
E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are anaineered to

Details

Dectano	
Product Status	Active
Applications	Networking and Communications
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	KSZ
RAM Size	-
Interface	EBI/EMI, Ethernet, I ² C, I ² S,PCI, SPI, UART/USART, USB
Number of I/O	20
Voltage - Supply	1.235V ~ 1.365V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	400-BGA
Supplier Device Package	400-PBGA (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ksz9692xpb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Note: SDIO block for KSZ9692MPB only	2
Figure 1. KSZ9692MPB/XPB Block Diagram	2
Figure 2. Peripheral Options and Examples	6
Figure 3. KSZ9692MPB Functional Block Diagram	8
Figure 4. KSZ9692XPB Functional Block Diagram	9
Figure 4. Static Memory Interface Examples	11
Figure 5. External I/O Interface Examples	11
Figure 7. 16-bit NAND Interface Examples	13
Figure 8. Single 16-bit DDR Memory Device Interface Example	14
Figure 10. Burst DDR Read Timing	16
Figure 11. Burst DDR Write Timing	16
Figure 12. USB 2.0 Configuration as Two-Port Host	18
Figure 13. USB 2.0 Configuration as Host + Device	18
Figure 14. Reset Circuit	23
Figure 15. Power and Clocks	23
Figure 16. Reset Timing	40
Figure 17. Static Memory Read Cycle	40
Figure 18. Static Memory Write Cycle	41
Figure 19. External I/O Read and Write Cycles	41
Figure 20. Ball Grid Array Map	43
Figure 21. 400-Pin PBGA	44

List of Tables

Table 1. Reset Timing Parameters	40
Table 2. Programmable Static Memory Timing Parameters	41
Table 3. External I/O Memory Timing Parameters	42
Table 4. Programmable External I/O Timing Parameters	42

System Level Applications

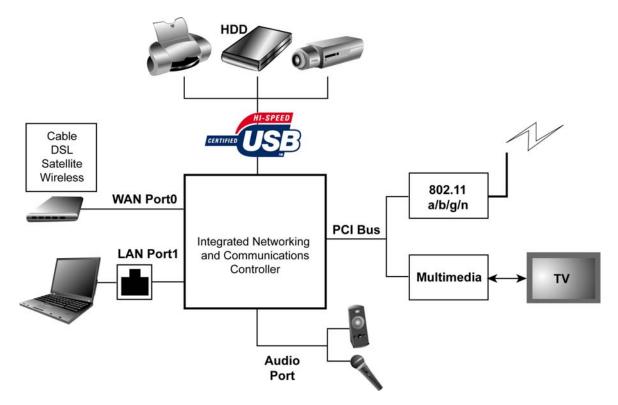
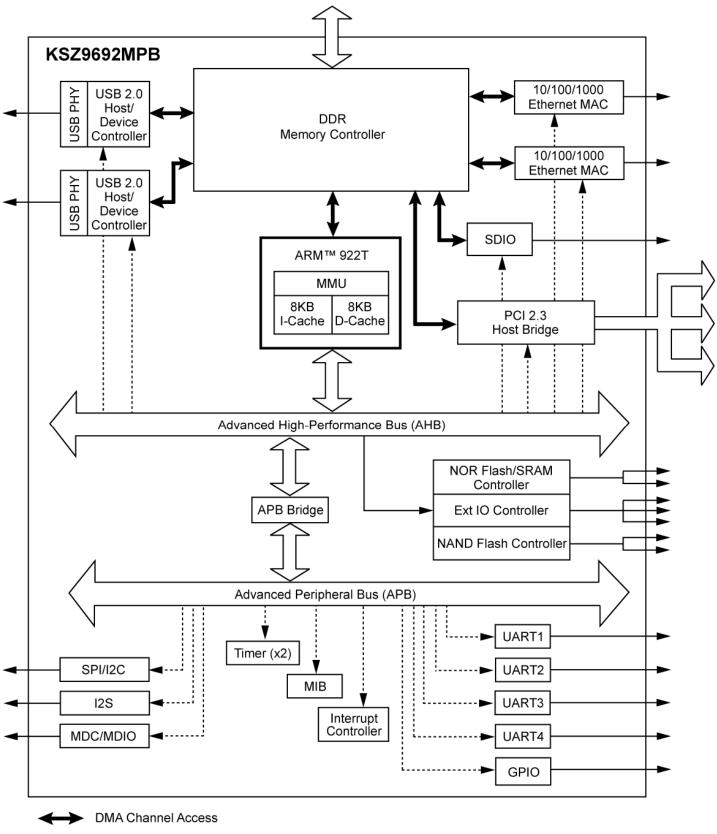
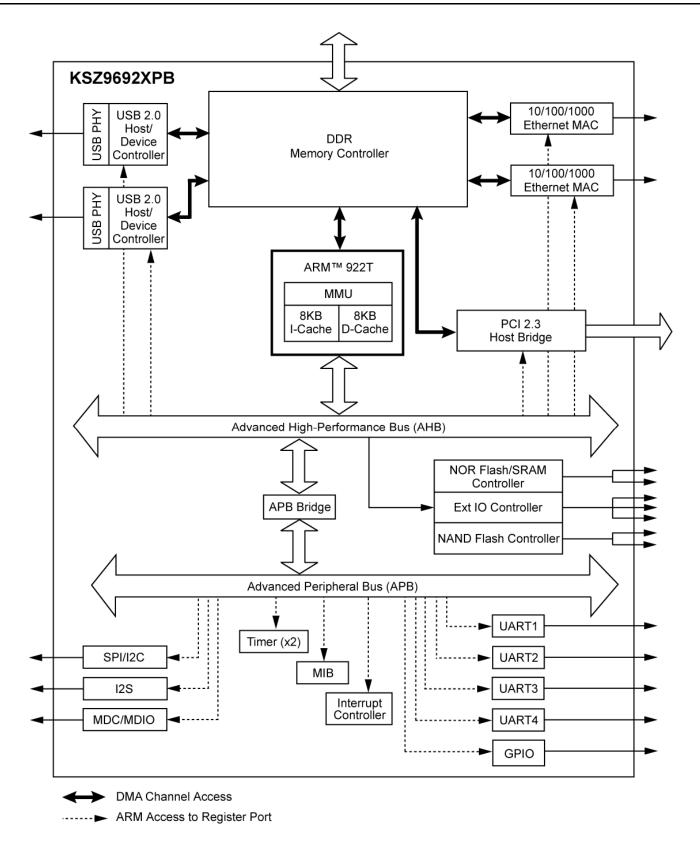



Figure 2. Peripheral Options and Examples


Functional Description

The KSZ9692MPB/KSZ9692XPB is a highly-integrated embedded application controller that is designed to provide a single-chip solution for a wide range of applications that require high-speed networking, multiple I/O controllers and interface to standard peripherals. It features a powerful 32-bit ARM RISC processor, DDR memory controller, FLASH/ROM/SRAM/External I/O interface, NAND memory controller, two Gb Ethernet MACs, two USB 2.0 ports, PCI 2.3 bus interface, SDIO interface (for KSZ9692MPB only), and a large number of standard peripherals including UARTs, I2C, I2S, SPI, MIB counters, Station Manager, timers, interrupt controller and GPIOs.

-- ARM Access to Register Port

ARM High-Performance Processor

The KSZ9692MPB/KSZ9692XPB is built around the 16/32-bit ARM922T RISC processor designed by Advanced RISC Machines. The ARM922T is a scalable, high-performance processor that was developed for highly integrated SoC applications. Its simple, elegant, and fully static design is particularly suited to cost-effective and power-sensitive embedded systems. It also offers a separate 8KB D-cache and 8KB I-cache that reduces memory access latency.16-bit thumb instruction sets are supported to minimize memory footprint. The ARM processor core can be programmed to maximum of 250 MHz for highest possible performance.

The Advanced Microprocessor Bus Architecture/Advanced High Performance Bus (AMBA AHB) is a 32-bit wide ARM system bus to which is connected the processor, the register ports of the DDR memory controller, the FLASH/ROM/SRAM/External I/O controller, the NAND memory controller, the Ethernet MACs, the PCI bridge, the USB ports and the SDIO controller (for KSZ9692MPB only). The ARM processor is the master of AHB and responsible for configuring the operational characteristics of each AHB device via their individual register port. The AHB is programmable up to 166MHz for maximum system bus performance. AHB interfaces to devices are shown in functional block diagram.

Also connected to AHB is ARM Advanced Peripheral Bus or APB bridge which is attached the standard peripherals. The APB Bridge transparently converts the AHB accesses into slower APB accesses. The ARM processor is the master of APB bridge and responsible for configuring the operational characteristics and transfer of data for each APB attached peripheral. APB interfaces to standard peripherals are shown in the functional block diagrams on page 8 and 9.

- 250MHz ARM922T RISC processor core
- 166MHz AMBA Bus 2.0
- 16-bit thumb instruction sets
- 8KB D-cache and 8KB I-cache
- Supports Little-Endian mode
- Configurable MMU
- Power saving options include clock down of both processor core and AMBA AHB

FLASH/ROM/SRAM Memory and External I/O Interface

The KSZ9692MPB/KSZ9692XPB memory controller provides glueless interface for static memory, i.e., ROM, SRAM, and NOR Flash and three banks of external I/O. NOR Flash bank0 can be configured by power-up strap option to operate as boot bank from a 8 or 16 bit device.

- Glueless connection to two banks of FLASH/ROM/SRAM memory with programmable 8 or 16 bit data width and programmable access timing
- Support for AMD/Intel like Flash
- Automatic address line mapping for 8 or 16-bit accesses on Flash, ROM, and SRAM interfaces
- Supports three external I/O banks with programmable 8 or 16 bit data width and programmable access timing
- Total 64MB address space for two banks of FLASH/ROM/SRAM and and three banks of external I/O

The memory interface for the static memory has a special automatic address mapping feature. This allows the designer to connect address bit 0 on the memory to ADDR[0] on the KSZ9692MPB/KSZ9692XPB and address bit 1 on the memory to ADDR[1] on the KSZ9692MPB/KSZ9692XPB, regardless of whether the designer is trying to achieve half word or byte addressing. The KSZ9692MPB/KSZ9692XPB memory controller performs the address mapping internally. This gives the designer the flexibility to use 8 or 16 bit data width devices interchangeably on the same PCB (see Figure 4). For external I/O, however, the designer still needs to resolve the address mapping (see Figure 5).

A dedicated internal PLL provides clocking to the DDR memory controller and the two differential clock drivers. This PLL is programmable up to 200 MHz and independent of AHB and ARM processor core clocks.

Figures 8 and 9 illustrate examples of bank configurations.

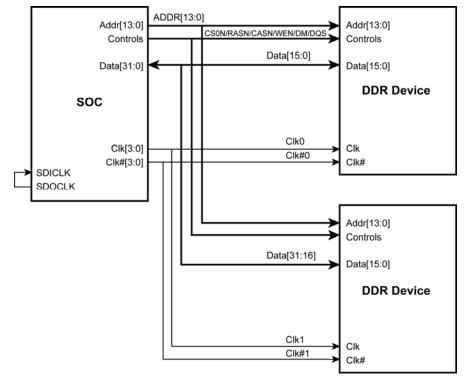


Figure 8. Two 16-bit DDR Memory Device Interface Example

PCI Interface

The KSZ9692MPB/KSZ9692XPB integrates a PCI-to-AHB bridge solution for interfacing with 32-bit PCI, including miniPCI, and cardbus devices where it is common for 802.11x-based Wireless products. The PCI-AHB bridge supports two modes of operation in the PCI bus environment: host bridge mode and guest bridge mode. In the host bridge mode, the ARM processor acts as the host of the entire system. It configures other PCI devices and coordinates their transactions, including initiating transactions between the PCI devices and AHB bus subsystem. An on-chip PCI arbiter is included to determine the PCI bus ownership among up to three PCI master devices.

In guest bridge mode, all of the I/O registers are programmed by either the external host CPU on the PCI bus or the local ARM host processor through the AHB bus and the KSZ9692MPB/KSZ9692XPB can be configured by either the ARM or the PCI host CPU. In guest bridge mode, the on-chip PCI arbiter is disabled. In both cases, the KSZ9692MPB/KSZ9692XPB memory subsystem is accessible from either the PCI host or the ARM processor. Communications between the external host CPU and the ARM processor is accomplished through message passing or through shared memory.

- Compliant to PCI revision 2.3
- Support 33 and 66MHz, 32-bit data PCI bus
- Support 32-bit miniPCI or cardbus devices
- Supports both regular and memory-mapped I/O on the PCI interface
- AHB bus and PCI bus operate at independent clock domains
- Supports big endian and little endian on AHB
- PCI bus Round Robin arbiter for three external masters (for KSZ9692MPB only)
- PCI bus arbiter for one external master (for KSZ9692XPB only)
- Supports high speed bus request and bus parking
- Dedicated DMA channel for bulk data transfer to/from DDR memory

Ethernet MAC Ports (Port 0 = WAN, Port 1 = LAN)

The KSZ9692MPB/KSZ9692XPB integrates two Gigabit Ethernet controllers that operate at 10, 100, and 1000 Mbps. Each controller has an interface that can operate as MII or RGMII to an external 10/100 or 10/100/1000 PHY to complete Ethernet network connectivity. An integrated 25 MHz clock eliminates external crystal or oscillator requirement for PHY to reduce cost. Integrated 2-pin (MDC & MDIO) Station Manager allows ARM processor to access PHY registers and pass control and status parameters. Wake-on-LAN is supported as part of the power management mechanism. Each port has a dedicated MIB counter to accumulate statistics for received and transmitted traffic.

- IEEE 802.3 compliant MAC layer function
- Configurable as MII or RGMII interface
- RGMII interface compliant to Reduced Gigabit Media Independent Interface(RGMII) Version 1.3
- MII interface compliant to Clause 22.2.4.5 of the IEEE 802.3u Specification
- 10/100/1000 Mbps half and full-duplex operation
- Automatic CRC generation and checking
- Automatic error packet discard
- Supports IPv4 Header and IPv4/IPv6 TCP/UDP checksum generation to offload host CPU
- Supports IPv4 Header and IPv4/IPv6 TCP/UDP checksum error detection
- Supports 32 rules ACL filtering
- Maximum frame length support is 2000 Byte at WAN port and 9K-byte at LAN port
- Contains large independent receive and transmit FIFOs (8KB receive / 8KB transmit at WAN and 24KB receive / 22KB transmit at LAN) for back-to-back packet receive, and guaranteed no-under run packet transmit
- Data alignment logic and scatter gather capability
- Configurable as MAC or PHY mode
- Separate transmit and receive DMA channels for each port

Wake-on-LAN

Wake-up frame events are used to wake the system whenever meaningful data is presented to the system over the network. Examples of meaningful data include the reception of a Magic Packet, a management request from a remote administrator, or simply network traffic directly targeted to the local system. In all of these instances, the network device is pre-programmed by the policy owner or other software with information on how to identify wake frames from other network traffic.

A wake-up event is a request for hardware and/or software external to the network device to put the system into a powered state.

A wake-up signal is caused by:

- 1. Detection of a change in the network link state
- 2. Receipt of a network wake-up frame
- 3. Receipt of a Magic Packet

There are also other types of wake-up events that are not listed here as manufacturers may choose to implement these in their own way.

Link Change

Link status wake events are useful to indicate a change in the network's availability, especially when this change may impact the level at which the system should re-enter the sleeping state. For example, a change from link off to link on may trigger the system to re-enter sleep at a higher level (D2 versus D3¹) so that wake frames can be detected. Conversely, a transition from link on to link off may trigger the system to re-enter sleep at a deeper level (D3 versus D2) since the network is not currently available.

Wake-up Packet

Wake-up packets are certain types of packets with specific CRC values that a system recognizes to as a 'wake up' frame. The KSZ9692MPB/KSZ9692XPB supports up to four user defined wake-up frameon each network control port:

Magic Packet

Magic Packet technology is used to remotely wake up a sleeping or powered off PC or device on anetwork. This is accomplished by sending a specific packet of information, called a Magic Packet frame, to a node on the network. When a PC or device capable of receiving the specific frame goes to sleep, it enables the Magic Packet RX mode in the networkcontroller, and when the networkcontroller receives a Magic Packet frame, it will alerts the system to wake up.

Magic Packet is a standard feature integrated into the KSZ9692MPB/KSZ9692XPB. The controller implements multiple advanced power-down modes including Magic Packet to conserve power and operate more efficiently.

Once the KSZ9692MPB/KSZ9692XPB has been put into Magic Packet Enable mode, it scans all incoming frames addressed to the node for a specific data sequence, which indicates to the controller this is a Magic Packet (MP) frame.

A Magic Packet frame must also meet the basic requirements for the networktechnology chosen, such as Source Address (SA), or Destination Address (DA), which may be the receiving station's IEEE address or a multicast or broadcast address and CRC.

The specific sequence consists of 16 duplications of the IEEE address of this node, with no breaks or interruptions. This sequence can be located anywhere within the packet, but must be preceded by a synchronization stream. The synchronization stream allows the scanning state machine to be much simpler. The synchronization stream is defined as 6 bytes of XoffFFh. The device will also accept a broadcast frame, as long as the 16 duplications of the IEEE address match the address of the machine to be awakened.

¹ References to D0, D1, D2, and D3 are power management states defined in a similar fashion to the way they are defined for PCI. For more information, refer to the PCI specification at www.pcisig.com/specifications/conventional/pcipm1.2.pdf.

GPIO

Twenty general purpose I/O (GPIO) are individually programmable as input or output. Some GPIO ports are programmable for alternate function as listed below:

- Four GPIO programmable as inputs for external interrupts
- Two GPIO programmable as 32-bit timers output
- Six GPIO programmable as CTSN and RTSN control pins for UART2, UART3, UART4
- One GPIO programmable as SDIO Line Status LED driver (for KSZ9692MPB only)
- One GPIO programmable as ARM CPU interrupt line activity.

See Signal Description list for detailed GPIO map.

I2C

The I2C interface is a 2-pin (SCL & SDA) generic serial bus interface for both control and data. The KSZ9692MPB/KSZ9692XPB supports master mode I2C interface. To increase the firmware efficiency, KSZ9692MPB/KSZ9692XPB is equipped with hardware assisted logic to take care I2C bus sequence and protocol.

- Supports one master (KSZ9692MPB/KSZ9692XPB) in the system
- 8-bit or 10-bit addressing
- Up to 8 byte burst for read and write
- Programmable SCL clock rate for up to 400kHz

The I2C interface shares the same pins with the SPI interface.

SPI

The Serial Peripheral Interface (SPI) is a synchronous serial data link that provides communication with external devices.

- 8- to 16-bit Programmable Data Length
- Programmable Serial Clock Phase and Polarity
- Programmable Active Level of Chip Select (CS)
- Programmable Delays between Two Active CS
- Programmable Delays between Consecutive Transfers without Removing CS
- Programmable Delays between Assertion CS and 1st SPCK
- Programmable SPI clock (SPCK) rate in the range of AMBA System Clock (SYSCLK) divided by a value between 16 and 65536

The SPI interface shares the same pins with the I2C interface.

I2S

I2S provides programmable 16-, 18-, 20-, 24-bit resolution audio for two (stereo) channels playback and recording.

Interrupt Controller

Interrupt controller handles external and internal interrupt sources.

- Normal or fast interrupt mode (IRQ, FIQ) supported
- Prioritized interrupt handling

Pin Number	Pin Name	Pin Type	Pin Description	
T2, U1, L5,	SDATA[150]	lpu/O	SRAM DATA Bus.	
N4, P3, R2, T1, M4, K5, N3, P2, R1, L4, M3, P1,			Bidirectional Bus for 16-bit DATA In and DATA Out. The KSZ9692MPB/KSZ9692XPB also supports 8-bit data bus for ROM/SRAM/FLASH/EXTIO cycles.	
K4			This data bus is shared between NAND, ROM/SRAM/FLASH/EXTIO devices.	
L3	ECS2	0	External I/O Chip Select 2, asserted Low.	
			Three External I/O banks are provided for external memory-mapped I/O operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which of the three I/O banks is selected.	
N1	ECS1	0	External I/O Chip Select 1, asserted Low.	
			Three External I/O banks are provided for external memory-mapped I/O operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which of the three I/O banks is selected.	
M2	ECS0	0	External I/O Chip Select 0, asserted Low.	
			Three External I/O banks are provided for external memory-mapped I/O operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which of the three I/O banks is selected.	
К3	RCSN1	0	ROM/SRAM/FLASH(NOR) Chip select 1, asserted Low.	
			The KSZ9692MPB/KSZ9692XPB can access up to two external ROM/SRAM/FLASH memory banks. The RCSN pins can be controlled to map the CPU addresses into physical memory banks.	
L1	RCSN0	0	ROM/SRAM/FLASH(NOR) Chip select 0, asserted Low.	
			The KSZ9692MPB/KSZ9692XPB can access up to two external ROM/SRAM/FLASH memory banks. The RCSN pins can be controlled to map the CPU addresses into physical memory banks.	
			This bank is configurable as boot option	
N2	EWAITN	I	External Wait asserted Low.	
			This signal is asserted when an external I/O device or ROM/SRAM/FLASH(NOR) bank needs more access cycles than those defined in the corresponding control register.	
M1	EROEN	lpd/O	ROM/SRAM/FLASH(NOR) and EXTIO Output Enable, asserted Low.	
	(WRSTPLS)		When asserted, this signal controls the output enable port of the specified ROM/SRAM/FLASH memory and EXTIO device.	
J5	ERWEN1	0	ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low.	
			When asserted, this signal controls the byte write enable of the memory device SDATA[158] for ROM/SRAM/FLASH and EXTIO access.	
J4	ERWEN0	lpd/O	ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low.	
			When asserted, this signal controls the byte write enable of the memory device SDATA[70 or 150] for ROM/SRAM/FLASH and EXTIO access.	
R3	NCLE	lpd/O	NAND command Latch Enable	
			NCLE controls the activating path for command sent to NAND flash.	
U2	NALE	lpd/O	NAND Address Latch Enable	
			NALE controls the activating path for address sent to NAND flash.	
Т3	NCEN1	0	NAND Bank Chip Enable 1, asserted low	
			NAND device bank 1 selection control.	
V3	NCEN0	0	NAND Bank Chip Enable 0, asserted low	
			NAND device bank 0 selection control.	
			This bank is configurable as boot option	

Pin Number	Pin Name	Pin Type	Pin Description	
R4	NREN	lpu/O	NAND Read Enable, asserted low.	
T4	NWEN	lpu/O	NAND Write Enable, asserted low.	
U3	NWPN	lpu/O	NAND Write Protection, asserted low.	
P4, U4	NRBN[1:0]		NAND Ready/Busy, asserted low for busy.	
DDR Interface	·		•	
T17, V18, U17, T16, W20, W19, Y20, Y19, W18, V17, U16, T15, Y18, V16	DADD[130]	0	DDR Address Bus.	
V13, U11, V12, W13, Y13, W12, V11, U10, V10, Y11, W10, U9, Y10, V9, W9, Y9, W8, Y8, Y7, W7, V7, Y6, W6, V6, Y5, V5, W5, U5, T5, Y4, V4, W4	DDATA[310]	I/O	DDR Data Bus.	
T13, V14	BA[1:0]	0	DDR Bank Address.	
U14	CSN	0	DDR Chip Select, asserted Low.	
			Chip select pins for DDR, the KSZ9692MPB/KSZ9692XPB supports only one DDR bank.	
T14	RASN	0	DDR Row Address Strobe, asserted Low.	
			The Row Address Strobe pin for DDR.	
U15	CASN	0	DDR Column Address Strobe, asserted Low.	
			The Column Address Strobe pin for DDR.	
V15	WEN	0	DDR Write Enable, asserted Low.	
			The write enable signal for DDR.	
U8, T6	DM[1:0]	0	DDR Data Input/Output Mask	
			Data Input/Output mask signals for DDR. DM is sampled High and is an output mask signal for write accesses and an output enable signal for read accesses. Input data is masked during a Write cycle. DM0 corresponds to DDATA[7:0], DM1 corresponds to DDATA[15:8].	
V8, U6	DQS[1:0]	I/O	DDR only Data Strobe	
			Input with read data, output with write data. DQS0 corresponds to DDATA[7:0], DQS1 corresponds to DDATA[15:8].	

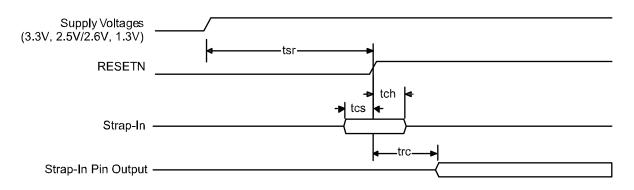
Pin Number	Pin Name	Pin Type	Pin Description
A6, A7, E10,	CBEN[30]	I/O	PCI Commands and Byte Enable, asserted Low.
C10			The PCI command and byte enable signals are multiplexed on the same pins. During the first clock cycle of a PCI transaction, the CBEN bus contains the command for the transaction. The PCI transaction consists of the address phases and one or more data phases. During the data phases of the transaction, the bus carries the byte enable for the current data phases.
C8	PAR	I/O	Parity
			PCI Bus parity is even across PAD[31:0] and CBEN[3:0].
			The KSZ9692MPB/KSZ9692XPB generates PAR during the address phase and write data phases as a bus master, and during read data phases as a target. It checks for correct PAR during read data phase as a bus master, during every address phase as a bus slave, and during write data phases as a target.
D9	FRAMEN	I/O	PCI Bus Frame signal, asserted Low.
			FRAMEN is an indication of an active PCI bus cycle. It is asserted at the beginning of a PCI transaction, i.e. the address phase, and de-asserted before the final transfer of the data phase of the transaction.
B8	IRDYN	I/O	PCI Initiator Ready signal, asserted Low.
			This signal is asserted by a PCI master to indicate a valid data phase on the PAD bus during data phases of a write transaction. In a read transaction, it indicates that the master is ready to accept data from the target. A target will monitor the IRDYN signal when a data phase is completed on any rising edge of the PCI clock when both IRDYN and TRDYN are asserted. Wait cycles are inserted until both IRDYN and TRDYN are asserted together.
E9	TRDYN	I/O	PCI Target Ready signal, asserted Low.
			This signal is asserted by a PCI slave to indicate a valid data phase on the PAD bus during data phases of a read transaction. In a write transaction, it indicates that the slave is ready to accept data from the target. A PCI initiator will monitor the TRDYN signal when a data phase is completed on any rising edge of the PCI clock when both IRDYN and TRDYN are asserted. Wait cycles are inserted until both IRDYN and TRDYN are asserted together.
A9	DEVSELN	I/O	PCI Device Select signal, asserted Low.
			This signal is asserted when the KSZ9692MPB/KSZ9692XPB is selected as a target during a bus transaction. When the KSZ9692MPB/KSZ9692XPB is the initiator of the current bus access, it expects the target to assert DEVSELN within 5 PCI bus cycles, confirming the access. If the target does not assert DEVSELN within the required bus cycles, the KSZ9692MPB/KSZ9692XPB aborts the bus cycle. As a target, the KSZ9692MPB/KSZ9692XPB asserts this signal in a medium speed decode timing. (2 bus cycle)
B7	IDSEL	I	Initialization Device Select. It is used as a chip select during configuration read and write transactions.
B9	STOPN	I/O	PCI Stop signal, asserted Low.
			This signal is asserted by the PCI target to indicate to the bus master that it is terminating the current transaction. The KSZ9692MPB/KSZ9692XPB responds to the assertion of STOPN when it is the bus master, either to disconnect, retry, or abort.

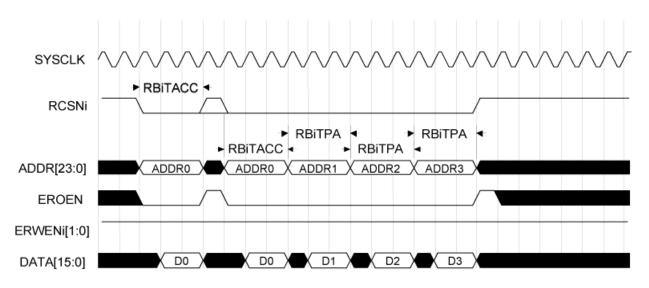
Pin Number	Pin Name	Pin Type	Pin Description	
UART Signals		1		
P16	U1RXD	lpd	UART 1 Receive Data	
R16	U1TXD	O (Tri-	UART 1Transmit Data	
		State)	Must be enabled as output by software, otherwise tri-stated upon power-up. External pull-up recommended.	
R19	U1CTSN	lpd	UART 1Clear to Send	
R20	U1DCDN	lpd	UART 1 Data Carrier Detect	
P15	U1DSRN	lpd	UART 1 Data Set Ready	
R15	U2RXD	lpd	UART 2 Receive Data	
R17	U2TXD	O (Tri-	UART 2 Transmit Data	
		State)	Must be enabled as output by software, otherwise tri-stated upon power-up. External pull-up recommended.	
R18	U3RXD	lpd	UART 3 Receive Data	
N15	U3TXD	O (Tri-	UART 3 Transmit Data	
		State)	Must be enabled as output by software, otherwise tri-stated upon power-up. External pull-up recommended.	
T19	U4RXD	lpd	UART 4 Receive Data	
T20	U4TXD	O (Tri-	UART 4 Transmit Data	
		State) Must be enabled as output by software, otherwise tri-stated upon power- External pull-up recommended.		
TAP Control Si	gnals			
A18	тск	I	JTAG Test Clock	
A17	TMS	I	JTAG Test Mode Select	
A16	TDI	I	JTAG Test Data In	
A15	TDO	0	JTAG Test Data Out	
A14	TRSTN	I	JTAG Test Reset, asserted Low	
Test Signals				
P5	SCANEN	lpd	1 = Scan Enable (Factory reserved)	
			0 = Normal Operation	
V2	TESTEN	lpd	1 = Test Enable (Factory reserved)	
			0 = Normal Operation	
V1	TESTEN1	lpd	1 = Test Enable1 (Factory reserved)	
			0 = Normal Operation	
Y2	TEST1	O (analog)	Factory reserved	
W2	TEST2	O (analog)	Factory reserved	
Power and Gro	und (96)			
N6, M6, M7, G7, G8, G9, M14, M15, N14, P11, P12, P13, P14	VDD1.2	Р	Digital power supply 1.3V (13)	

Pin Number	Pin Name	Pin Type	Pin Description	
G3	SADDR[11]	lpd/O	During reset, this pin is the input strap option to enable either MII or RGMII mode at port1 (LAN port) 0: MII mode (default) 1: RGMII mode	
M1	EROEN	lpd/O	ROM/SRAM/FLASH(NOR) and EXTIO Output Enable, asserted Low.	
	(WRSTPLS)		When asserted, this signal controls the output enable port of the specified ROM/SRAM/FLASH memory and EXTIO device.	
			During reset, this pin is used for Watchdog Timer Reset Polarity Select.	
			This is a power strapping option pin for watchdog reset output polarity.	
			"0" = WRSTO is selected as active high (default)	
			"1" = WRSTO is selected as active low.	
			This pin is shared with the EROEN pin.	
J4	ERWEN0	lpd/O	ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low.	
			When asserted, these signals control the byte write enable of the memory device for ROM/SRAM/FLASH and EXTIO access.	
			During ARM tic test mode, this pin is TESTACK.	
			During reset, this pin is the input strap option to enable either MII or RGMII mode at port0 (WAN port)	
			0: MII mode (default)	
			1: RGMII mode	
R3	NCLE	lpd/O	NAND command Latch Enable	
			NCLE controls the activating path for command sent to NAND flash.	
			During reset, this pin is the input strap option for NAND Flash configuration register (0x8054) bit [2]. This bit along with configuration register bits [1:0] is used for boot program. This pin along with NALE and NWEN is used to specify NAND Flash size.	
			[NCLE, NALE, NWEN]	
			000 = 64Mbit	
			001 = 128Mbit (default)	
			010 = 256Mbit	
			011 = 512Mbit	
			100 = 1Gbit	
			101 = 2Gbit	
			110 = 4Gbit	
			111 = 8Gbit	

Timing Specifications

Figure 16 provides power sequencing requirement with respect to system reset.




Figure 16. Reset Timing

Note: Power sequencing of supply voltages must be in order of 3.3V first, 2.5V/2.6V next and 1.3V last

Symbol	Parameter	Min	Тур	Max	Units
t _{SR}	Stable supply voltages to reset high	10			ms
tcs	Configuration set-up time	50			ns
t _{CH}	Configuration hold time	50			ns
t _{RC}	Reset to strap-in pin output	50			ns

Table 1. Reset Timing Parameters

Figure 17 and Figure 18 provide NOR FLASH, ROM and SRAM interface timing.

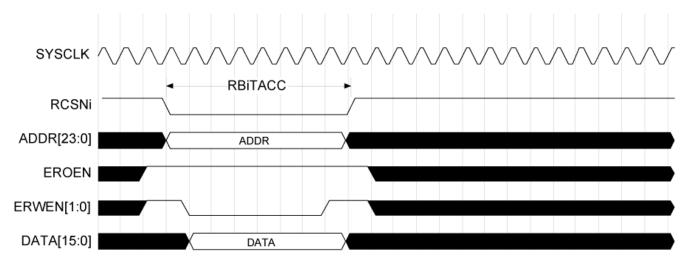


Figure 18. Static Memory Write Cycle

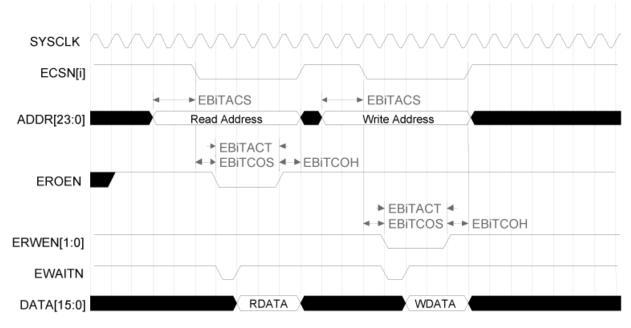

Symbol	Parameter ⁽¹⁾	Registers
RBiTACC	Programmable bank i access time	0x5010, 0x5014
RBiTPA	Programmable bank i page access time	0x5010, 0x5014

Table 2. Programmable Static Memory Timing Parameters

Note:

1. "i" Refers to chip select parameters 0 and 1.

Figure 19 provides external I/O ports interface timing.

Symbol	Parameter	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Units
T _{cta}	Valid address to CS setup time	EBiTACS +0.8	EBiTACS +1.1	EBiTACS +1.3	ns
T _{cos}	OE valid to CS setup time	EBiTCOS +0.6	EBiTCOS +0.6	EBiTCOS +1.0	ns
T _{dsu}	Valid read data to OE setup time	2.0			ns
T _{cws}	WE valid to CS setup time	EBiTCOS +0.6	EBiTCOS +0.6	EBiTCOS +1.0	ns
T _{dh}	Write data to CS hold time	0			ns
T _{cah}	Address to CS hold time	EBiTCOH +1.0	EBiTCOH +1.0	EBiTCOH +1.4	ns
T _{oew}	OE/WE pulsewidth	EBiTACT		EBiTACT	ns
T_{ocs},T_{csw}	Rising edge CS to OE/WE hold time	0			ns

Table 3. External I/O Memory Timing Parameters

Note:

1. Measurements for minimum were taken at 0°C, typical at 25°C, and maximum at 100°C.

Symbol	Parameter ⁽¹⁾	Registers
EBiTACS	Programmable bank i address setup time before chip select	0x5000, 0x5004, 0x5008
EBiTACT	Programmable bank i write enable/output enable access time	0x5000, 0x5004, 0x5008
EBiTCOS	Programmable bank i chip select setup time before OEN	0x5000, 0x5004, 0x5008
EBiTCOH	Programmable bank i chip select hold time	0x5000, 0x5004, 0x5008

Table 4. Programmable External I/O Timing Parameters

Note:

1. "i" Refers to chip select parameters 0, 1, or 2.

Signal Location Information

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	PMEN	PAD28	PAD26	PAD21	PAD20	CBEN3	CBEN2	CLKRUN N	DEVSELN	PERRN	PAD13	PAD10	PAD6	TRSTN	TDO	TDI	тмз	тск	I2S_SDO	I2S_SDI
B	GNT1N	PCLK	PAD31	PAD27	PAD22	PAD19	IDSEL	IRDYN	STOPN	PAD14	PAD12	PAD7	PAD4	GPIO19	GPIO18	GPIO17	GPIO16	GPIO15	12S_ERCE K	I2S_BCLK
C	REQ1N	MPCIACT N	PRSTN	M66EN	PAD24	PAD23	PAD17	PAR	SERRN	CBEN0	PAD11	PAD5	PAD2	KSDCDN	KDATA3	KDATA2	KDATA0	KCLK	I2S_MCL K	SCKIN
D	2 2 2	PCLKOUT	REQ3N	GNT2N	PMBS	PAD29	PAD25	PAD16	FRAMEN	PAD15	PAD8	PAD1	KSDWP	KCMD	SPICS	SPMISO	SPMOSI_ SDA	GPIO14	GPIO12	SCKOUT
E	SADDR2	SADDR1	SADDR0	GNT3N	PCEKOUT 0	REQ2N	PAD30	PAD18	TRDYN	CBEN1	PAD9	PAD0	KDATA1	SPCK_SC L	GPIO13	GPIO10	GPIO9	GPIO6	GPIO8	GPIO7
F	SADDR8	SADDR6	SADDR5	SADDR3	SADDR4	PCLKOUT 3	VDD3.3	VDD3.3	VDD3.3	VDD3.3	VDD3.3	PAD3	SPIRDY	GPIO11	USBHOV C1	USBHPW R1	USBHPW R0	USBHOV C0	U2P	U2M
												USB1	USBC	USB2						
G	SADDR7	SADDR9	SADDR11	SADDR10	SADDR13	VDD3.3	VDD1.2	VDD1.2	VDD1.2	VDD3.3	VDD3.3	VDDA3.3		VDDA3.3	USBCFG USB2	USBTEST	USBXI	USBXO	U1P	U1M
Н	SADDR12	SADDR14	SADDR16	SADDR18	SADDR19	VDD3.3	GND	GND	GND	GND	GND	USBVSS2	USBVSSA 3.3		VDD1.2	USBREXT	MDIO	MDC	CLK25MH Z_1	P1_TXD3
J	SADDR15	SADDR17	SADDR20	ERWEN0	ERWEN1	VDD3.3	GND	GND	GND	GND	GND	USBVSS1	USBVSSA 3.3	VDD3.3	USB1 VDD1.2	P1_TXEN	P1_TXC	P1_TXD1	P1_TXD2	P1_TXD0
K	SADDR22	SADDR21	RCSN1	SDATA0	SDATA7	VDD3.3	GND	GND	GND	GND	GND	GND	USBVSSA 3.3		VDD3.3	P1_RXDV	P1_RXER	P1_CRS	P1_RXC	P1_COL
						PLL		PLLVSSI												
L	RCSN0	SADDR23	ECS2	SDATA3	SDATA13 PLLS	VDDA3.3	GND	SO PLLVSSA	GND	GND	GND	GND	GND	GND	VDD3.3	P0_TXEN	P0_TXD3	P1_RXD1	P1_RXD2	P1_RXD3
M	EROEN	ECS0	SDATA2	SDATA8		VDD1.2		3.3	GND	GND	GND	GND	GND	VDD1.2	VDD1.2	P0_RXC	P0_CRS	P0_TXC	P0_TXD2	P1_RXD0
N	ECS1	EWAITN	SDATA6	SDATA12	WRSTO	VDD1.2	PLLVSS1. 2	PLLVSS1. 2	GND	GND	GND	GND	GND	VDD1.2	U3TXD	P0_RXD0	P0_RXD2	P0_RXDV	P0_TXD0	P0_TXD1
Р	SDATA1	SDATA5	SDATA11	NRBN1	SCANEN	PLLD VDD1.2	GND	GND	GND	GND	VDD1.2	VDD1.2	VDD1.2	VDD1.2	U1DSRN	U1RXD	P0_RXD1	P0_RXD3	P0_RXER	P0_COL
R	SDATA4	SDATA10	NCLE	NREN	RESETN	VDD2.5	VDD2.5	VDD2.5	VDD2.5	VDD2.5	VDD2.5	VDD2.5	VDD2.5	VDD2.5	U2RXD	U1TXD	U2TXD	U3RXD	U1CTSN	U1DCDN
Т	SDATA9	SDATA15	NCEN1	NWEN	DATA3	DM0	VREF	VDD2.5	VDD2.5	VDD2.5	VDD2.5	RSVD	BA1	RASN	ADDR2	ADDR10	ADDR13	gpio2/ei NT2	U4RXD	U4TXD
U	SDATA14	NALE	NWPN	NRBN0	DATA4	DQS0	VREF	DM1	RSVD	RSVD	RSVD	RSVD	СКЕ	CSN	CASN	ADDR3	ADDR11	GPIO0/EI NT0	GPIO4/TO UT0	UT1
۷	TESTEN1	TESTEN	NCEN0	DATA1	DATA6	DATA8	DATA11	DQS1	RSVD	RSVD	RSVD	RSVD	RSVD	BA0	WEN	ADDR0	ADDR4	ADDR12	GPIO1/EI NT1	GPIO3/EI NT3
W	KCLK2	TEST2	SDOCLK	DATA0	DATA5	DATA9	DATA12	DATA15	RSVD	RSVD	RSVD	RSVD	RSVD	CLKON	CLK1N	RSVD	RSVD	ADDR5	ADDR8	ADDR9
Y	KCLK1	TEST1	SDICLK	DATA2	DATA7	DATA10	DATA13	DATA14	RSVD	RSVD	RSVD	RSVD	RSVD	CLK0	CLK1	RSVD	RSVD	ADDR1	ADDR6	ADDR7
			Dowor 1.9/(disital 9 and a)					Dower 2.21/ (digital & angles)					VDD2.5							
			Power - 1.2V (digital & analog)					Power - 3.3V (digital & analog)				UART				JTAG Test				
		Strap/Reset/XTAL Signals					GPIO					I2S			GND					
			ROM/SRAM/NAND					Ethernet					12C/SPI							
			DDR										SDIO							

Note: for KSZ9692XPB SDIO balls (D14, C18, C15, C16, E13, C17, C14, D13) and PCI balls (E4, D4, D3, E6, F6, D1) are no connect.

Figure 20. Ball Grid Array Map

Package Information

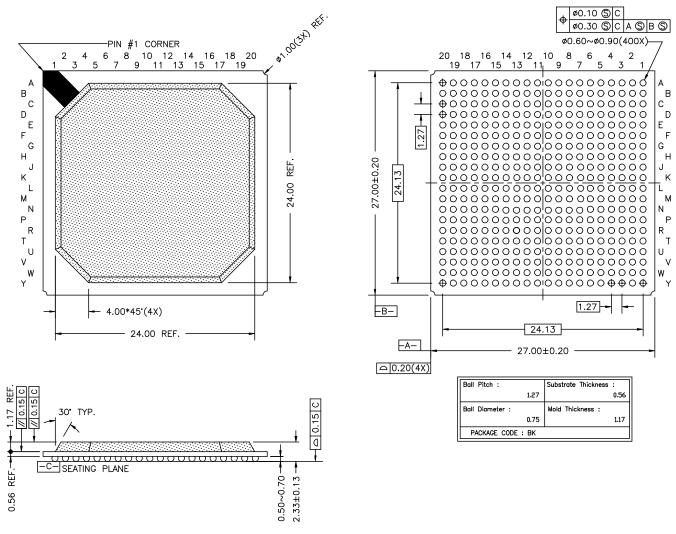


Figure 21. 400-Pin PBGA

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <u>http://www.micrel.com</u>

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2008 Micrel, Incorporated.