

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84at-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

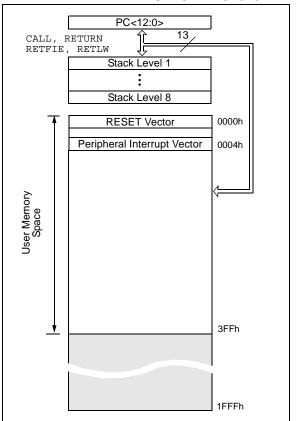
2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F84A. These are the program memory and the data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The 64 bytes of data EEPROM memory have the address range 0h-3Fh. More details on the EEPROM memory can be found in Section 3.0.

Additional information on device memory may be found in the PIC[®] Mid-Range Reference Manual, (DS33023).


2.1 Program Memory Organization

The PIC16FXX has a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F84A, the first 1K x 14 (0000h-03FFh) are physically implemented (Figure 2-1). Accessing a location above the physically implemented address will cause a wraparound. For example, for locations 20h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h, the instruction will be the same.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1:

PROGRAM MEMORY MAP AND STACK - PIC16F84A

2.3.2 OPTION REGISTER

bit

bit

bit

bit

bit

bit

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	When the prescaler is assigned to								
	the WDT (PSA = '1'), TMR0 has a 1:1								
	prescaler assignment.								

REGISTER 2-2: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
bit 7							bit (
RBPU: PO	ORTB Pull-up	Enable bit						
	TB pull-ups a							
	TB pull-ups a		oy individual	port latch v	alues			
	Interrupt Edg							
	upt on rising upt on falling							
TOCS: TM	IR0 Clock So	urce Select	bit					
	sition on RA4, nal instruction		(CLKOUT)					
	IR0 Source E	-	. ,					
	ment on high	•		4/T0CKI pin				
0 = Incre	ment on low-	to-high trans	ition on RA	4/T0CKI pin				
PSA: Pres	scaler Assign	ment bit						
	caler is assign							
	aler is assign			le				
PS2:PS0: Prescaler Rate Select bits								
Bit Value	TMR0 Rate	WDT Rate						
000	1:2	1:1						
001 010	1:4 1:8	1:2 1:4						
010	1:8	1:8						
100	1:32	1:16						
101	1:64	1:32						
110	1:128	1 : 64 1 : 128						
111	1 : 256	1.120						
Legend:								
R = Read	able bit	W = W	ritable bit	U = Unir	nplemented	bit, read as	'0'	
- n = Valu		'1' = B		101 011	s cleared	x = Bit is u		

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] Mid-Range Reference Manual (DS33023).

4.1 PORTA and TRISA Registers

PORTA is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as inputs and read as '0'.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read. This value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

BCF	STATUS, RPO	;	
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0x0F	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA4 as output
		;	TRISA<7:5> are always
		;	read as '0'.

FIGURE 4-1:

BLOCK DIAGRAM OF PINS RA3:RA0

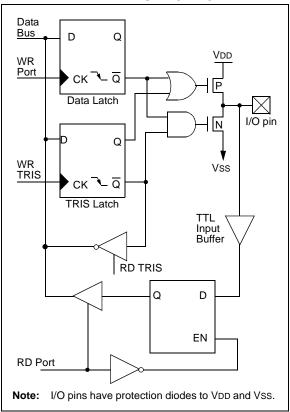
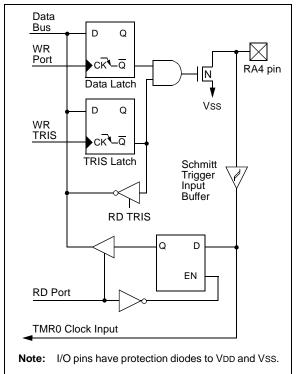



FIGURE 4-2:

BLOCK DIAGRAM OF PIN RA4

4.2 PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 4-2: INITIALIZING PORTB

BCF	STATUS, RPO	;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs
1			

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 4-3: BLOCK DIAGRAM OF PINS RB7:RB4

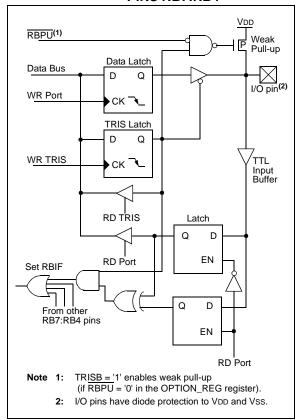
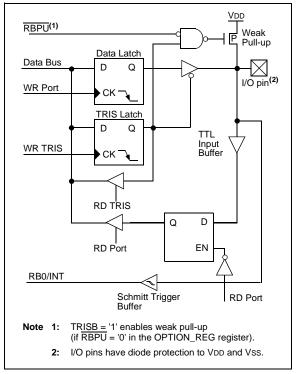



FIGURE 4-4:

BLOCK DIAGRAM OF PINS RB3:RB0

TABLE 7-2: PIC16CXXX INSTRUCTION SET

Operands Description Cycles MSb LSb Affected Note BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF f, d Add W and f 1 00 0111 dfff ffff Z 1,2 ANDWF f, d AND W with f 1 00 00101 dfff ffff Z 1,2 CLRF f Clear f 1 00 00101 dfff fff Z 1,2 CDECF f, d Decrement f, Skip if 0 1 (2) 00 1010 dfff fff Z 1,2 DECF f, d Increment f, Skip if 0 1 (2) 00 1010 dfff fff 1,2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff 1,2 1,2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1100 0000 dff ffff 1,2 INCFSZ f, d Notate Left (through Carry	Mnemonic, Operands		Description			14-Bit	Opcode	Status			
ADDWF f, d Add W and f 1 00 0111 dff ffff C,DC,Z 1.2 ANDWF f, d AND W with f 1 00 0101 dfff ffff Z 2 CLRF f Clear f 1 00 0001 dfff ffff Z 2 COMF f, d Complement f 1 00 0001 dfff ffff Z 1.2 DECFSZ f, d Decrement f, Skip if 0 1 (2) 00 1011 dfff ffff Z 1.2 INCFS f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1.2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff fffff Z 1.2 INCFSZ f, d Move f 1 00 0000 dfff ffff Z 1.2 MOVF f, d Rotate Left fthrough Carry 1 00 0000 dfff ffff C 1.2					MSb			LSb	Affected	Notes	
ANDWF f, d AND With f 1 00 0101 dff ffff Z 12 CLRF f Clear f 1 00 0001 lfff ffff Z 12 CLRW - Clear W 1 00 0001 lfff ffff Z 12 COMF f, d Decrement f 1 00 0011 dfff ffff Z 12 DECFSZ f, d Decrement f, Skip if 0 1 (2) 00 111 dfff ffff Z 1,2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1,2 IORVF f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1,2 MOVF f, d Move f 1 00 0000 0xx0 0000 REF f, d Rotate Right fft mough Carry 1 00 110 dff ffff C 1,2 SUBWF f, d		BYTE-ORIENTED FILE REGISTER OPERATIONS									
CLRF f Clear f Clear f 1 00 0001 lfff fff Z 2 COMF f, d Complement f 1 00 0001 0xxx <xxxx< td=""> Z 2 DECF f, d Decrement f, Skip if 0 1 (2) 00 1011 dfff ffff Z 1,2 DECFSZ f, d Decrement f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1,2 INCF f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1,2 INCFVF f, d Move f 1 00 1001 dfff ffff Z 1,2 INCFVF f Move f 1 00 100 dfff ffff Z 1,2 MOVF f Move f 1 00 100 100 100 100 100 100 110 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2</xxxx<>	ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
CLRW - Clear W 1 00 0001 0xxx xxxx Z COMF f, d Complement f 1 00 0011 dfff ffff Z 1,2 DECF f, d Decrement f, Skip if 0 1 (2) 00 1011 dfff ffff Z 1,2 INCF f, d Increment f 1 00 1010 dfff ffff Z 1,2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1,2 MOVF f, d Increment f, Skip if 0 1 (2) 00 1111 dfff T 1,2 MOVF f, d Move f 1 00 0000 1ff T 1,2 MOVF f, d Rotate Left fthrough Carry 1 00 1010 dfff C,DC,Z 1,2 SUBWF f, d Subtract W from f 1 00 0100 dffff	ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
COMF f, d Complement f 1 00 1001 dfff ffff Z 1,2 DECF f, d Decrement f, Skip if 0 1 (2) 00 1011 dfff ffff Z 1,2 INCF f, d Increment f, Skip if 0 1 (2) 00 1010 dfff ffff Z 1,2 INCF f, d Increment f, Skip if 0 1 (2) 00 1010 dfff ffff Z 1,2 INCFSZ f, d Increment f 1 00 1000 dfff ffff Z 1,2 INCFV f, d Move W with f 1 00 1000 dfff ffff Z 1,2 MOVF f, d Rotate Left fthrough Carry 1 00 1000 0000 0xco 0000 RC 1,2 SUBWF f, d Subtract W from f 1 00 1100 dfff ffff Z 1,2 SUBWF f, d Sub	CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
DECF f, d Decrement f, Skip if 0 1 0 0011 dfff fff Z 1/2 DECFSZ f, d Increment f, Skip if 0 1 (2) 00 1011 dfff fff 1/2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1010 dfff fff Z 1/2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1/2 INCFSZ f, d Increment f, Skip if 0 1 00 0100 dfff ffff Z 1/2 MOVF f, d Move f 1 00 0100 dfff ffff Z 1/2 MOVF f, d Rotate Left fhrough Carry 1 00 1010 dfff ffff Z 1/2 SUBWF f, d Subtract W from f 1 00 1010 dfff ffff 1/2 1/2 SUBWF f, d Subtract W f	CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
DECF f, d Decrement f, Skip if 0 1 00 0011 dfff fff Z 1, 2 DECFSZ f, d Decrement f, Skip if 0 1 1 00 1010 dfff ffff Z 1, 2 INCF f, d Increment f, Skip if 0 1 1 00 1010 dfff ffff Z 1, 2 INCFSZ f, d Increment f, Skip if 0 1 1 00 0100 dfff ffff Z 1, 2 INCFSZ f, d Inclusive OR W with f 1 00 0100 dfff ffff Z 1, 2 MOVF f Move f No operation 1 00 0000 0000 0000 R RF f, d Subtract W from f 1 00 1010 dfff ffff C 1, 2 SUBWF f, d Subtract W from f 1 00 1010 dfff ffff 1, 2 1, 2 1, 2 1, 2<	COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
INCF f, d Increment f, Skip if 0 1 0 1010 dfff ffff Z 1,2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1,2 IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z 1,2 MOVF f, d Move W to f 1 00 1000 dfff ffff Z 1,2 MOVF f Move W to f 1 00 1000 dfff ffff Z 1,2 MOVF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C 1,2 SUBWF f, d Subtract W from f 1 00 1100 dfff ffff Z 1,2 XORWF f, d Subtract W from f 1 00 01010 dfff ffff Z 1,2 XORWF f, d Bit Set f	DECF	f, d		1	00	0011	dfff	ffff	Z	1,2	
INCF f, d Increment f, Skip if 0 1 0 1010 dfff ffff Z 1,2 INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff Z 1,2 IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z 1,2 MOVF f, d Move W to f 1 00 1000 dfff ffff Z 1,2 MOVF f Move W to f 1 00 1000 dfff ffff Z 1,2 MOVF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C 1,2 SUBWF f, d Subtract W from f 1 00 1100 dfff ffff Z 1,2 XORWF f, d Subtract W from f 1 00 01010 dfff ffff Z 1,2 XORWF f, d Bit Set f	DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1,2,3	
INCFSZ f, d Increment f, Skip if 0 1 (2) 00 1111 dfff ffff 1,2, IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z 1,2, MOVF f, d Move f 1 00 0100 dfff ffff Z 1,2, MOVF f, d Move f 1 00 0100 dfff ffff Z 1,2, MOVF f Move f 1 00 0000 0x00	INCF	f. d	Increment f	. ,	00	1010	dfff	ffff	Z	1,2	
IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z 1, 2 MOVF f, d Move f 1 00 1000 dfff ffff Z 1, 2 MOVWF f Move W to f 1 00 1000 dfff ffff Z 1, 2 MOVF f Move W to f 1 00 1000 dfff ffff Z 1, 2 RF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C 1, 2 SUBWF f, d Swap nibbles in f 1 00 101 dfff ffff 1, 2 XORWF f, d Exclusive OR W with f 1 0 0100 dfff ffff 1, 2 XORWF f, d Exclusive OR W with f 1 1 00 101 01bb bfff ffff 2 1, 2 XORWF f, d Bit Test f, Skip if Clear	INCFSZ	f. d	Increment f. Skip if 0	1 (2)	00	1111	dfff	ffff		1,2,3	
MOVF f, d Move f 1 00 1000 dfff ffff Z 1, 2 MOVF f Move W to f 1 00 0000 10ff ffff Z 1, 2 NOP - No Operation 1 00 0000 0xx0 0000 Cxx0 Cx1, 2 Cxx0 Cxx0 Cxx0 Cx1, 2 Cxx0 Cx1, 2 Cxx0 Cxx0 Cx0, Cx Cx1, 2 Cxx0 Cxx0 Cx1, 2 C	IORWF	,							Z	1,2	
MOWWF f Move W to f 1 00 0000 1ff ffff fff NOP - No Operation 1 00 0000 0xx0 0xx0 0x00 0x00 0xx0 0x00 0xx0 0x00	-	,									
NOP - No Operation 1 00 0000 0xx0 0000 RLF f, d Rotate Left fthrough Carry 1 00 1101 dfff ffff C 1,2 RRF f, d Subtract W from f 1 00 1000 dfff ffff C 1,2 SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff Z 1,2 XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z 1,2 BIT-ORIENTED FILE REGISTER OPERATIONS BCF f, b Bit Clear f 1 01 00bb bfff ffff 1,2 BSF f, b Bit Set f 1 01 01bb bfff ffff 3 BTFSS f, b Bit Test f, Skip if Clear 1 (2) 01 11bb bfff ffff 3 CALL k Call subroutine 2		, -		-					_	.,_	
RLF f, d Rotate Left fthrough Carry 1 00 1101 dfff ffff C 1,2 RRF f, d Rotate Right fthrough Carry 1 00 1100 dfff ffff C 1,2 SUBWF f, d Subtract W from f 1 00 0100 dfff ffff C,DC,Z 1,2 SWAPF f, d Swap nibbles in f 1 00 1110 dfff ffff Z,DC,Z 1,2 XORWF f, d Exclusive OR W with f 1 00 1100 dfff ffff Z 1,2 XORWF f, d Bit Clear f 1 01 00bb bfff ffff 1,2 BCF f, b Bit Test f, Skip if Clear 1 1 01 00bb bfff ffff 1,2 BTFSC f, b Bit Test f, Skip if Set 1 1 11 1111 111x kkkk kkkk Z ADDLW k Add litera											
RRF f, d Rotate Right f through Carry 1 00 1100 dfff fff C 1,2 SUBWF f, d Subtract W from f 1 00 0010 dfff ffff C,DC,Z 1,2 SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff Z,DC,Z 1,2 XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z 1,2 BIT-ORIENTED FILE REGISTER OPERATIONS BCF f, b Bit Clear f 1 01 00bb bfff ffff 1,2 BTFSC f, b Bit Test f, Skip if Clear 1 (2) 01 10bb bfff ffff 3 CLITERAL AND CONTROL OPERATIONS LITERAL AND CONTROL OPERATIONS Z Z Add literal and W 1 11 11101 kkkk kkkk Z Z ADDLW k Add literal and W 1 1 11 1000 kkkk kkkk	-	f. d		-					С	1,2	
SUBWF f, d Subtract W from f 1 00 0010 dfff ffff C,DC,Z 1,2 SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff Z 1,2 XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z 1,2 BIT-ORIENTED FILE REGISTER OPERATIONS BCF f, b Bit Clear f 1 01 00bb bfff ffff 1,2 BSF f, b Bit Test f, Skip if Clear 1 01 01bb bfff ffff 1,2 BTFSS f, b Bit Test f, Skip if Set 1 (2) 01 10bb bfff ffff 3 LITERAL AND CONTROL OPERATIONS Interal and W 1 11 111x kkkk kkkk Z Z ADDLW k Add literal and W 1 1 11 111x kkkk kkkk Z CALL k Call subroutine		, -		-					-	1,2	
SWAPF XORWF f, d Swap nibbles in f Exclusive OR W with f 1 00 1110 dfff ffff 1,2 BIT-ORIENTED FILE REGISTER OPERATIONS BIT-ORIENTED FILE REGISTER OPERATIONS BCF f, b Bit Clear f 1 01 00bb bfff ffff 1,2 BSF f, b Bit Set f 1 01 00bb bfff ffff 1,2 BTFSC f, b Bit Test f, Skip if Clear 1 01 01bb bfff ffff 1,2 LITERAL AND CONTROL OPERATIONS ADDLW k Add literal and W 1 11 111.001 kkkk kkkk Z ANDLW k Add literal and W 1 11 11001 kkkk kkkk Z CALL k Call subroutine 2 10 0kkk kkkkk Z GOTO k Go to address 2 10 111.0000 kkkkkkkk Z </td <td></td> <td>,</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>,</td>		,		-					-	,	
XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z 1,2 BIT-ORIENTED FILE REGISTER OPERATIONS BCF f, b Bit Clear f 1 01 00bb bfff ffff 1,2 BSF f, b Bit Clear f 1 1 01 01bb bfff ffff 1,2 BTFSC f, b Bit Test f, Skip if Clear 1 1 01 01bb bfff ffff 1,2 ADDLW k Add literal and W 1 1 111 111x kkkk kkkk Z Z ADDLW k Add literal and W 1 1 11 111x kkkk kkkk Z ADDLW k Call subroutine 2 10 0kkk kkkk Z Z GOTO k Go to address 2 10 0kkk kkkk Z OCOTO K		,							0,20,2		
BIT-ORIENTED FILE REGISTER OPERATIONS BCF f, b Bit Clear f 1 01 00bb bfff ffff 1,2 BSF f, b Bit Set f 1 01 01bb bfff ffff 1,2 BTFSC f, b Bit Test f, Skip if Clear 1 (2) 01 10bb bfff ffff 3 BTFSS f, b Bit Test f, Skip if Set 1 (2) 01 11bb bfff ffff 3 LITERAL AND CONTROL OPERATIONS ADDLW k Add literal and W 1 11 111 111x kkkk kkkk Z ADDLW k Add literal with W 1 1 11 1001 kkkk kkkk Z CALL k Call subroutine 2 10 0kkk kkkk Z TO,PD GOTO k Go to address 2 10 11kkk kkkk Z MOVLW TO,PD GOTO k Inclusive OR literal with W 1 11 1000 kkkk kkkk		,		-					7		
BCFf, bBit Clear f10100bbbfffffff1,2BSFf, bBit Set f10101bbbfffffff1,2BTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffff3BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffff3LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkZADDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkZCLRWDT-Clear Watchdog Timer11000000100TO,PDGOTOkGo to address2101kkkkkkkZIORLWkInclusive OR literal with W111000xkkkkZMOVLWkMove literal to W111000xkkkkZRETFIE-Return from interrupt20000001001RETLWRETURN-Return with literal in W21101xxkkkkKkkkRETURN-Return from Subroutine20000001000SLEEP-Go into standby mode100000010011TO,PD		., a					4111		_	•,=	
BSFf, bBit Set f10101bbbfffffff1,2BTFSCf, bBit Test f, Skip if Clear11110bbbfffffff3BTFSSf, bBit Test f, Skip if Set1(2)0111bbbfffffff3LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZANDLWkAdd literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkKkkkZGOTOkGo to address2101kkkkkkkZIORLWkInclusive OR literal with W1111000kkkkZMOVLWkReturn from interrupt200000000011001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine20000000001TO,PDSLEEP-Go into standby mode10000000101TO,PD	DOF	6.1		-	-	-				4.0	
BTFSC BTFSSf, bBit Test f, Skip if Clear Bit Test f, Skip if Set1 (2)0110bbbfffffff3LITERAL AND CONTROL OPERATIONSADDLW ANDLWkAdd literal and W111111111xkkkkkkkkZANDLW CALLkAdd literal with W1111111001kkkkkkkkZCALL GOTOkCall subroutine2100kkkkkkkkkkkZCIRWDT GOTOClear Watchdog Timer Go to address1111000kkkkKkkkZIORLW KInclusive OR literal with W1111000kkkkZMOVLW RETFIE 	-	, -		-	-						
BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffff3LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkC,DC,ZANDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkMOVLWkMove literal to W1110000000001001RETLWkReturn from interrupt200000000001001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine20000000001TO,PDSLEEP-Go into standby mode10000000110TO,PD	-	,		-	-					,	
LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkC,DC,ZANDLWkAND literal with W11111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001RETFIERETFIE-Return from interrupt200000000001001RETLWRETURN-Return from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD		,			-						
ADDLWkAdd literal and W111111 111xkkkkkkkkC,DC,ZANDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000xxkkkkkkkkZRETFIE-Return from interrupt200000000011001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine20000000001TO,PDSLEEP-Go into standby mode10000000110TO,PD	BIESS	f, b			-	11bb	bfff	ffff		3	
ANDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkKkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkKkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000000001001FRETFIE-Return from interrupt200000000001001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD			LITERAL AND CONTROL	OPERAT	IONS						
CALLkCall subroutine2100kkkkkkkkkkkkkkkCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000000001001FRETFIE-Return from interrupt200000000001001RETLWkReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 0100 GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk MOVLW k Move literal to W 1 11 00000 0000 1001 RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0001 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD	ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
IORLW k Inclusive OR literal with W 1 11 1000 kkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
MOVLW k Move literal to W 1 11 00xx kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0001 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
RETFIE - Return from interrupt 2 00 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
SLEEP - Go into standby mode 1 00 0000 0110 0011 TO,PD	RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
	RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
	SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD		
	SUBLW	k	Subtract W from literal	1	11				C,DC,Z		
XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk Z				1							

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f			
Syntax:	[<i>label</i>] XORLW k	Syntax:	[<i>label</i>] XORWF f,d			
Operands: Operation:	$0 \le k \le 255$ (W) .XOR. $k \rightarrow$ (W)	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]			
Status Affected:	Z	Operation:	(W) .XOR. (f) \rightarrow (destination)			
Description:	The contents of the W register	Status Affected:	Z			
	are XOR'ed with the eight-bit lit- eral 'k'. The result is placed in the W register.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

8.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

8.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

8.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

9.1 DC Characteristics (Continued)

PIC16LF84A-04 (Commercial, Industrial)			Opera	ting ter	mperat	ure	ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended) ditions (unless otherwise stated)		
PIC16F84A-04 (Commercial, Industrial, Extended) PIC16F84A-20 (Commercial, Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)					
Param No.	Symbol	Characteristic	Min	Conditions					
	IPD	Power-down Current (Note 3)						
D020		16LF84A							
D020		16F84A-20 16F84A-04							
D021A		16LF84A	—	0.4	1.0	μΑ	VDD = 2.0V, WDT disabled, industrial		
D021A		16F84A-20 16F84A-04		1.5 1.0	3.5 3.0	μΑ μΑ	VDD = 4.5V, WDT disabled, industrial VDD = 4.0V, WDT disabled, industrial		
D021B		16F84A-20 16F84A-04		1.5 1.0	5.5 5.0	μΑ μΑ	VDD = 4.5V, WDT disabled, extended VDD = 4.0V, WDT disabled, extended		
		Module Differential Current (Note 5)							
D022	ΔIWDT	Watchdog Timer	—	.20	16	μA	VDD = 2.0V, Industrial, Commercial		
			—	3.5	20	μΑ	VDD = 4.0V, Commercial		
				3.5 4.8	28 25	μΑ μΑ	VDD = 4.0V, Industrial, Extended VDD = 4.5V, Commercial		
			_	4.8	30	μΑ	VDD = 4.5V, Commercial VDD = 4.5V, Industrial, Extended		

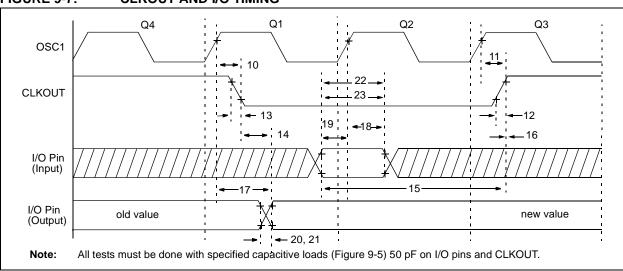
Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NR Not rated for operation.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - TOCKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula IR = VDD/2REXT (mA) with REXT in kOhm.
- The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD measurement.


9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial) (Continued)

DC Characteristics All Pins Except Power Supply Pins			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC specifications(Section 9.1)						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Conditions			
	Vol	Output Low Voltage							
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V		
D083		OSC2/CLKOUT	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, (RC mode only)		
	Vон	Output High Voltage							
D090		I/O ports (Note 3)	Vdd-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V		
D092		OSC2/CLKOUT (Note 3)	Vdd-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V (RC mode only)		
	Vod	Open Drain High Voltage							
D150		RA4 pin	—	—	8.5	V			
		Capacitive Loading Specs on Output Pins							
D100	Cosc2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101	Сю	All I/O pins and OSC2 (RC mode)	_	—	50	pF			
		Data EEPROM Memory							
D120	ED	Endurance	1M	10M	—	E/W	25°C at 5V		
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write cycle time	_	4	8	ms			
		Program FLASH Memory							
D130	Eр	Endurance	1000	10K	—	E/W			
D131	Vpr	VDD for read	VMIN	—	5.5	V	Vмın = Minimum operating voltage		
D132	VPEW	VDD for erase/write	4.5	—	5.5	V			
D133	TPEW	Erase/Write cycle time	—	4	8	ms			

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as coming out of the pin.
- 4: The user may choose the better of the two specs.

CLKOUT AND I/O TIMING FIGURE 9-7:

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓	Standard	—	15	30	ns	(Note 1)
10A			Extended (LF)	—	15	120	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLKOUT↑	Standard	—	15	30	ns	(Note 1)
11A			Extended (LF)	—	15	120	ns	(Note 1)
12	TckR	CLKOUT rise time	Standard	—	15	30	ns	(Note 1)
12A			Extended (LF)	—	15	100	ns	(Note 1)
13	TckF	CLKOUT fall time	Standard	—	15	30	ns	(Note 1)
13A			Extended (LF)	—	15	100	ns	(Note 1)
14	TckL2ioV	CLKOUT \downarrow to Port out valid	•	—	_	0.5Tcy +20	ns	(Note 1)
15	TioV2ckH	Port in valid before	Standard	0.30Tcy + 30	_	_	ns	(Note 1)
	CLKOUT ↑	CLKOUT ↑	Extended (LF)	0.30Tcy + 80	_	_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT 1	•	0	—	_	ns	(Note 1)
17	17 TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	Standard	—	_	125	ns	
			Extended (LF)	—	_	250	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to Port	Standard	10	_	_	ns	
		input invalid (I/O in hold time)	Extended (LF)	10	_	_	ns	
19	19 TioV2osH	Port input valid to OSC11	Standard	-75	_	_	ns	
		(I/O in setup time)	Extended (LF)	-175	_	_	ns	
20	TioR	Port output rise time	Standard	—	10	35	ns	
20A			Extended (LF)	—	10	70	ns	
21	TioF	Port output fall time	Standard	—	10	35	ns	
21A			Extended (LF)	—	10	70	ns	
22	TINP	INT pin high	Standard	20	—	_	ns	
22A		or low time	Extended (LF)	55	—		ns	
23	Trbp	RB7:RB4 change INT	Standard	Tosc§	_	_	ns	
23A		high or low time	Extended (LF)	Tosc§	—		ns	

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. † §

By design.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

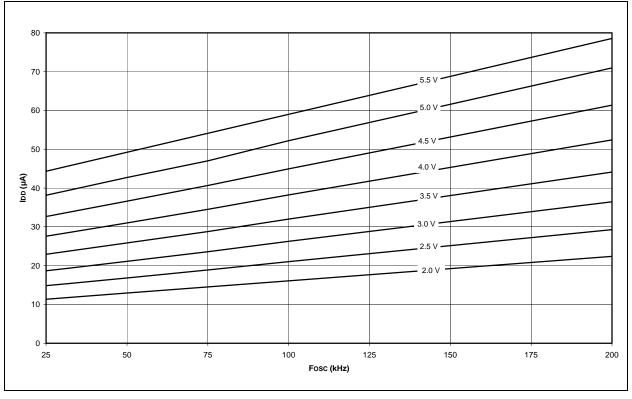
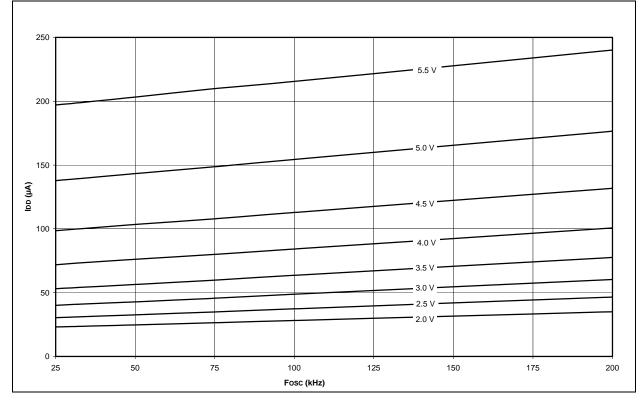
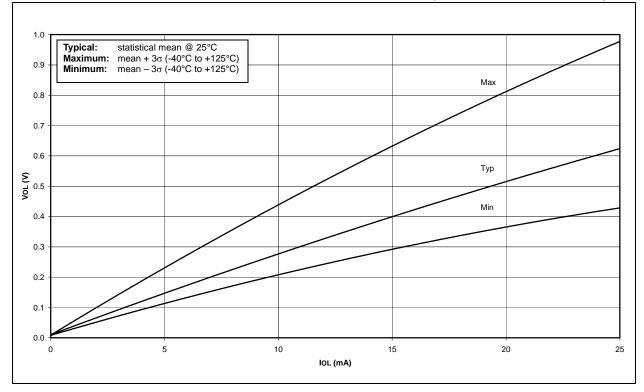
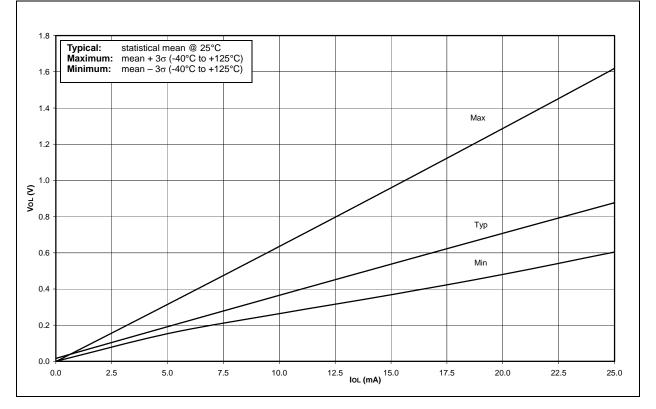
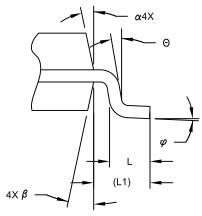
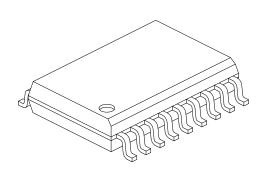



FIGURE 10-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE, 25°C)


FIGURE 10-15: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C)

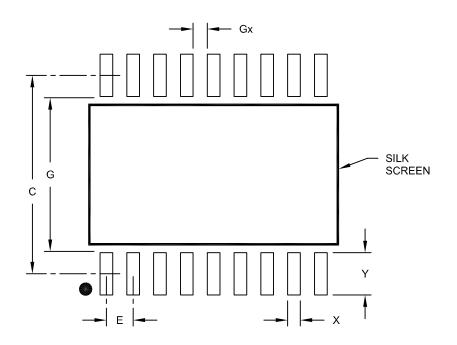


18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е	1.27 BSC		
Overall Height	Α	I	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	11.55 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

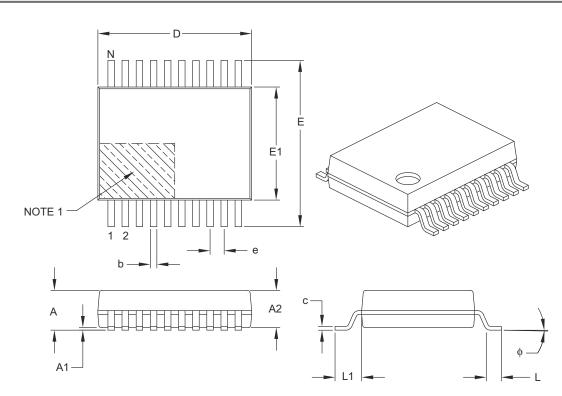
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N		S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch		1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

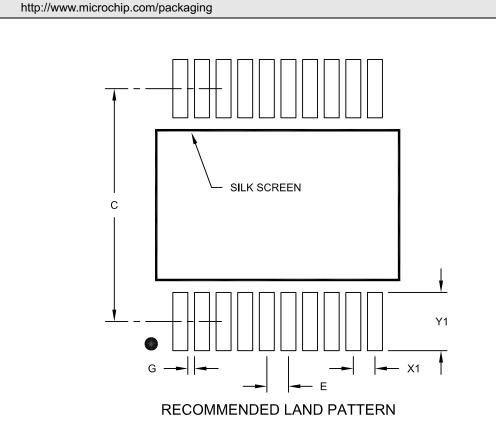

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	Units		MILLIMETERS	6
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е	0.65 BSC		
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint		1.25 REF		
Lead Thickness	с	0.09	-	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

For the most current package drawings, please see the Microchip Packaging Specification located at

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

Note:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

TABLE 1: CONVERSION CONSIDERATIONS - PIC16C84, PIC16F83/F84, PIC16CR83/CR84, PIC16F84A (CONTINUED)

Difference	PIC16C84	PIC16F83/F84	PIC16CR83/ CR84	PIC16F84A
EEADR<7:6> and IDD	It is recommended that the EEADR<7:6> bits be cleared. When either of these bits is set, the maxi- mum IDD for the device is higher than when both are cleared.	N/A	N/A	N/A
The polarity of the PWRTE bit	PWRTE	PWRTE	PWRTE	PWRTE
Recommended value of REXT for RC oscillator circuits	Rext = 3kΩ - 100kΩ	Rext = 5kΩ - 100kΩ	Rext = 5kΩ - 100kΩ	Rext = 3kΩ - 100kΩ
GIE bit unintentional enable	If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re- enabled by the user's Interrupt Service Routine (the RETFIE instruction).	N/A	N/A	N/A
Packages	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC, SSOP
Open Drain High Voltage (VoD)	14V	12V	12V	8.5V

PIC16F84A PRODUCT IDENTIFICATION SYSTEM

To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.

PART NO.	-XX X /XX XXX Frequency Temperature Package Pattern Range Range	Examples: a) PIC16F84A -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16F84A ⁽¹⁾ , PIC16F84AT ⁽²⁾ PIC16LF84A ⁽¹⁾ , PIC16LF84AT ⁽²⁾	 b) PIC16LF84A - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits.
Frequency Range	04 = 4 MHz 20 = 20 MHz	 c) PIC16F84A - 20I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits.
Temperature Range	$- = 0^{\circ}C$ to $+70^{\circ}C$ I = $-40^{\circ}C$ to $+85^{\circ}C$	
Package	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP	 Note 1: F = Standard VDD range LF = Extended VDD range 2: T = in tape and reel - SOIC and SSOP packages only.
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements . Blank for OTP and Windowed devices.	

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12