

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K × 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84a-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP No.	SOIC No.	SSOP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	16	18	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	19	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR	4	4	4	I/P	ST	Master Clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.
						PORTA is a bi-directional I/O port.
RA0	17	17	19	I/O	TTL	
RA1	18	18	20	I/O	TTL	
RA2	1	1	1	I/O	TTL	
RA3	2	2	2	I/O	TTL	
RA4/T0CKI	3	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/counter. Output is open drain type.
RB0/INT	6	6	7	I/O	TTL/ST ⁽¹⁾	PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	8	I/O	TTL	
RB2	8	8	9	I/O	TTL	
RB3	9	9	10	I/O	TTL	
RB4	10	10	11	I/O	TTL	Interrupt-on-change pin.
RB5	11	11	12	I/O	TTL	Interrupt-on-change pin.
RB6	12	12	13	I/O	TTL/ST (2)	Interrupt-on-change pin. Serial programming clock.
RB7	13	13	14	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming data.
Vss	5	5	5,6	Р	—	Ground reference for logic and I/O pins.
Vdd	14	14	15,16	Р	—	Positive supply for logic and I/O pins.
Legend: I= input	O =	Output		I/O = Ir	put/Output	P = Power

TABLE 1-1:PIC16F84A PINOUT DESCRIPTION

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

2.3.3 INTCON REGISTER

The INTCON register is a readable and writable register that contains the various enable bits for all interrupt sources.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

- n = Value at POR

	R/W-0 R/W-0 R		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x						
	GIE	EEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF						
	bit 7							bit 0						
h:+ 7		l latern at F	achla hit											
DIT 7		GIE: Global Interrupt Enable bit												
	1 = Disable 0 = Disable	1 = Enables all unmasked interrupts 0 = Disables all interrupts												
bit 6	EEIE: EE V	EEIE: EE Write Complete Interrupt Enable bit												
	1 = Enable 0 = Disable	 1 = Enables the EE Write Complete interrupts 0 = Disables the EE Write Complete interrupt 												
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit										
	1 = Enable 0 = Disable	s the TMR0 es the TMR0	interrupt) interrupt											
bit 4	INTE: RB0,	INTE: RB0/INT External Interrupt Enable bit												
	1 = Enable	s the RB0/II	NT external	interrupt										
	0 = Disable	es the RB0/I	NT externa	linterrupt										
bit 3	RBIE: RB Port Change Interrupt Enable bit													
	1 = Enable 0 = Disable	 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt 												
bit 2	TOIF: TMR	T0IF: TMR0 Overflow Interrupt Flag bit												
	1 = TMR0 0 = TMR0	register has register did	overflowed not overflov	(must be cl v	eared in softwa	ıre)								
bit 1	INTF: RB0/	INTF: RB0/INT External Interrupt Flag bit												
	1 = The RE 0 = The RE	30/INT exter 30/INT exter	nal interrup nal interrup	t occurred (i t did not occ	must be cleared	d in softwar	e)							
bit 0	RBIF: RB F	RBIF: RB Port Change Interrupt Flag bit												
	1 = At leas	1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)												
	0 = None o	0 = None of the RB7:RB4 pins have changed state												
	Legend:													
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '0)'						

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

3.1 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 3-1: DATA EEPROM READ

BCF	STATUS, RPO	;	Bank 0
MOVLW	CONFIG_ADDR	;	
MOVWF	EEADR	;	Address to read
BSF	STATUS, RPO	;	Bank 1
BSF	EECON1, RD	;	EE Read
BCF	STATUS, RPO	;	Bank 0
MOVF	EEDATA, W	;	W = EEDATA

3.2 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 3-2: DATA EEPROM WRITE

		BSF	STATUS, F	RP0	;	Bank 1
		BCF	INICON, C	315	ï	DISADIE INIS.
		BSF	EECON1, W	VREN	;	Enable Write
		MOVLW	55h		;	
		MOVWF	EECON2		;	Write 55h
	_ e	MOVLW	AAh		;	
Q.	2 0	MOVWF	EECON2		;	Write AAh
	n en	BSF	EECON1,WF	2	;	Set WR bit
Q	eq 1				;	begin write
	2 00	BSF	INTCON, G	GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

3.3 Write Verify

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 3-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

Generally, the EEPROM write failure will be a bit which was written as a '0', but reads back as a '1' (due to leakage off the bit).

EXAMPLE 3-3: WRITE VERIFY

	BCF	STATUS, RPO	;	Bank 0
	:		;	Any code
	:		;	can go here
	MOVF	EEDATA,W	;	Must be in Bank 0
	BSF	STATUS, RPO	;	Bank 1
READ				
	BSF	EECON1, RD	;	YES, Read the
			;	value written
	BCF	STATUS, RPO	;	Bank 0
			;	
			;	Is the value written
			;	(in W reg) and
			;	read (in EEDATA)
			;	the same?
			;	
	SUBWF	EEDATA, W	;	
	BTFSS	STATUS, Z	;	Is difference 0?
	GOTO	WRITE_ERR	;	NO, Write error

TABLE 3-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
08h	EEDATA	EEPRO	M Data R		XXXX XXXX	uuuu uuuu					
09h	EEADR	EEPRO	M Addres		XXXX XXXX	uuuu uuuu					
88h	EECON1		—	—	EEIF	WRERR	WREN	WR	RD	0 x000	0 q000
89h	EECON2	EEPRO	M Contro	l Registe	r 2						

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] Mid-Range Reference Manual (DS33023).

4.1 PORTA and TRISA Registers

PORTA is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as inputs and read as '0'.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read. This value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

BCF	STATUS, RPO	;	
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0x0F	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA4 as output
		;	TRISA<7:5> are always
		;	read as '0'.

FIGURE 4-1:

BLOCK DIAGRAM OF PINS RA3:RA0

FIGURE 4-2:

BLOCK DIAGRAM OF PIN RA4

4.2 PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 4-2: INITIALIZING PORTB

BCF	STATUS, RPO	;
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 4-3: BLOCK DIAGRAM OF PINS RB7:RB4

FIGURE 4-4:

BLOCK DIAGRAM OF PINS RB3:RB0

5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- · Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- Interrupt-on-overflow from FFh to 00h

Figure 5-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual (DS33023).

5.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, TOSE (OPTION_REG<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

5.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 5-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 5-1: TIMER0 BLOCK DIAGRAM

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16F84A has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F84A has a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. This design keeps the device in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode offers a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Time-out or through an interrupt. Several oscillator options are provided to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select the various options.

Additional information on special features is available in the PIC[®] Mid-Range Reference Manual (DS33023).

6.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

REGISTER 6-1: PIC16F84A CONFIGURATION WORD

R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u
CP	CP	CP	СР	CP	CP	CP	CP	CP	CP	PWRTE	WDTE	F0SC1	F0SC0
bit13													bit0
bit 13-4		CP: Code Protection bit 1 = Code protection disabled 0 = All program memory is code protected											
bit 3		PWRTE : Power-up Timer Enable bit 1 = Power-up Timer is disabled 0 = Power-up Timer is enabled											
bit 2		WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 1-0		FOSC1 11 = R 10 = H 01 = X 00 = L	:FOSC(C oscilla S oscilla T oscilla P oscilla	D: Oscilla ator ator tor tor	ator Sele	ection bi	ts						

6.10.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., Max. WDT Prescaler), it may take several seconds before a WDT time-out occurs.

TABLE 6-7: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
2007h	Config. bits	(2)	(2)	(2)	(2)	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0	(2)	
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown. Shaded cells are not used by the WDT.

Note 1: See Register 6-1 for operation of the PWRTE bit.

2: See Register 6-1 and Section 6.12 for operation of the code and data protection bits.

NOTES:

7.1 Instruction Descriptions

ADDLW	Add Literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \le k \le 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.			

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is exe- cuted instead, making this a 2Tcy instruction.

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f		
Syntax:	[<i>label</i>] XORLW k	Syntax:	[<i>label</i>] XORWF f,d		
Operands:	$0 \leq k \leq 255$	Operands:	$0 \le f \le 127$		
Operation:	(W) .XOR. $k \rightarrow (W)$		$a \in [0, 1]$		
Status Affected: Z		Operation:	(W) .XOR. (f) \rightarrow (destination)		
Description:	The contents of the W register	Status Affected:	Z		
·	are XOR'ed with the eight-bit lit- eral 'k'. The result is placed in the W register.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		

9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial)

DC Characteristics All Pins Except Power Supply Pins			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC specifications(Section 9.1)				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V \text{ (Note 4)}$
D030A			Vss	—	0.16Vdd	V	Entire range (Note 4)
D031		with Schmitt Trigger buffer	Vss	_	0.2Vdd	V	Entire range
D032		MCLR, RA4/T0CKI	Vss	_	0.2Vdd	V	
D033		OSC1 (XT, HS and LP modes)	Vss	—	0.3Vdd	V	(Note 1)
D034		OSC1 (RC mode)	Vss		0.1Vdd	V	
	VIH	Input High Voltage					
		I/O ports:		—			
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$ (Note 4)
D040A			0.25VDD+0.8	_	VDD	V	Entire range (Note 4)
D041		with Schmitt Trigger buffer	0.8 VDD	_	Vdd		Entire range
D042		MCLR,	0.8 VDD	_	Vdd	V	
D042A		RA4/T0CKI	0.8 Vdd	_	8.5	V	
D043		OSC1 (XT, HS and LP modes)	0.8 Vdd	_	Vdd	V	(Note 1)
D043A		OSC1 (RC mode)	0.9 Vdd		Vdd	V	
D050	VHYS	Hysteresis of Schmitt Trigger Inputs	—	0.1		V	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current (Notes 2, 3)					
D060		I/O ports	_	—	±1	μΑ	$\label{eq:VSS} \begin{split} &Vss \leq V \text{PIN} \leq V \text{DD}, \\ &Pin \text{ at hi-impedance} \end{split}$
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1	_	—	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: The user may choose the better of the two specs.

FIGURE 10-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE, 25°C)

© 2001-2013 Microchip Technology Inc.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	N	IILLIMETER	S	
Dimension Lin	nits	MIN	NOM	MAX	
Number of Pins	Ν		18		
Pitch	е	1.27 BSC			
Overall Height	А	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	I	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1	7.50 BSC			
Overall Length	D	11.55 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	I	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	I	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	9/1998	This is a new data sheet. However, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16F8X Data Sheet</i> , DS30430.
В	05/2001	Added DC and AC Characteristics Graphs and Tables to Section 10.
С	11/2011	Updated the "Packaging Information" section.

PIC16F84A

Prescaler, Timer0
Assignment (PSA Bit)9
Rate Select (PS2:PS0 Bits)9
Program Counter
PCL Register7, 11, 25
PCLATH Register7, 11, 25
Reset Conditions24
Program Memory5
General Purpose Registers6
Interrupt Vector 5, 29
RESET Vector5
Special Function Registers 6, 7
Programming, Device Instructions

R

RAM. See Data Memory
Reader Response
Register File
Register File Map6
Registers
Configuration Word 21
EECON1 (EEPROM Control)13
INTCON
OPTION
STATUS8
Reset
Block Diagram24, 26
MCLR Reset. See MCLR
Power-on Reset (POR). See Power-on Reset (POR)
Reset Conditions for All Registers25
Reset Conditions for Program Counter24
Reset Conditions for STATUS Register
WDT Reset. See Watchdog Timer (WDT)
Revision History77
RP1:RP0 (Bank Select) bits

S

Saving W Register and STATUS in R	AM 30
SLEEP	
Software Simulator (MPLAB SIM)	
Special Features of the CPU	21
Special Function Registers	
Speed, Operating	
Stack	
STATUS Register	7, 8, 25, 30
C Bit	8
DC Bit	
PD Bit	
Reset Conditions	
RP0 Bit	6
TO Bit	8, 24, 28, 30, 32, 33
Z Bit	

Т

Time-out (TO) Bit. See Power-on Reset (POR) Timer0.....

mer0	19
Associated Registers	
Block Diagram	
Clock Source Edge Select (T0SE Bit)	9
Clock Source Select (T0CS Bit)	9
Overflow Enable (T0IE Bit)	10, 29
Overflow Flag (T0IF Bit)	10, 20, 29
Overflow Interrupt	20, 29
Prescaler. See Prescaler	
RA4/T0CKI Pin, External Clock	19
TMR0 Register	7, 20, 25

Timing Conditions	. 54
Timing Diagrams	
CLKOUT and I/O	. 56
Diagrams and Specifications	. 55
CLKOUT and I/O Requirements	. 56
External Clock Requirements	. 55
RESET, Watchdog Timer, Oscillator	
Start-up Timer and Power-up	
Timer Requirements	. 57
Timer0 Clock Requirements	. 58
External Clock	. 55
RESET, Watchdog Timer, Oscillator Start-up	
Timer and Power-up Timer	. 57
Time-out Sequence on Power-up27	, 28
Timer0 Clock	. 58
Wake-up From Sleep Through Interrupt	. 32
Timing Parameter Symbology	. 53
TO bit	8
External Clock Requirements RESET, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements Timer0 Clock Requirements External Clock RESET, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Time-out Sequence on Power-up	. 55 . 57 . 58 . 57 . 58 . 57 . 58 . 32 . 53 . 53

W

25, 30
21, 26, 28, 29, 32
21, 30
31
30

Ζ

Z (Zero) bit	8
--------------	---

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

)S35007C

DS35007C-page 86

PIC16F84A PRODUCT IDENTIFICATION SYSTEM

To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.

PART NO. Device F	-XX X /XX XXX requency Temperature Package Pattern Range Range	 Examples: a) PIC16F84A -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16F84A ⁽¹⁾ , PIC16F84AT ⁽²⁾ PIC16LF84A ⁽¹⁾ , PIC16LF84AT ⁽²⁾	 b) PIC16LF84A - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits.
Frequency Range	04 = 4 MHz 20 = 20 MHz	 c) PIC16F84A - 20I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits.
Temperature Range	- = 0°C to +70°C I = -40°C to +85°C	
Package	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP	 Note 1: F = Standard VDD range LF = Extended VDD range 2: T = in tape and reel - SOIC and SSOP packages only.
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements . Blank for OTP and Windowed devices.	

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12