in this table, see the i.MX 6ULL reference manual.

4.9.3.2 General EIM Timing-Synchronous Mode

Figure 9, Figure 10, and Table 39 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields.

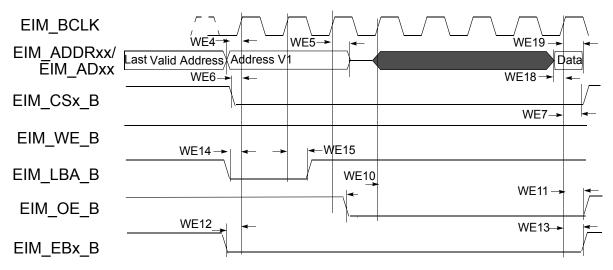
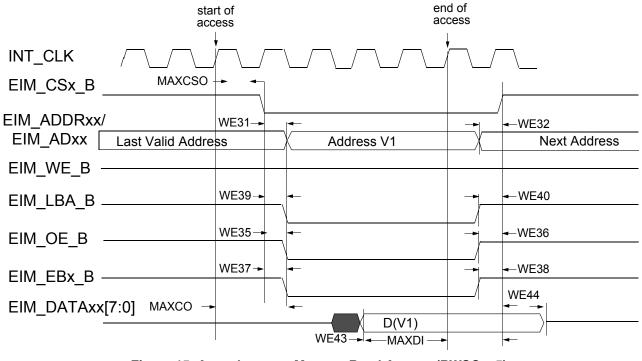



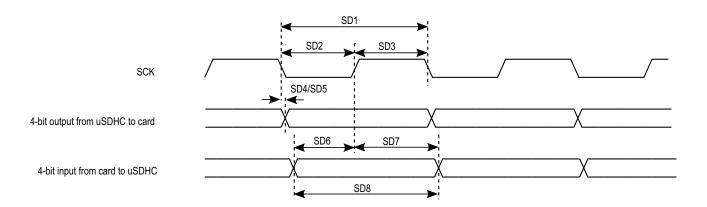
Figure 14. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0

4.9.3.4 General EIM Timing-Asynchronous Mode

Figure 15 through Figure 19, and Table 40 help to determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above.

Asynchronous read & write access length in cycles may vary from what is shown in Figure 15 through Figure 18 as RWSC, OEN and CSN is configured differently. See the *i.MX 6ULL Reference Manual (IMX6ULLRM)* for the EIM programming model.

Ref No.	Parameter	Determination by Synchronous measured parameters ¹	Min	Max (If 132 MHz is supported by SoC)	Unit
WE38	EIM_EBx_B Invalid to EIM_CSx_B Invalid (Read access)	WE7 - WE13 + (RBEN - RCSN)	—	3 - (RBEN- RCSN)	ns
WE39	EIM_CSx_B Valid to EIM_LBA_B Valid	WE14 - WE6 + (ADVA - CSA)	—	3 + (ADVA - CSA)	ns
WE40	EIM_LBA_B Invalid to EIM_CSx_B Invalid (ADVL is asserted)	WE7 - WE15 - CSN	—	3 - CSN	ns
WE40A (muxed A/D)	EIM_CSx_B Valid to EIM_LBA_B Invalid	WE14 - WE6 + (ADVN + ADVA + 1 - CSA)	-3 + (ADVN + ADVA + 1 - CSA)	3 + (ADVN + ADVA + 1 - CSA)	ns
WE41	EIM_CSx_B Valid to Output Data Valid	WE16 - WE6 - WCSA	_	3 - WCSA	ns
WE41A (muxed A/D)	EIM_CSx_B Valid to Output Data Valid	WE16 - WE6 + (WADVN + WADVA + ADH + 1 - WCSA)	_	3 + (WADVN + WADVA + ADH + 1 - WCSA)	ns
WE42	Output Data Invalid to EIM_CSx_B Invalid	WE17 - WE7 - CSN	—	3 - CSN	ns
MAXCO	Output maximum delay from internal driving EIM_ADDRxx/control FFs to chip outputs	10	_	_	ns
MAXCSO	Output maximum delay from CSx internal driving FFs to CSx out	10	—	_	ns
MAXDI	EIM_DATAxx maximum delay from chip input data to its internal FF	5	—	_	ns
WE43	Input Data Valid to EIM_CSx_B Invalid	MAXCO - MAXCSO + MAXDI	MAXCO - MAXCSO + MAXDI	_	ns
WE44	EIM_CSx_B Invalid to Input Data invalid	0	0	_	ns
WE45	EIM_CSx_B Valid to EIM_EBx_B Valid (Write access)	WE12 - WE6 + (WBEA - WCSA)	—	3 + (WBEA - WCSA)	ns
WE46	EIM_EBx_B Invalid to EIM_CSx_B Invalid (Write access)	WE7 - WE13 + (WBEN - WCSN)		-3 + (WBEN - WCSN)	ns


Table 40. EIM Asynchronous Timing Parameters Table Relative Chip to Select (continued)

	Characteristics ^{1,2}						
No.	Unaracteristics	Symbol	Expression ²	Min	Max	Condition ³	Unit
62	Clock cycle ⁴	t _{SSICC}	$\begin{array}{c} 4\times T_{C} \\ 4\times T_{C} \end{array}$	30.0 30.0	_	i ck i ck	ns
63	Clock high period: • For internal clock • For external clock		$\begin{array}{c} 2 \times T_{C} - 9.0 \\ 2 \times T_{C} \end{array}$	6 15		_	ns
64	Clock low period: • For internal clock • For external clock	_	$\begin{array}{c} 2 \times T_{C} - 9.0 \\ 2 \times T_{C} \end{array}$	6 15	_	_	ns
65	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high		—	_	17.0 7.0	x ck i ck a	ns
66	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low			_	17.0 7.0	x ck i ck a	ns
67	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) high ⁵			_	19.0 9.0	x ck i ck a	ns
68	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low ⁵			_	19.0 9.0	x ck i ck a	ns
69	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high			_	16.0 6.0	x ck i ck a	ns
70	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) low		_	_	17.0 7.0	x ck i ck a	ns
71	Data in setup time before ESAI_RX_CLK (SCK in synchronous mode) falling edge			12.0 19.0		x ck i ck	ns
72	Data in hold time after ESAI_RX_CLK falling edge			3.5 9.0	_	x ck i ck	ns
73	ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK falling edge ⁵			2.0 12.0	_	x ck i ck a	ns
74	ESAI_RX_FS input (wl) high before ESAI_RX_CLK falling edge			2.0 12.0	_	x ck i ck a	ns
75	ESAI_RX_FS input hold time after ESAI_RX_CLK falling edge			2.5 8.5	_	x ck i ck a	ns
76	Flags input setup before ESAI_RX_CLK falling edge			0.0 19.0	_	x ck i ck s	ns
77	Flags input hold time after ESAI_RX_CLK falling edge		—	6.0 0.0		x ck i ck s	ns
78	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high		—	_	18.0 8.0	x ck i ck	ns
79	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low		—	_	20.0 10.0	x ck i ck	ns
80	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) high ⁵		—	_	20.0 10.0	x ck i ck	ns

Table 49. Enhanced Serial Audio Interface (ESAI) Timing

4.12.4.3 SDR50/SDR104 AC Timing

Figure 42 depicts the timing of SDR50/SDR104, and Table 52 lists the SDR50/SDR104 timing characteristics.

Figure 42. SDR50/SDR104 Timing

Table 52. SDR50/SDR104 Interface Timing Specification

ID	Parameter	Symbols	Min	Max	Unit
	Car	d Input Clock			
SD1	Clock Frequency Period	t _{CLK}	5.0	—	ns
SD2	Clock Low Time	t _{CL}	0.46 x t _{CLK}	0.54 x t _{CLK}	ns
SD3	Clock High Time	t _{CH}	0.46 x t _{CLK}	0.54 x t _{CLK}	ns
	uSDHC Output/Card Inputs SD_CM	ID, SDx_DATAx i	in SDR50 (Ref	erence to CLK)	
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns
	uSDHC Output/Card Inputs SD_CM	D, SDx_DATAx i	n SDR104 (Re	ference to CLK)
SD5	uSDHC Output Delay	t _{OD}	-1.6	0.74	ns
	uSDHC Input/Card Outputs SD_CM	ID, SDx_DATAx i	in SDR50 (Ref	erence to CLK)	
SD6	uSDHC Input Setup Time	t _{ISU}	2.5	—	ns
SD7	uSDHC Input Hold Time	t _{IH}	1.5	_	ns
	uSDHC Input/Card Outputs SD_CMI	D, SDx_DATAx ir	SDR104 (Ref	erence to CLK)	1
SD8	Card Output Data Window	t _{ODW}	0.5 x t _{CLK}	—	ns

¹Data window in SDR104 mode is variable.

• For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data.

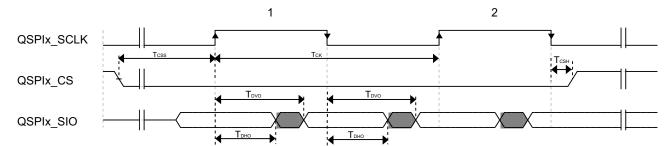


Figure 56. QuadSPI Output/Write Timing (DDR mode)

Symbol	Parameter	Va	alue	Unit
Symbol	Faranieler	Min	Мах	
T _{DVO}	Output data valid time	—	(0.25 x T _{SCLK}) + 2	ns
T _{DHO}	Output data hold time	(0.25 x T _{SCLK}) - 0.5	—	ns
т _{ск}	SCK clock period	20	—	ns
T _{CSS}	Chip select output setup time	3	—	SCK cycle(s)
T _{CSH}	Chip select output hold time	3	—	SCK cycle(s)

Table 67. QuadSPI Output/Write Timing (DDR mode)

NOTE

 T_{css} and T_{csh} are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the *i.MX 6ULL Reference Manual (IMX6ULLRM)* for more details.

4.12.11 SAI/I2S Switching Specifications

This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.

Table 68. Master	Mode SAI Timing
------------------	-----------------

Num	Characteristic	Min	Мах	Unit
S1	SAI_MCLK cycle time	2 x t _{sys}	_	ns
S2	SAI_MCLK pulse width high/low	40%	60%	MCLK period
S3	SAI_BCLK cycle time	4 x t _{sys}	_	ns
S4	SAI_BCLK pulse width high/low	40%	60%	BCLK period

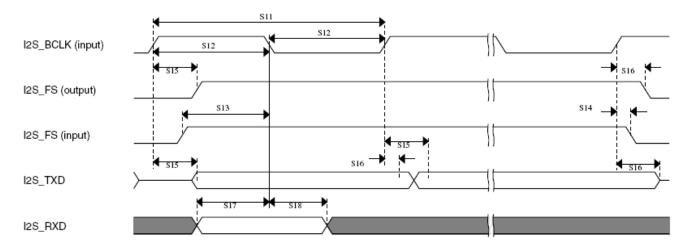


Figure 58. SAI Timing — Slave Modes

4.12.12 SCAN JTAG Controller (SJC) Timing Parameters

Figure 59 depicts the SJC test clock input timing. Figure 60 depicts the SJC boundary scan timing. Figure 61 depicts the SJC test access port. Signal parameters are listed in Table 70.

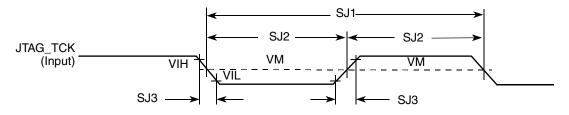
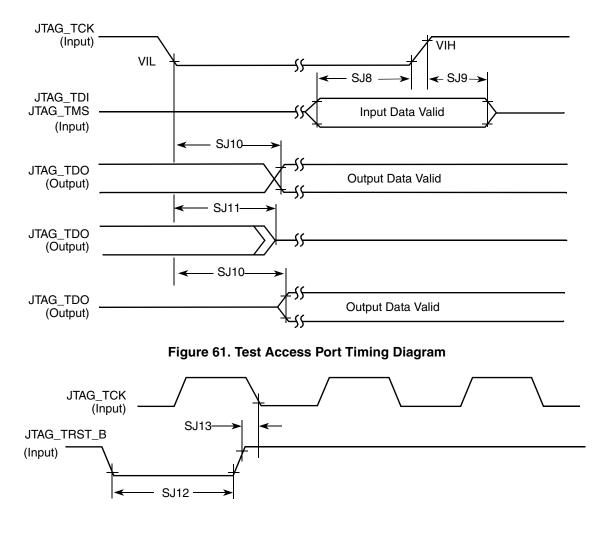



Figure 59. Test Clock Input Timing Diagram

Figure 62. JTAG_TRST_B Timing Diagram

Table 70. JTAG Timing

ID	Parameter ^{1,2}	All Freq	uencies	Unit
	Farameter	Min	Мах	Unit
SJ0	JTAG_TCK frequency of operation 1/(3•T _{DC}) ¹	0.001	22	MHz
SJ1	JTAG_TCK cycle time in crystal mode	45	—	ns
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	—	ns
SJ3	JTAG_TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	5	—	ns
SJ5	Boundary scan input data hold time	24	—	ns
SJ6	JTAG_TCK low to output data valid	—	40	ns
SJ7	JTAG_TCK low to output high impedance	—	40	ns

- USB ENGINEERING CHANGE NOTICE
 - Title: USB 2.0 Phase Locked SOFs
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
 - Revision 2.0 plus errata and ecn June 4, 2010
- Battery Charging Specification (available from USB-IF)
 - Revision 1.2, December 7, 2010
 - Portable device only

4.13 A/D converter

The following subsections provide information about A/D converter.

4.13.1 12-bit ADC electrical characteristics

4.13.1.1 12-bit ADC operating conditions

Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
Absolute	V _{DDAD}	3.0	-	3.6	V	—
Delta to VDD (VDD-VDDAD) ²	∆VDDAD	-100	0	100	mV	—
Delta to VSS (VSS-VSSAD)	∆VSSAD	-100	0	100	mV	—
—	V _{REFH}	1.13	V _{DDAD}	V _{DDAD}	V	—
—	V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	—
—	V _{ADIN}	V _{REFL}	—	V _{REFH}	V	—
8/10/12 bit modes	C _{ADIN}	—	1.5	2	pF	—
ADLPC=0, ADHSC=1	R _{ADIN}	—	5	7	kohms	—
ADLPC=0, ADHSC=0		—	12.5	15	kohms	—
ADLPC=1, ADHSC=0		—	25	30	kohms	—
12 bit mode f _{ADCK} = 40MHz ADLSMP=0, ADSTS=10, ADHSC=1	R _{AS}	-	_	1	kohms	T _{samp} =150 ns
	Absolute Delta to VDD (VDD-VDDAD) ² Delta to VSS (VSS-VSSAD) 8/10/12 bit modes ADLPC=0, ADHSC=1 ADLPC=1, ADHSC=0 12 bit mode f _{ADCK} = 40MHz ADLSMP=0,	Absolute V _{DDAD} Delta to VDD (VDD-VDDAD) ² ΔVDDAD Delta to VSS (VSS-VSSAD) ΔVSSAD — V _{REFH} — V _{REFL} — V _{ADIN} 8/10/12 bit modes C _{ADIN} ADLPC=0, ADHSC=1 R _{ADIN} ADLPC=1, ADHSC=0 R _{AS}	$ \begin{array}{ c c c c } \hline Absolute & V_{DDAD} & 3.0 \\ \hline Absolute & V_{DDAD} & 3.0 \\ \hline Delta to VDD & \Delta VDDAD & -100 \\ \hline (VDD-VDDAD)^2 & \Delta VSSAD & -100 \\ \hline Delta to VSS & \Delta VSSAD & -100 \\ \hline Delta to VSS & VSSAD) & \Delta VSSAD & -100 \\ \hline & & V_{REFH} & 1.13 \\ \hline & & V_{REFL} & V_{SSAD} \\ \hline & & V_{ADIN} & V_{REFL} \\ \hline & 8/10/12 bit modes & C_{ADIN} & \\ \hline & ADLPC=0, ADHSC=1 & R_{ADIN} & \\ \hline & ADLPC=1, ADHSC=0 & \\ \hline & 12 bit mode f_{ADCK} = \\ \hline & 40MHz ADLSMP=0, & R_{AS} & \\ \hline \end{array} $	$\begin{tabular}{ c c c c } \hline $Absolute & V_{DDAD} & 3.0 & -\\ \hline $Absolute & V_{DDAD} & $3.0 & -$ \\ \hline $Delta to VDD \\ (VDD-VDDAD)^2 & $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} & V_{DDAD} & 3.0 & - & 3.6 \\ \hline \end{tabular} \\ \hline \end{tabular} & \Delta VDDAD & -100 & 0 & 100 \\ \hline \end{tabular} \\ \hline \end{tabular} & Delta to VSS & \Delta VSSAD & -100 & 0 & 100 \\ \hline \end{tabular} \\ \hline \end{tabular} & Delta to VSS & \Delta VSSAD & -100 & 0 & 100 \\ \hline \end{tabular} & - & V_{REFH} & 1.13 & V_{DDAD} & V_{DDAD} \\ \hline \end{tabular} \\ \hline \end$	$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline $

Table 76. 12-bit ADC Operating Conditions

4.13.1.1.1 12-bit ADC characteristics

Table 77. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

Characteristic	Conditions ¹	Symb	Min	Typ ²	Мах	Unit	Comment
[L:] Supply Current	ADLPC=1, ADHSC=0	I _{DDAD}	-	250	-	μΑ	ADLSMP=0 ADSTS=10 ADCO=1
	ADLPC=0, ADHSC=0	-		350			
	ADLPC=0, ADHSC=1			400			
[L:] Supply Current	Stop, Reset, Module Off	I _{DDAD}	—	0.01	0.8	μΑ	—
ADC Asynchronous	ADHSC=0	f _{ADACK}	—	10	—	MHz	$t_{ADACK} = 1/f_{ADACK}$
Clock Source	ADHSC=1		—	20			
Sample Cycles	ADLSMP=0, ADSTS=00	Csamp	-	2	—	cycles	—
	ADLSMP=0, ADSTS=01			4			
	ADLSMP=0, ADSTS=10			6			
	ADLSMP=0, ADSTS=11			8			
	ADLSMP=1, ADSTS=00			12			
	ADLSMP=1, ADSTS=01			16			
	ADLSMP=1, ADSTS=10			20	1		
	ADLSMP=1, ADSTS=11			24	1		

Package Information and Contact Assignments

1 VSS DRA 2 DRAM_DATA08 DRA 3 DRAM_DATA09 DR 4 DRAM_DATA09 DR 4 DRAM_DATA09 DR 5 DRAM_DATA07 DR 6 DRAM_DATA07 DR 6 DRAM_DATA01 DR 7 DRAM_DATA01 DR 8 DRAM_DATA03 DR 9 CCM_PMIC_STBY_REQ SNVS 10 BOOT_MODE1 BC 11 RTC_XTALO NS 12 USB_OTG2_VBUS US 13 USB_OTG2_VBUS US 14 VSS US 15 USB_OTG2_VBUS US 16 USB_OTG1_DP US 15 USB_OTG1_DP US 16 USB_OTG1_DP US 17 VSS US 18 USB_OTG1_CHD_B US 17 VSS US		D	F	æ
DRAM_DATA08 DRAM_DATA09 DRAM_DATA07 DRAM_DATA01 DRAM_DATA02 DRAM_D	F	NSS	DRAM_SDQS1_P	DRAM_DATA15
DRAM_DATA09 DRAM_DATA07 DRAM_DATA01 DRAM_DATA01 DRAM_DATA01 DRAM_DATA03 DRAM_DATA03 DRAM_DATA03 CCM_PMIC_STBY_REQ CCM_PMIC_STBY_REQ BOOT_MODE1 RTC_XTAL0 USB_OTG2_VBUS USB_OTG2_VBUS USB_OTG2_DP USB_OTG2_DP USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP	2	DRAM_DATA08	DRAM_SDQS1_N	DRAM_DATA14
DRAM_DATA07 DRAM_DATA01 DRAM_DATA01 DRAM_DATA03 DRAM_DATA03 DRAM_DATA03 CCM_PMIC_STBY_REQ BOOT_MODE1 RTC_STBY_REQ BOOT_MODE1 RTC_XTALO USB_OTG2_UBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP USB_OTG1_CHD_B	3	DRAM_DATA09	DRAM_DQM1	VSS
DRAM_DATA10 DRAM_DATA01 DRAM_DATA03 DRAM_DATA03 CCM_PMIC_STBY_REQ BOOT_MODE1 BOOT_MODE1 RTC_XTAL0 USB_OTG2_VBUS USB_OTG2_VBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP	4	DRAM_DATA07	DRAM_DATA00	DRAM_DATA11
DRAM_DATA01 DRAM_DATA03 DRAM_DATA04 CCM_PMIC_STBY_REQ BOOT_MODE1 RTC_XTALO USB_OTG2_VBUS USB_OTG2_VBUS USB_OTG2_VBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP	5	DRAM_DATA10	DRAM_DATA06	VSS
DRAM_DATA03 DRAM_DATA04 CCM_PMIC_STBY_REQ BOOT_MODE1 RTC_XTALO USB_OTG2_VBUS USB_OTG2_VBUS USB_OTG2_VBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP	9	DRAM_DATA01	DRAM_DATA02	SNVS_TAMPER9
DRAM_DATA04 CCM_PMIC_STBY_REQ BOOT_MODE1 RTC_XTALO USB_OTG2_VBUS USB_OTG2_VBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP	7	DRAM_DATA03	DRAM_DQM0	VSS
CCM_PMIC_STBY_REQ BOOT_MODE1 RTC_XTALO USB_OTG2_VBUS USB_OTG2_DP USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_DP	8	DRAM_DATA04	DRAM_DATA05	ONOFF
BOOT_MODE1 RTC_XTALO USB_OTG2_VBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_CHD_B VSS	6	CCM_PMIC_STBY_REQ	SNVS_PMIC_ON_REQ	SNVS_TAMPER1
RTC_XTALO USB_OTG2_VBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP USB_OTG1_CHD_B VSS	10	BOOT_MODE1	BOOT_MODE0	SNVS_TAMPER0
USB_OTG2_VBUS USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_DP VSS	11	RTC_XTALO	RTC_XTALI	NSS
USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_CHD_B VSS	12	USB_OTG2_VBUS	USB_OTG1_VBUS	VDD_USB_CAP
VSS USB_OTG1_DP USB_OTG1_CHD_B VSS	13	USB_OTG2_DP	USB_OTG2_DN	GPANAIO
USB_OTG1_DP USB_OTG1_CHD_B VSS	14	NSS	NSS	VDD_HIGH_CAP
	15	USB_OTG1_DP	USB_OTG1_DN	VDD_HIGH_CAP
	16	USB_OTG1_CHD_B	XTALI	VSS
	17	VSS	XTALO	VSS
n		D	Т	В

Table 92. 14 x 14 mm, 0.8 mm Pitch, Ball Map (continued)

6.2 9 x 9 mm Package Information

6.2.1 9 x 9 mm, 0.5 mm Pitch, Ball Matrix

Figure 71 shows the top, bottom, and side views of the 9 x 9 mm BGA package.

Package Information and Contact Assignments

٩	z	Σ		×	7	т
DRAM_DATA08	DRAM_DATA14	VSS	DRAM_CS0_B	DRAM_SDCKE1	DRAM_ADDR09	DRAM_ADDR02
DRAM_DATA15	DRAM_DATA13	DRAM_ADDR10	DRAM_SDCKE0	DRAM_ODT0	DRAM_ADDR03	DRAM_ADDR05
DRAM_DATA10	DRAM_SDQS1_P	VSS	DRAM_ADDR12	DRAM_SDCLK0_P	VSS	DRAM_SDBA0
DRAM_DATA12	DRAM_SDQS1_N DRAM_ADDR04	DRAM_ADDR04	DRAM_RAS_B	DRAM_SDCLK0_N	DRAM_ADDR07	DRAM_ADDR13
DRAM_SDQS0_P	DRAM_DATA01	NVCC_DRAM	NVCC_DRAM	DRAM_ADDR11	DRAM_ADDR08	DRAM_CSI_B
SNVS_TAMPER1	NVCC_DRAM			NVCC_DRAM_2P5		VSS
SNVS_TAMPER4	TEST_MODE		VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP
SNVS_TAMPER5	SNVS_TAMPER8	VSS	VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP
SNVS_TAMPER9	SNVS_TAMPER7		VDD_SOC_IN	VDD_SOC_IN	VDD_SOC_IN	VDD_ARM_CAP
SNVS_TAMPER3	SNVS_DAMPER2	NGND_KEL0	VDD_SOC_IN	VDD_SOC_IN	VDD_SOC_IN	VDD_ARM_CAP
USB_OTG1_DP	VDD_USB_CAP		VDD_SOC_IN	VDD_SOC_IN	VDD_SOC_IN	VDD_ARM_CAP
VDD_SNVS_IN	VDD_SNVS_CAP			VSS		VSS
JTAG_TRST_B	ADC_VREFH	NVCC_GPIO	NVCC_UART	UART5_TX_DATA	UART5_RX_DATA	ENET2_RX_ER
GPIO1_IO08	GPI01_1007	GPI01_I000	UART1_CTS_B	UART1_RTS_B	UART2_RTS_B	ENET2_TX_CLK
GPI01_1005	GPI01_1006	GPI0_1001	UART1_TX_DATA	UART3_RX_DATA	VSS	UART3_RTS_B
GPI01_1009	GPI01_1003	GPI01_I002	UART2_TX-DATA	UART2_RX_DATA	UART4_TX_DATA	UART3_CTS_B
JTAG_TDI	GPI01_1004	VSS	UART1_RX_DATA	UART3_TX_DATA	UART2_CTS_B	UART4_RX_DATA
٩	z	Σ	J	¥	7	т

Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued)