

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84a-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F84A. These are the program memory and the data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The 64 bytes of data EEPROM memory have the address range 0h-3Fh. More details on the EEPROM memory can be found in Section 3.0.

Additional information on device memory may be found in the PIC[®] Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

The PIC16FXX has a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F84A, the first 1K x 14 (0000h-03FFh) are physically implemented (Figure 2-1). Accessing a location above the physically implemented address will cause a wraparound. For example, for locations 20h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h, the instruction will be the same.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1:

PROGRAM MEMORY MAP AND STACK - PIC16F84A

2.2 Data Memory Organization

The data memory is partitioned into two areas. The first is the Special Function Registers (SFR) area, while the second is the General Purpose Registers (GPR) area. The SFRs control the operation of the device.

Portions of data memory are banked. This is for both the SFR area and the GPR area. The GPR area is banked to allow greater than 116 bytes of general purpose RAM. The banked areas of the SFR are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the STATUS Register. Figure 2-2 shows the data memory map organization.

Instructions MOVWF and MOVF can move values from the W register to any location in the register file ("F"), and vice-versa.

The entire data memory can be accessed either directly using the absolute address of each register file or indirectly through the File Select Register (FSR) (Section 2.5). Indirect addressing uses the present value of the RP0 bit for access into the banked areas of data memory.

Data memory is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected by clearing the RP0 bit (STATUS<5>). Setting the RP0 bit selects Bank 1. Each Bank extends up to 7Fh (128 bytes). The first twelve locations of each Bank are reserved for the Special Function Registers. The remainder are General Purpose Registers, implemented as static RAM.

2.2.1 GENERAL PURPOSE REGISTER FILE

Each General Purpose Register (GPR) is 8-bits wide and is accessed either directly or indirectly through the FSR (Section 2.5).

The GPR addresses in Bank 1 are mapped to addresses in Bank 0. As an example, addressing location 0Ch or 8Ch will access the same GPR.

FIGURE 2-2: REGISTER FILE MAP -PIC16F84A

2.3.1 STATUS REGISTER

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bit for data memory.

As with any register, the STATUS register can be the destination for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ uluu$ (where u = unchanged).

Only the BCF, BSF, SWAPF and MOVWF instructions should be used to alter the STATUS register (Table 7-2), because these instructions do not affect any status bit.

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16F84A and should be programmed as cleared. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.
 - 3: When the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. The specified bit(s) will be updated according to device logic

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7					•	•	bit 0
bit 7-6	Unimplem	ented: Mair	ntain as '0'					
bit 5	RP0: Regis	ster Bank Se	elect bits (us	ed for direct	addressin	g)		
	01 = Bank	1 (80h - FF	h)					
	00 = Bank	0 (00h - 7Fi	n)					
bit 4	TO: Time-c	out bit			• ,			
	1 = After p 0 = A WD	ower-up, CI T time-out o	CRWDT INStru	ction, or SL	EEP Instruc	tion		
bit 3	PD: Power	-down bit						
	1 = After p	ower-up or	by the CLRW	DT instruction	on			
	0 = By exe	ecution of the	e SLEEP ins	truction				
bit 2	Z: Zero bit							
	1 = The re	esult of an ar	ithmetic or l	ogic operati	on is zero			
	0 = The re	esult of an ar	ithmetic or l	ogic operati	on is not ze	ero		
bit 1	DC: Digit c is reversed	arry/borrow I)	bit (ADDWF, A	ADDLW,SUB	LW,SUBWF	instructions)	(for borrow,	the polarity
	 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result 							
bit 0	C : Carry/b reversed)	orrow bit (A	DDWF, ADDL	W,SUBLW,S	UBWF ins	tructions) (fo	r borrow, the	e polarity is
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 							
	Note:	A subtractio	on is execute	ed by adding	g the two's	complement	of the secor	nd operand.
		bit of the sc	ource registe	r.			ior the high	
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Uni	mplemented	bit, read as	'0'
	- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

3.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F84A devices have 64 bytes of data EEPROM with an address range from 0h to 3Fh.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The writetime will vary with voltage and temperature as well as from chip to chip. Please refer to AC specifications for exact limits.

When the device is code protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory.

Additional information on the Data EEPROM is available in the PIC[®] Mid-Range Reference Manual (DS33023).

	U-0	U-0	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0	
				EEIF	WRERR	WREN	WR	RD	
	bit 7							bit 0	
bit 7-5	Unimplem	ented: Read	d as '0'						
bit 4	EEIF: EEP	ROM Write	Operation Ir	terrupt Flag	bit				
	1 = The wr 0 = The wr	 1 = The write operation completed (must be cleared in software) 0 = The write operation is not complete or has not been started 							
bit 3	WRERR: E	EPROM Er	ror Flag bit						
	 1 = A write operation is prematurely terminated (any MCLR Reset or any WDT Reset during normal operation) 0 = The write operation completed 								
bit 2	WREN: EE	PROM Write	e Enable bit						
	 1 = Allows write cycles 0 = Inhibits write to the EEPROM 								
bit 1	WR: Write	Control bit							
	 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software. 0 = Write cycle to the EEPROM is complete 								
bit 0	RD: Read	Control bit							
	1 = Initiates cleared	1 = Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not cleared) in software.							
	0 = Does not initiate an EEPROM read								
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'	
	- n = Value	at POR	'1' = Bi	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown	

REGISTER 3-1: EECON1 REGISTER (ADDRESS 88h)

3.1 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 3-1: DATA EEPROM READ

BCF	STATUS, RPO	;	Bank 0
MOVLW	CONFIG_ADDR	;	
MOVWF	EEADR	;	Address to read
BSF	STATUS, RPO	;	Bank 1
BSF	EECON1, RD	;	EE Read
BCF	STATUS, RPO	;	Bank 0
MOVF	EEDATA, W	;	W = EEDATA

3.2 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 3-2: DATA EEPROM WRITE

		BSF	STATUS, F	RP0	;	Bank 1
		BCF	INICON, C	315	ï	DISADIE INIS.
		BSF	EECON1, W	VREN	;	Enable Write
		MOVLW	55h		;	
		MOVWF	EECON2		;	Write 55h
	_ e	MOVLW	AAh		;	
Q.	2 0	MOVWF	EECON2		;	Write AAh
	n en	BSF	EECON1,WF	2	;	Set WR bit
Q	eq 1				;	begin write
	2 00	BSF	INTCON, G	GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

3.3 Write Verify

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 3-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

Generally, the EEPROM write failure will be a bit which was written as a '0', but reads back as a '1' (due to leakage off the bit).

EXAMPLE 3-3: WRITE VERIFY

	BCF	STATUS, RPO	;	Bank 0
	:		;	Any code
	:		;	can go here
	MOVF	EEDATA,W	;	Must be in Bank 0
	BSF	STATUS, RPO	;	Bank 1
READ				
	BSF	EECON1, RD	;	YES, Read the
			;	value written
	BCF	STATUS, RPO	;	Bank 0
			;	
			;	Is the value written
			;	(in W reg) and
			;	read (in EEDATA)
			;	the same?
			;	
	SUBWF	EEDATA, W	;	
	BTFSS	STATUS, Z	;	Is difference 0?
	GOTO	WRITE_ERR	;	NO, Write error

TABLE 3-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
08h	EEDATA	EEPRO	EPROM Data Register						XXXX XXXX	uuuu uuuu	
09h	EEADR	EEPRO	EEPROM Address Register xxx					XXXX XXXX	uuuu uuuu		
88h	EECON1		—	—	EEIF	WRERR	WREN	WR	RD	0 x000	0 q000
89h	EECON2	EEPRO	M Contro	l Registe	r 2						

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

4.2 PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 4-2: INITIALIZING PORTB

BCF	STATUS, RPO	;
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 4-3: BLOCK DIAGRAM OF PINS RB7:RB4

FIGURE 4-4:

BLOCK DIAGRAM OF PINS RB3:RB0

TABLE 6-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1/C1	OSC2/C2			
LP	32 kHz	68 - 100 pF	68 - 100 pF			
	200 kHz	15 - 33 pF	15 - 33 pF			
XT	100 kHz	100 - 150 pF	100 - 150 pF			
	2 MHz	15 - 33 pF	15 - 33 pF			
	4 MHz	15 - 33 pF	15 - 33 pF			
HS	4 MHz	15 - 33 pF	15 - 33 pF			
	20 MHz	15 - 33 pF	15 - 33 pF			
Note:	Higher capacitance increases the stability of the oscillator, but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid over- driving crystals with low drive level specifi- cation. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components. For VDD > 4.5V, C1 = C2 \approx 30 pF is recom-					

6.2.3 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) values, capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values. The user needs to take into account variation, due to tolerance of the external R and C components. Figure 6-3 shows how an R/C combination is connected to the PIC16F84A.

6.3 RESET

The PIC16F84A differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR during normal operation
- MCLR during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)

Figure 6-4 shows a simplified block diagram of the On-Chip RESET Circuit. The $\overline{\text{MCLR}}$ Reset path has a noise filter to ignore small pulses. The electrical specifications state the pulse width requirements for the $\overline{\text{MCLR}}$ pin.

Some registers are not affected in any RESET condition; their status is unknown on a POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on POR, MCLR or WDT Reset during normal operation and on MCLR during SLEEP. They are not affected by a WDT Reset during SLEEP, since this RESET is viewed as the resumption of normal operation.

Table 6-3 gives a description of RESET conditions for the program counter (PC) and the STATUS register. Table 6-4 gives a full description of RESET states for all registers.

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different RESET situations (Section 6.7). These bits are used in software to determine the nature of the RESET.

TABLE 6-3: RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR during normal operation	000h	000u uuuu
MCLR during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	uuu0 0uuu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu

Legend: u = unchanged, x = unknown

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

6.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD must be met for this to operate properly. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

The POR circuit does not produce an internal RESET when VDD declines.

6.5 **Power-up Timer (PWRT)**

The Power-up Timer (PWRT) provides a fixed 72 ms nominal time-out (TPWRT) from POR (Figures 6-6 through 6-9). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level (possible exception shown in Figure 6-9).

A configuration bit, PWRTE, can enable/disable the PWRT. See Register 6-1 for the operation of the PWRTE bit for a particular device.

The power-up time delay TPWRT will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

6.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) after the PWRT delay ends (Figure 6-6, Figure 6-7, Figure 6-8 and Figure 6-9). This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out (TOST) is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD has reached its final value. In this case (Figure 6-9), an external Power-on Reset circuit may be necessary (Figure 6-5).

FIGURE 6-5: EXTI RES

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if VDD power-up rate is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 k Ω is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 μ A). A larger voltage drop will degrade VIH level on the MCLR pin.
 - **3:** $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C, in the event of a MCLR pin breakdown due to ESD or EOS.

FIGURE 6-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 6-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

PIC16F84A

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if $(f < b >) = 0$
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f				
Syntax:	[label] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.				

CLRF	Clear f		
Syntax:	[<i>label</i>] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f		
Syntax:	[<i>label</i>] XORLW k	Syntax:	[<i>label</i>] XORWF f,d		
Operands:	$0 \leq k \leq 255$	Operands:	$0 \le f \le 127$		
Operation:	(W) .XOR. $k \rightarrow (W)$		$a \in [0, 1]$		
Status Affected:	Z	Operation:	(W) .XOR. (f) \rightarrow (destination)		
Description:	The contents of the W register	Status Affected:	Z		
·	are XOR'ed with the eight-bit lit- eral 'k'. The result is placed in the W register.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		

8.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

8.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

9.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3 to +7.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	-0.3 to +14V
Voltage on RA4 with respect to Vss	-0.3 to +8.5V
Total power dissipation ⁽²⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, IIK (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA	
Maximum current sourced by PORTA	
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	100 mA
Note 4. Veltage epikes helew Ves at the \overline{MOLD} pin inducing surrants greater t	han 90 mA may aquaa latah un

- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, <u>may</u> cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - **2:** Power dissipation is calculated as follows: Pdis = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial)

DC Characteristics All Pins Except Power Supply Pins		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC specifications(Section 9.1)						
Param No.	Symbol	Characteristic	Min	Min Typ† Max Units Conditions				
	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V \text{ (Note 4)}$	
D030A			Vss	_	0.16Vdd	V	Entire range (Note 4)	
D031		with Schmitt Trigger buffer	Vss	_	0.2Vdd	V	Entire range	
D032		MCLR, RA4/T0CKI	Vss	_	0.2Vdd	V		
D033		OSC1 (XT, HS and LP modes)	Vss	_	0.3Vdd	V	(Note 1)	
D034		OSC1 (RC mode)	Vss		0.1Vdd	V		
	VIH	Input High Voltage						
		I/O ports:		—				
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$ (Note 4)	
D040A			0.25VDD+0.8	_	VDD	V	Entire range (Note 4)	
D041		with Schmitt Trigger buffer	0.8 VDD	_	Vdd		Entire range	
D042		MCLR,	0.8 VDD	_	Vdd	V		
D042A		RA4/T0CKI	0.8 Vdd	_	8.5	V		
D043		OSC1 (XT, HS and LP modes)	0.8 Vdd	_	Vdd	V	(Note 1)	
D043A		OSC1 (RC mode)	0.9 Vdd		Vdd	V		
D050	VHYS	Hysteresis of Schmitt Trigger Inputs	—	0.1		V		
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5.0V, VPIN = VSS	
	lı∟	Input Leakage Current (Notes 2, 3)						
D060		I/O ports	_	—	±1	μΑ	$\label{eq:VSS} \begin{split} &Vss \leq V \text{PIN} \leq V \text{DD}, \\ &Pin \text{ at hi-impedance} \end{split}$	
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1	_	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: The user may choose the better of the two specs.

CLKOUT AND I/O TIMING FIGURE 9-7:

TABLE 9-3:	CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Characteristic		Тур†	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓	Standard	_	15	30	ns	(Note 1)
10A			Extended (LF)	_	15	120	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLKOUT↑	Standard		15	30	ns	(Note 1)
11A			Extended (LF)		15	120	ns	(Note 1)
12	TckR	CLKOUT rise time	Standard		15	30	ns	(Note 1)
12A			Extended (LF)		15	100	ns	(Note 1)
13	TckF	CLKOUT fall time	Standard		15	30	ns	(Note 1)
13A			Extended (LF)		15	100	ns	(Note 1)
14	TckL2ioV	CLKOUT \downarrow to Port out valid			_	0.5Tcy +20	ns	(Note 1)
15	TioV2ckH	Port in valid before	Standard	0.30Tcy + 30	—	_	ns	(Note 1)
CLKOUT ↑		CLKOUT ↑	Extended (LF)	0.30Tcy + 80	_		ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT ↑		0	_		ns	(Note 1)
17	TosH2ioV	OSC1↑ (Q1 cycle) to	Standard	_	—	125	ns	
		Port out valid	Extended (LF)	_	—	250	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to Port	Standard	10	—	_	ns	
		input invalid (I/O in hold time)	Extended (LF)	10	—	_	ns	
19	TioV2osH	Port input valid to OSC1 [↑]	Standard	-75	—	_	ns	
		(I/O in setup time)	Extended (LF)	-175	_		ns	
20	TioR	Port output rise time	Standard	_	10	35	ns	
20A			Extended (LF)	_	10	70	ns	
21	TioF	Port output fall time	Standard		10	35	ns	
21A			Extended (LF)	_	10	70	ns	
22	TINP	INT pin high	Standard	20	—	_	ns	
22A		or low time	Extended (LF)	55	—	_	ns	
23	Trbp	RB7:RB4 change INT	Standard	Tosc§	—	—	ns	
23A		high or low time	Extended (LF)	Tosc§	—	_	ns	

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. † §

By design.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		18	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.880	.900	.920
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.014
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

SUBWF	1
SWAPF	1
XORLW	2
XORWF4	2
Summary Table3	6
INT Interrupt (RB0/INT)2	29
INTCON Register	29
EEIE Bit2	29
GIE Bit 10, 2	29
INTE Bit 10, 2	29
INTF Bit	29
PEIE Bit1	0
RBIE Bit	29
RBIF Bit10, 17, 2	29
TOIE Bit	29
T0IF Bit10, 20, 2	29
Internet Address	5
Interrupt Sources	29
Block Diagram	29
Data EEPROM Write Complete	2
Interrupt-on-Change (RB7:RB4)	52
RB0/INT Pin. External	52
TMR0 Overflow 20, 2	9
Interrupts, Context Saving During	30
Interrupts, Enable Bits	
Data EEPROM Write Complete Enable (EEIE Bit) 2	9
Global Interrupt Enable (GIE Bit)	0
Interrupt-on-Change (BB7:BB4) Enable (BBIE Bit) 1	õ
Peripheral Interrunt Enable (PEIE Bit)	ñ
RB0/INT Enable (INTE Bit)	ñ
TMR0 Overflow Enable (TOLE Bit)	0
Interrunts Flag Rits	à
Data EEDROM Write Complete Elag (EELE Bit)	20
Interrupt-on-Change (RB7:RB4) Flag (RBIE Bit)	0
RB0/INT Flag (INTE Bit)	0
TMP0 Overflow Flag (T0IF Bit)	0
IPD hit	Q Q
	0

Μ

Master Clear (MCLR)	
MCLR Pin	4
MCLR Reset, Normal Operation	24
MCLR Reset, SLEEP 2	4, 32
Memory Organization	5
Data EEPROM Memory	13
Data Memory	6
Program Memory	5
Microchip Internet Web Site	85
Migration from Baseline to Mid-Range Devices	80
MPLAB ASM30 Assembler, Linker, Librarian	44
MPLAB Integrated Development Environment Software	43
MPLAB PM3 Device Programmer	46
MPLAB REAL ICE In-Circuit Emulator System	45
MPLINK Object Linker/MPLIB Object Librarian	44

0

OPCODE Field Descriptions	
OPTION Register	9
INTEDG Bit	9
PS2:PS0 Bits	9
PSA Bit	9
RBPU Bit	9
T0CS Bit	9
TOSE Bit	9

OPTION_REG Register7,	18, 20, 25
INTEDG Bit	
PS2:PS0 Bits	
PSA Bit	
OSC1 Pin	
OSC2 Pin	
Oscillator Configuration	21, 22
Block Diagram	
Capacitor Selection for Ceramic Resonators.	
Capacitor Selection for Crystal Oscillator	
Crystal Oscillator/Ceramic Resonators	
HŚ	
LP	
Oscillator Types	
RC	22, 23, 28
XT	
	,

Ρ

Packaging Information 69
Marking
PD bit
Pinout Descriptions
Pointer, FSR
POR. See Power-on Reset
PORTA 4 15
Associated Registers
Functions 16
Fullctions
Initializing
PORTA Register
RA3:RA0 Block Diagram
RA4 Block Diagram 15
RA4/T0CKI Pin4, 15, 19
TRISA Register7, 15, 16, 20, 25
PORTB4, 17
Associated Registers 18
Functions
Initializing17
PORTB Register
Pull-up Enable Bit (RBPU Bit)
RB0/INT Edge Select (INTEDG Bit) 9
RB0/INT Pin External 4 18 29
RB3:RB0 Block Diagram
PB7:PB4 Block Diagram
RD7.RD4 block Diagrafii
DDZ:DDA Interrupt on Change Eachle (DDIE Dit)
RB7:RB4 Interrupt-on-Change Enable (RBIE Bit) 10
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)10, 17
I RISB Register
Postscaler, WDT
Assignment (PSA Bit) 9
Rate Select (PS2:PS0 Bits) 9
Postscaler. See Prescaler
Power-down (PD) Bit. See Power-on Reset (POR)
Power-down Mode. See SLEEP
Power-on Reset (POR)
Oscillator Start-up Timer (OST)
PD Bit 8, 24, 28, 32, 33
Power-up Timer (PWRT) 21, 26
Time-out Sequence
Time out Sequence on Power up
111111111111111111111111111111111111
TO Bit
Assignment (PSA Bit)
BIOCK Diagram
Rate Select (PS2:PS0 Bits) 19
Switching Prescaler Assignment 20

NOTES: