

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84a-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Special Function Registers

The Special Function Registers (Figure 2-2 and Table 2-1) are used by the CPU and Peripheral functions to control the device operation. These registers are static RAM.

The special function registers can be classified into two sets, core and peripheral. Those associated with the core functions are described in this section. Those related to the operation of the peripheral features are described in the section for that specific feature.

TABLE 2-1:	SPECIAL FUNCTION REGISTER FILE SUMMARY
------------	--

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on RESET	Details on page
Bank 0											
00h	INDF	Uses cor	ntents of FSI			11					
01h	TMR0	8-bit Rea	I-Time Clocl	k/Counter						xxxx xxxx	20
02h	PCL	Low Orde	er 8 bits of th		0000 0000	11					
03h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	8
04h	FSR	Indirect [Data Memory	/ Address	Pointer 0					xxxx xxxx	11
05h	PORTA ⁽⁴⁾	—	_	—	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	16
06h	PORTB ⁽⁵⁾	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	XXXX XXXX	18
07h	—	Unimpler	mented locat	tion, read	as '0'					—	—
08h	EEDATA	EEPRON	/I Data Regis	ster						xxxx xxxx	13,14
09h	EEADR	EEPRON	EEPROM Address Register								13,14
0Ah	PCLATH	—		—	Write Buffer	for upper 5	bits of the	PC ⁽¹⁾		0 0000	11
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	10
Bank	1										
80h	INDF	Uses Co	ntents of FS	R to addre	ess Data Merr	nory (not a p	ohysical re	gister)			11
81h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	9
82h	PCL	Low orde	er 8 bits of P	rogram Co	ounter (PC)	•	•			0000 0000	11
83h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	8
84h	FSR	Indirect of	lata memory	address	pointer 0					xxxx xxxx	11
85h	TRISA	—	—	—	PORTA Data	Direction F	Register			1 1111	16
86h	TRISB	PORTB I	Data Directio	on Registe	er					1111 1111	18
87h	—	Unimpler	Unimplemented location, read as '0'								—
88h	EECON1	—	_	—	EEIF	WRERR	WREN	WR	RD	0 x000	13
89h	EECON2	EEPRON	A Control Re	egister 2 (r	not a physical	register)					14
0Ah	PCLATH	—	Write buffer for upper 5 bits of the PC ⁽¹⁾								11
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	10

Legend: x = unknown, u = unchanged. - = unimplemented, read as '0', q = value depends on condition

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> are never transferred to PCLATH.

2: The TO and PD status bits in the STATUS register are not affected by a MCLR Reset.

3: Other (non power-up) RESETS include: external RESET through MCLR and the Watchdog Timer Reset.

4: On any device RESET, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

2.3.1 STATUS REGISTER

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bit for data memory.

As with any register, the STATUS register can be the destination for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ uluu$ (where u = unchanged).

Only the BCF, BSF, SWAPF and MOVWF instructions should be used to alter the STATUS register (Table 7-2), because these instructions do not affect any status bit.

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16F84A and should be programmed as cleared. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.
 - 3: When the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. The specified bit(s) will be updated according to device logic

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
bit 7-6	-	ented: Maint										
bit 5	RP0 : Register Bank Select bits (used for direct addressing)											
	01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh)											
bit 4	TO: Time-o	out bit										
	1 = After power-up, CLRWDT instruction, or SLEEP instruction											
		F time-out oc	curred									
bit 3	PD: Power											
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 											
	-	ecution of the	SLEEP INST	ruction								
bit 2	Z: Zero bit											
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 											
bit 1		arry/borrow b		•			(for borrow,	the polarity				
	is reversed											
	•	/-out from the ry-out from t				urred						
bit 0		prrow bit (AD				ructions) (fo	horrow the	onlarity is				
bit 0	reversed)	SHOW DR (AD		, 3080, 5			borrow, the	polarity is				
	1 = A carry-out from the Most Significant bit of the result occurred											
	0 = No carry-out from the Most Significant bit of the result occurred											
	Note: A subtraction is executed by adding the two's complement of the second operand.											
	For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low or bit of the source register.											
			arce register									
	Legend:											
	R = Reada	ble bit	W = W	ritable bit	U = Unir	mplemented	bit, read as	ʻ0'				
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is	s cleared	x = Bit is un	known				

2.3.2 OPTION REGISTER

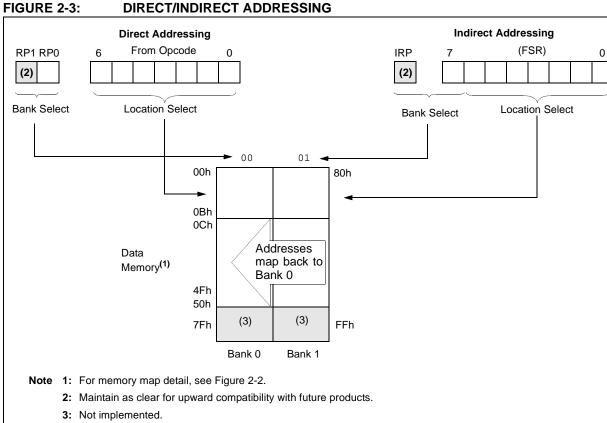
bit

bit

bit

bit

bit


bit

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	When the prescaler is assigned to					
	the WDT (PSA = '1'), TMR0 has a 1:1					
	prescaler assignment.					

REGISTER 2-2: OPTION REGISTER (ADDRESS 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0						
	bit 7							bit (
	RBPU: PO	ORTB Pull-up	Enable bit											
		 PORTB pull-ups are disabled PORTB pull-ups are enabled by individual port latch values 												
				oy individual	port latch v	alues								
	INTEDG: Interrupt Edge Select bit													
		 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 												
T0CS: TMR0 Clock Source Select bit														
		1 = Transition on RA4/T0CKI pin0 = Internal instruction cycle clock (CLKOUT)												
	TOSE: TMR0 Source Edge Select bit													
		= Increment on high-to-low transition on RA4/T0CKI pin												
	0 = Incre	ment on low-	to-high trans	ition on RA	4/T0CKI pin									
	PSA: Pres	scaler Assign	ment bit											
		1 = Prescaler is assigned to the WDT												
		0 = Prescaler is assigned to the Timer0 module												
		Prescaler Ra												
	Bit Value	TMR0 Rate	WDT Rate											
	000	1:2	1:1											
	001 010	1:4 1:8	1:2 1:4											
	010	1:8	1:8											
	100	1:32	1:16											
	101	1:64	1:32											
	110	1:128	1 : 64 1 : 128											
	111	1 : 256	1.120											
	Legend:													
	R = Read	able bit	W = W	ritable bit	U = Unir	= Unimplemented bit, read as '0'								
	- n = Valu		'1' = B		101 011	s cleared	x = Bit is u							

Name	Bit	Buffer Type	I/O Consistency Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger.

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

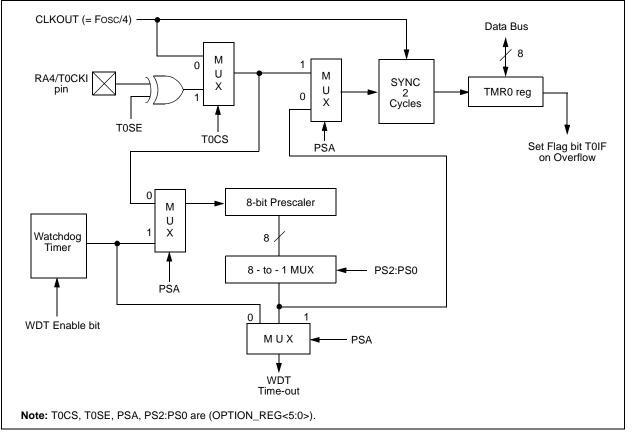
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS	
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	xxxx xxxx	uuuu uuuu	
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111	
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
0Bh,8Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u	

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.2.1 SWITCHING PRESCALER ASSIGNMENT


The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution).

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PIC[®] Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

5.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut-off during SLEEP.

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS	
01h	TMR0	Timer0	ïmer0 Module Register								uuuu uuuu	
0Bh,8Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u	
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
85h	TRISA		_	_	PORTA Data Direction Register1 1111						1 1111	

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16F84A has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F84A has a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. This design keeps the device in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode offers a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Time-out or through an interrupt. Several oscillator options are provided to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select the various options.

Additional information on special features is available in the PIC[®] Mid-Range Reference Manual (DS33023).

6.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

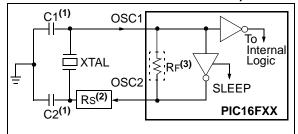
Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

REGISTER 6-1: PIC16F84A CONFIGURATION WORD

R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u
CP	CP	СР	СР	CP	СР	СР	СР	СР	CP	PWRTE	WDTE	F0SC1	F0SC0
bit13													bit0
bit 13-4		CP: Code Protection bit 1 = Code protection disabled 0 = All program memory is code protected											
bit 3		PWRTE : Power-up Timer Enable bit 1 = Power-up Timer is disabled 0 = Power-up Timer is enabled											
bit 2		WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 1-0	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator						ts						

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES


The PIC16F84A can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

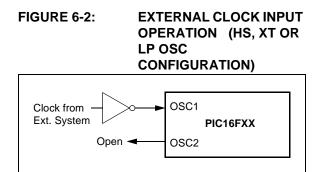

In XT, LP, or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 6-1).

FIGURE 6-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- Note 1: See Table 6-1 for recommended values of C1 and C2.
 - **2:** A series resistor (Rs) may be required for AT strip cut crystals.

The PIC16F84A oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 6-2).

TABLE 6-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

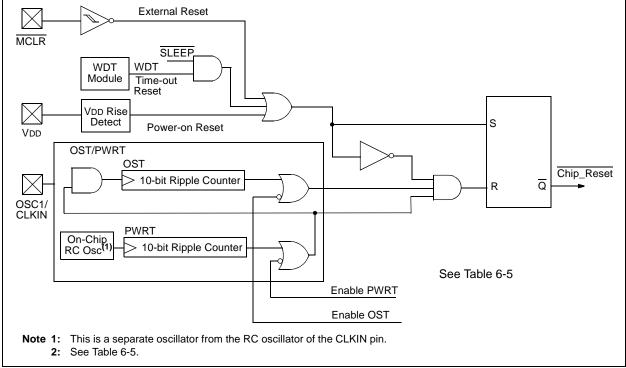
Ranges Tested:								
Mode	Freq	OSC1/C1	OSC2/C2					
ХТ	455 kHz 2.0 MHz 4.0 MHz	47 - 100 pF 15 - 33 pF 15 - 33 pF	47 - 100 pF 15 - 33 pF 15 - 33 pF					
HS	8.0 MHz 10.0 MHz	15 - 33 pF 15 - 33 pF	15 - 33 pF 15 - 33 pF					
id Hi of sta gu its cc ap	ecommended entical to the r gher capacita the oscillato art-up time. Th idance only. own charac onsult the reso opropriate val ents.	anges tested nce increases r, but also ir hese values a Since each re teristics, the mator manufa	in this table. Is the stability increases the re for design esonator has user should cturer for the					

Note:	When using resonators with frequencies					
	above 3.5 MHz, the use of HS mode rather					
	than XT mode, is recommended. HS mode					
	may be used at any VDD for which the					
	controller is rated.					

6.3 RESET

The PIC16F84A differentiates between various kinds of RESET:

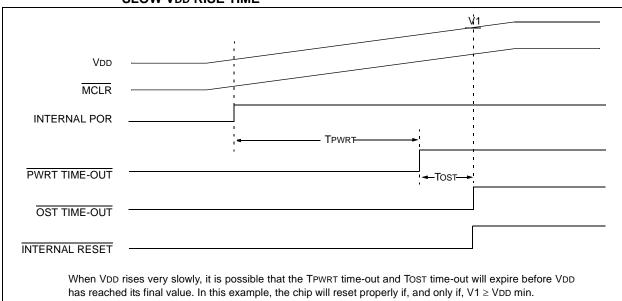
- Power-on Reset (POR)
- MCLR during normal operation
- MCLR during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)


Figure 6-4 shows a simplified block diagram of the On-Chip RESET Circuit. The $\overline{\text{MCLR}}$ Reset path has a noise filter to ignore small pulses. The electrical specifications state the pulse width requirements for the $\overline{\text{MCLR}}$ pin.

Some registers are not affected in any RESET condition; their status is unknown on a POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on POR, MCLR or WDT Reset during normal operation and on MCLR during SLEEP. They are not affected by a WDT Reset during SLEEP, since this RESET is viewed as the resumption of normal operation.

Table 6-3 gives a description of RESET conditions for the program counter (PC) and the STATUS register. Table 6-4 gives a full description of RESET states for all registers.

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different RESET situations (Section 6.7). These bits are used in software to determine the nature of the RESET.


TABLE 6-3: RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR during normal operation	000h	000u uuuu
MCLR during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	սսս0 Օսսս
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu

Legend: u = unchanged, x = unknown

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

FIGURE 6-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

6.7 Time-out Sequence and _____ Power-down Status Bits (TO/PD)

On power-up (Figures 6-6 through 6-9), the time-out sequence is as follows:

- 1. PWRT time-out is invoked after a POR has expired.
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

TABLE 6-5:TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Power-up		Wake-up
Configuration	PWRT Enabled	PWRT Disabled	from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
RC	72 ms	_	_

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 6-6). This is useful for testing purposes or to synchronize more than one PIC16F84A device when operating in parallel.

Table 6-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 6-3 lists the RESET conditions for some special registers, while Table 6-4 lists the RESET conditions for all the registers.

TABLE 6-6: STATUS BITS AND THEIR SIGNIFICANCE

то	PD	Condition
1	1	Power-on Reset
0	x	Illegal, TO is set on POR
х	0	Illegal, PD is set on POR
0	1	WDT Reset (during normal operation)
0	0	WDT Wake-up
1	1	MCLR during normal operation
1	0	MCLR during SLEEP or interrupt
		wake-up from SLEEP

6.11.3 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

6.12 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

6.13 ID Locations

Four memory locations (2000h - 2004h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the four Least Significant bits of ID location are usable.

6.14 In-Circuit Serial Programming

PIC16F84A microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed.

For complete details of Serial Programming, please refer to the In-Circuit Serial Programming[™] (ICSP[™]) Guide, (DS30277).

7.1 Instruction Descriptions

ADDLW	Add Literal and W	
Syntax:	[<i>label</i>] ADDLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$(W) + k \to (W)$	
Status Affected:	C, DC, Z	
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.	

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2Tcy instruction.

PIC16F84A

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None

MOVLW	Move Literal to W			
Syntax:	[<i>label</i>] MOVLW k			
Operands:	$0 \le k \le 255$			
Operation:	$k \rightarrow (W)$			
Status Affected:	None			
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.			

RETLW	Return with Literal in W			
Syntax:	[<i>label</i>] RETLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$			
Status Affected:	None			
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.			

MOVWF	Move W to f		
Syntax:	[<i>label</i>] MOVWF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$(W) \rightarrow (f)$		
Status Affected:	None		
Description:	Move data from W register to register 'f'.		

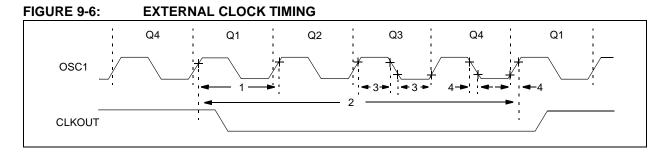
RETURN	Return from Subroutine		
Syntax:	[label] RETURN		
Operands:	None		
Operation:	$TOS\toPC$		
Status Affected:	None		
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.		

NOP	No Operation	
Syntax:	[label] NOP	
Operands:	None	
Operation:	No operation	
Status Affected:	None	
Description:	No operation.	

9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial)

DC Characteristics All Pins Except Power Supply Pins		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC specifications(Section 9.1)					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \le VDD \le 5.5V$ (Note 4)
D030A			Vss	—	0.16Vdd	V	Entire range (Note 4)
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V	Entire range
D032		MCLR, RA4/T0CKI	Vss	—	0.2Vdd	V	
D033		OSC1 (XT, HS and LP modes)	Vss	—	0.3Vdd	V	(Note 1)
D034		OSC1 (RC mode)	Vss		0.1Vdd	V	
	Vih	Input High Voltage					
		I/O ports:		—			
D040 D040A		with TTL buffer	2.0 0.25VDD+0.8	_	Vdd Vdd	V V	4.5V ≤ VDD ≤ 5.5V (Note 4) Entire range (Note 4)
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd		Entire range
D042		MCLR,	0.8 Vdd	—	Vdd	V	
D042A		RA4/T0CKI	0.8 Vdd	—	8.5	V	
D043		OSC1 (XT, HS and LP modes)	0.8 Vdd	—	Vdd	V	(Note 1)
D043A		OSC1 (RC mode)	0.9 Vdd		Vdd	V	
D050	VHYS	Hysteresis of Schmitt Trigger Inputs	—	0.1	_	V	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current (Notes 2, 3)					
D060		I/O ports	_	—	±1	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at hi-impedance} \end{split}$
D061		MCLR, RA4/T0CKI	—	—	±5	μΑ	$Vss \leq V PIN \leq V DD$
D063		OSC1	_	_	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

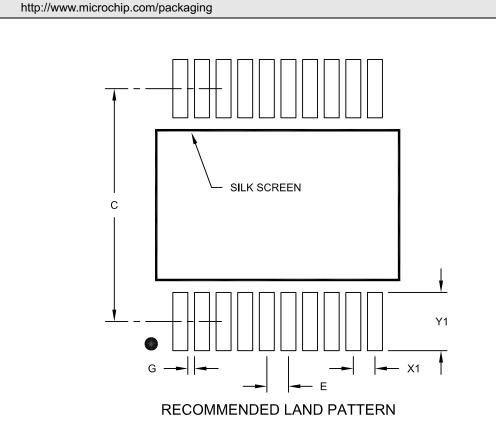

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: The user may choose the better of the two specs.

9.3.3 TIMING DIAGRAMS AND SPECIFICATIONS


TABLE 9-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Cond	litions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		2	MHz	XT, RC osc	(-04, LF)
			DC	—	4	MHz	XT, RC osc	(-04)
			DC	—	20	MHz	HS osc	(-20)
			DC	—	200	kHz	LP osc	(-04, LF)
		Oscillator Frequency ⁽¹⁾	DC	_	2	MHz	RC osc	(-04, LF)
			DC	—	4	MHz	RC osc	(-04)
			0.1	—	2	MHz	XT osc	(-04, LF)
			0.1	—	4	MHz	XT osc	(-04)
			1.0	—	20	MHz	HS osc	(-20)
			DC	—	200	kHz	LP osc	(-04, LF)
1	Tosc	External CLKIN Period ⁽¹⁾	500		_	ns	XT, RC osc	(-04, LF)
			250	—	—	ns	XT, RC osc	(-04)
			50	—	—	ns	HS osc	(-20)
			5.0	—	—	μs	LP osc	(-04, LF)
		Oscillator Period ⁽¹⁾	500	_	_	ns	RC osc	(-04, LF)
			250	—	—	ns	RC osc	(-04)
			500	—	10,000	ns	XT osc	(-04, LF)
			250	—	10,000	ns	XT osc	(-04)
			50	—	1,000	ns	HS osc	(-20)
			5.0	_	_	μs	LP osc	(-04, LF)
2	Тсү	Instruction Cycle Time ⁽¹⁾	0.2	4/Fosc	DC	μS		
3	TosL,	Clock in (OSC1) High or Low	60	_	_	ns	XT osc	(-04, LF)
	TosH	Time	50	—	—	ns	XT osc	(-04)
			2.0	—	—	μS	LP osc	(-04, LF)
			17.5	—	—	ns	HS osc	(-20)
4	TosR,	Clock in (OSC1) Rise or Fall	25	—	_	ns	XT osc	(-04)
	TosF	Time	50	—	—	ns	LP osc	(-04, LF)
			7.5	—	—	ns	HS osc	(-20)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (Tcr) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

For the most current package drawings, please see the Microchip Packaging Specification located at

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

	Ν	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing C			7.20	
Contact Pad Width (X20) X1				0.45
Contact Pad Length (X20) Y1				1.75
Distance Between Pads G		0.20		

Notes:

Note:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description	
A	9/1998	This is a new data sheet. However, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16F8X Data Sheet</i> , DS30430.	
В	05/2001	Added DC and AC Characteristics Graphs and Tables to Section 10.	
С	11/2011	Updated the "Packaging Information" section.	

PIC16F84A PRODUCT IDENTIFICATION SYSTEM

To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.

PART NO.	-XX X /XX XXX Frequency Temperature Package Pattern Range Range	Examples: a) PIC16F84A -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16F84A ⁽¹⁾ , PIC16F84AT ⁽²⁾ PIC16LF84A ⁽¹⁾ , PIC16LF84AT ⁽²⁾	 b) PIC16LF84A - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits.
Frequency Range	04 = 4 MHz 20 = 20 MHz	 c) PIC16F84A - 20I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits.
Temperature Range	$- = 0^{\circ}C$ to $+70^{\circ}C$ I = $-40^{\circ}C$ to $+85^{\circ}C$	
Package	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP	 Note 1: F = Standard VDD range LF = Extended VDD range 2: T = in tape and reel - SOIC and SSOP packages only.
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements . Blank for OTP and Windowed devices.	

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769409

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12