

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorPICCore Size8-BitSpeed4MHzConnectivity-	
Core Size 8-Bit Speed 4MHz	
Speed 4MHz	
Connectivity -	
Peripherals POR, WDT	
Number of I/O 13	
Program Memory Size 1.75KB (1K x 14)	
Program Memory Type FLASH	
EEPROM Size 64 x 8	
RAM Size 68 x 8	
Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V	
Data Converters -	
Oscillator Type External	
Operating Temperature -40°C ~ 85°C (TA)	
Mounting Type Through Hole	
Package / Case 18-DIP (0.300", 7.62mm)	
Supplier Device Package 18-PDIP	
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16lf84a-04	łi-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F84A device. Additional information may be found in the PIC[®] Mid-Range Reference Manual, (DS33023), which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16F84A belongs to the mid-range family of the $PIC^{\textcircled{R}}$ microcontroller devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 1K words, which translates to 1024 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 68 bytes. Data EEPROM is 64 bytes.

There are also 13 I/O pins that are user-configured on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- · Change on PORTB interrupt
- Timer0 clock input

Table 1-1 details the pinout of the device with descriptions and details for each pin.

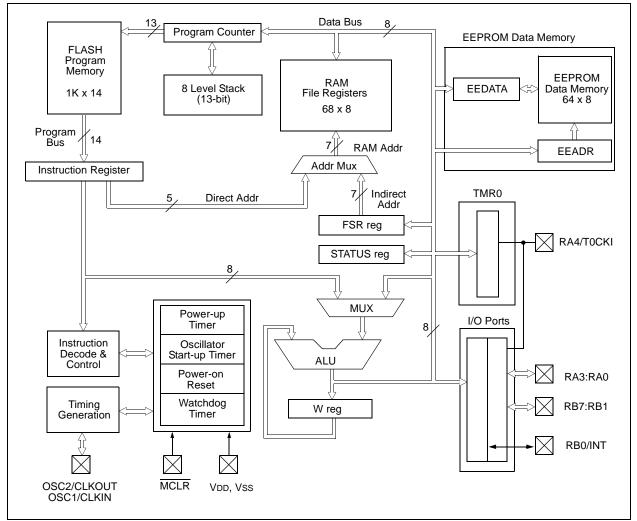


FIGURE 1-1: PIC16F84A BLOCK DIAGRAM

Pin Name	PDIP No.	SOIC No.	SSOP No.	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	16	18	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	19	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR	4	4	4	I/P	ST	Master Clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.
						PORTA is a bi-directional I/O port.
RA0	17	17	19	I/O	TTL	
RA1	18	18	20	I/O	TTL	
RA2	1	1	1	I/O	TTL	
RA3	2	2	2	I/O	TTL	
RA4/T0CKI	3	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/counter. Output is open drain type.
RB0/INT	6	6	7	I/O	TTL/ST ⁽¹⁾	PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. RB0/INT can also be selected as an external
						interrupt pin.
RB1	7	7	8	I/O	TTL	
RB2	8	8	9	I/O	TTL	
RB3	9	9	10	I/O	TTL	
RB4	10	10	11	I/O	TTL	Interrupt-on-change pin.
RB5	11	11	12	I/O	TTL	Interrupt-on-change pin.
RB6	12	12	13	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming clock.
RB7	13	13	14	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming data.
Vss	5	5	5,6	Р	—	Ground reference for logic and I/O pins.
Vdd	14	14	15,16	Р	—	Positive supply for logic and I/O pins.
Legend: I= input	0 =	Output			put/Output	P = Power

TABLE 1-1:PIC16F84A PINOUT DESCRIPTION

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

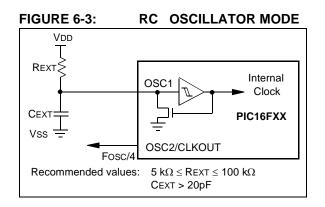

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

TABLE 6-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1/C1	OSC2/C2
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 33 pF	15 - 33 pF
XT	100 kHz	100 - 150 pF	100 - 150 pF
	2 MHz	15 - 33 pF	15 - 33 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	4 MHz	15 - 33 pF	15 - 33 pF
	20 MHz	15 - 33 pF	15 - 33 pF
Note:	of the oscill start-up time guidance on mode, as we driving crysta cation. Sinc characteristic crystal ma values of ext	ator, but also . These values ly. Rs may be ell as XT mode als with low driv e each crysta cs, the user sho nufacturer for ternal component	ses the stability increases the s are for design required in HS , to avoid over- ve level specifi- il has its own buld consult the r appropriate ents. 30 pF is recom-

6.2.3 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) values, capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values. The user needs to take into account variation, due to tolerance of the external R and C components. Figure 6-3 shows how an R/C combination is connected to the PIC16F84A.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

PIC16F84A

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.

RETLW	Return with Literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$						
Status Affected:	None						
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.						

MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Description:	Move data from W register to register 'f'.				

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.					

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORLW k	Syntax:	[<i>label</i>] XORWF f,d
Operands: Operation:	$0 \le k \le 255$ (W) .XOR. $k \rightarrow$ (W)	Operands:	$0 \le f \le 127$ d $\in [0,1]$
Status Affected:	Z	Operation:	(W) .XOR. (f) \rightarrow (destination)
Description:	The contents of the W register	Status Affected:	Z
	are XOR'ed with the eight-bit lit- eral 'k'. The result is placed in the W register.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

8.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

8.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

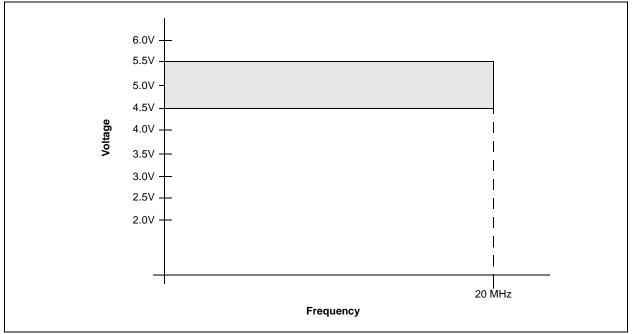
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

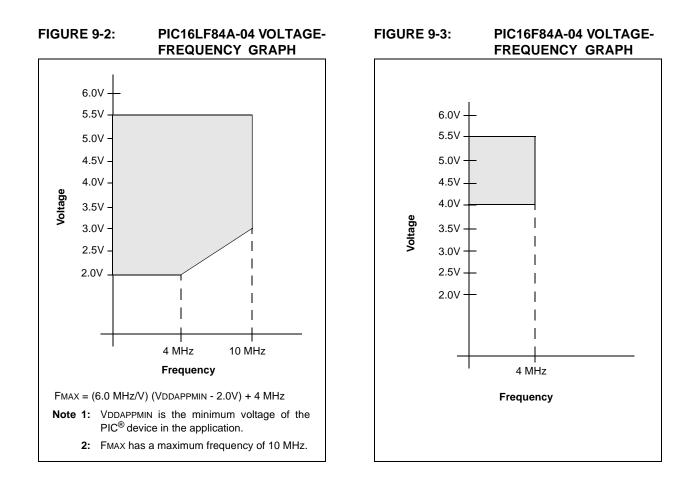
The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

8.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

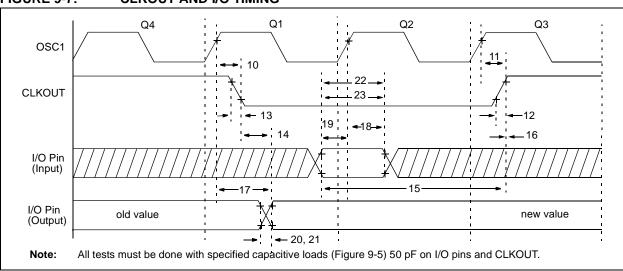

8.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express


The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

PIC16F84A

9.3 AC (Timing) Characteristics

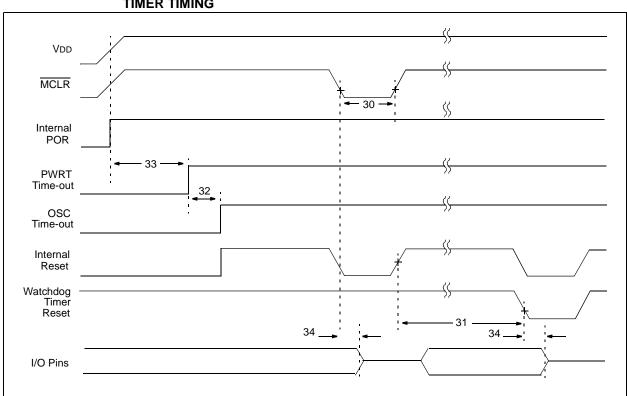

9.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

Т			
F	Frequency	Т	Time
Lowercase	e letters (pp) and their meanings:		
рр			
2	to	OS, OSC	OSC1
ck	CLKOUT	ost	oscillator start-up timer
су	cycle time	pwrt	power-up timer
io	I/O port	rbt	RBx pins
inp	INT pin	tO	TOCKI
mp	MCLR	wdt	watchdog timer
Uppercase	e letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (high impedance)	V	Valid
L	Low	Z	High Impedance


CLKOUT AND I/O TIMING FIGURE 9-7:

Param No.	Sym	Characteristic	;	Min	Тур†	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓	Standard	_	15	30	ns	(Note 1)
10A			Extended (LF)		15	120	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLKOUT↑	Standard		15	30	ns	(Note 1)
11A			Extended (LF)	—	15	120	ns	(Note 1)
12	TckR	CLKOUT rise time	Standard	—	15	30	ns	(Note 1)
12A			Extended (LF)		15	100	ns	(Note 1)
13	TckF	CLKOUT fall time	Standard	—	15	30	ns	(Note 1)
13A			Extended (LF)	—	15	100	ns	(Note 1)
14	TckL2ioV	CLKOUT \downarrow to Port out valid	•		_	0.5Tcy +20	ns	(Note 1)
15	TioV2ckH	Port in valid before	Standard	0.30Tcy + 30	_	_	ns	(Note 1)
		CLKOUT ↑	Extended (LF)	0.30Tcy + 80	_	_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT 1	•	0	—	_	ns	(Note 1)
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to	Standard	—	_	125	ns	
		Port out valid	Extended (LF)	—	_	250	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	Standard	10	_	_	ns	
		input invalid (I/O in hold time)	Extended (LF)	10	_	_	ns	
19	TioV2osH	Port input valid to OSC1↑	Standard	-75	_	—	ns	
		(I/O in setup time)	Extended (LF)	-175	_	—	ns	
20	TioR	Port output rise time	Standard	—	10	35	ns	
20A			Extended (LF)	—	10	70	ns	
21	TioF	Port output fall time	Standard	—	10	35	ns	
21A			Extended (LF)	—	10	70	ns	
22	TINP	INT pin high	Standard	20	—	_	ns	
22A		or low time	Extended (LF)	55	_	_	ns	
23	Trbp	RB7:RB4 change INT	Standard	Tosc§	—	_	ns	
23A		high or low time	Extended (LF)	Tosc§	_		ns	

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. † §

By design.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

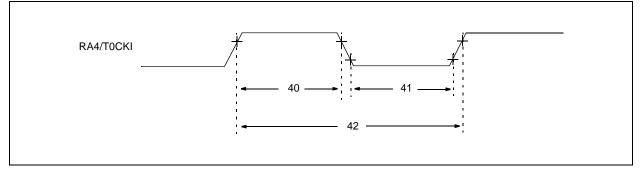

FIGURE 9-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 9-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND
POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μS	VDD = 5.0V
31	TWDT	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5.0V
32	Tost	Oscillation Start-up Timer Period		1024Tosc		ms	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5.0V
34	Tioz	I/O hi-impedance from MCLR Low or RESET	_	_	100	ns	

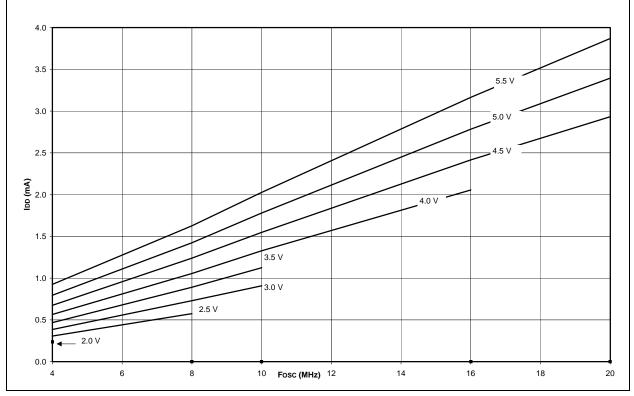
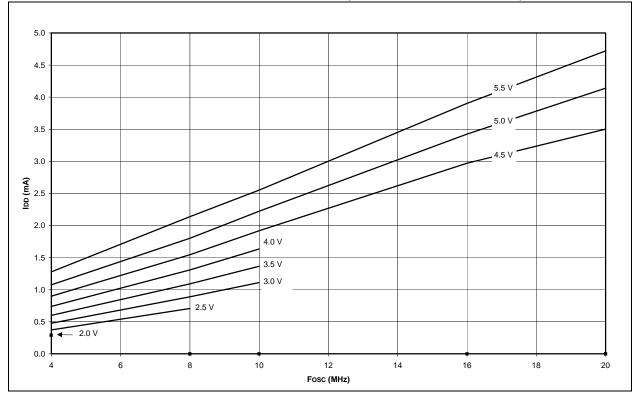
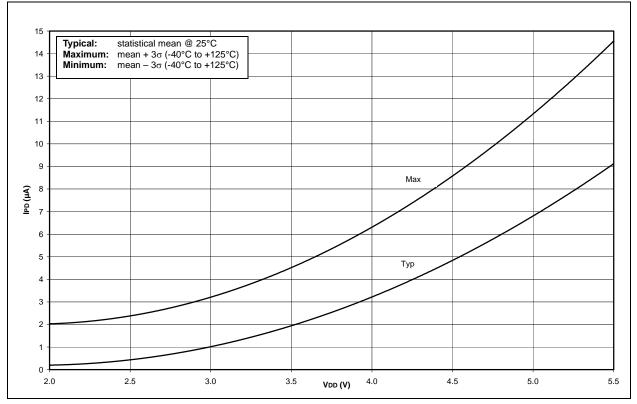
† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

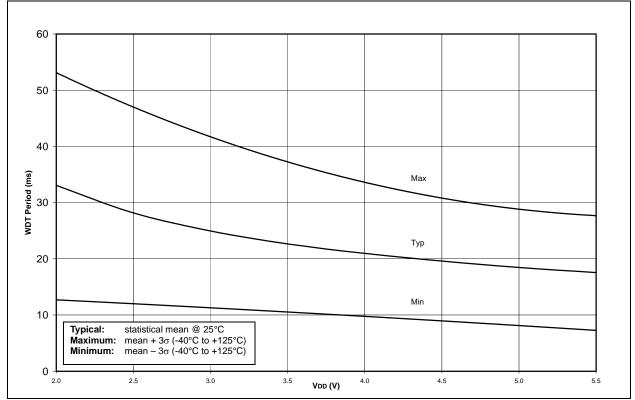
FIGURE 9-9: TIMER0 CLOCK TIMINGS

TABLE 9-5: TIMER0 CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40	Tt0H	U	No Prescaler	0.5Tcy + 20	—	—	ns	
		Width	With Prescaler	50 30	_	_		$\begin{array}{l} 2.0V \leq V \text{DD} \leq 3.0V \\ 3.0V \leq V \text{DD} \leq 6.0V \end{array}$
41	Tt0L	T0CKI Low Pulse	No Prescaler	0.5Tcy + 20	—	_	ns	
		Width	With Prescaler	50 20	_	_	-	$\begin{array}{l} 2.0V \leq V\text{DD} \leq 3.0V\\ 3.0V \leq V\text{DD} \leq 6.0V \end{array}$
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 10-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE, -40° TO +125°C)

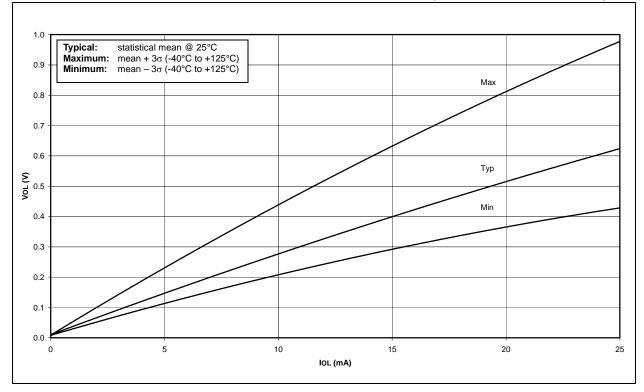
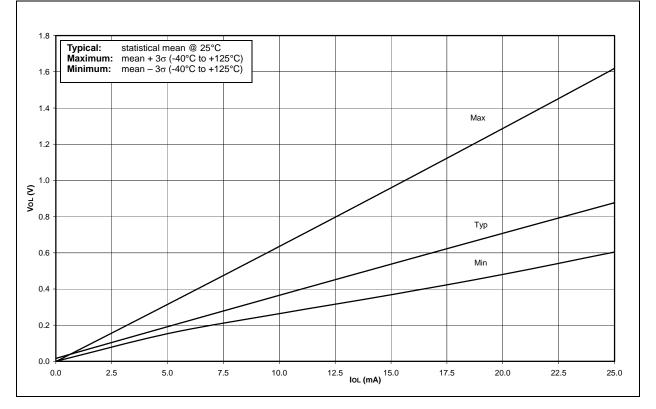
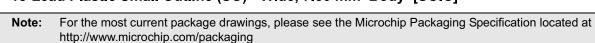
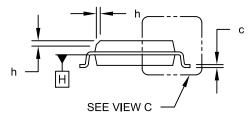




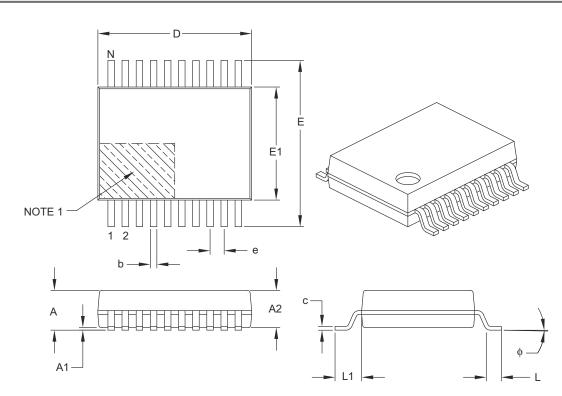
FIGURE 10-15: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C)


D

☐ 0.20 C A-B

2X

NOTE 5 D A Ν пппп Π ПППП E/2 E1 Е 0.10 C D || || || 1 2 3 Ш 0.33 C 2X 2X N/2 TIPS NOTE 1 NX b ⊕0.25@CA-BD NOTE 5 в е TOP VIEW 0.10 C 1 0.10 C NX А SEATING PLANE A2 Ċ A1 SIDE VIEW



VIEW A-A

Microchip Technology Drawing C04-051C Sheet 1 of 2

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90 7.20 7.50			
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	с	0.09 – 0.25			
Foot Angle	φ	0° 4° 8°			
Lead Width	b	0.22	-	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

TABLE 1: CONVERSION CONSIDERATIONS - PIC16C84, PIC16F83/F84, PIC16CR83/CR84, PIC16F84A (CONTINUED)

Difference	PIC16C84	PIC16F83/F84	PIC16CR83/ CR84	PIC16F84A	
EEADR<7:6> and IDD	It is recommended that the EEADR<7:6> bits be cleared. When either of these bits is set, the maxi- mum IDD for the device is higher than when both are cleared.	N/A	N/A	N/A	
The polarity of the PWRTE bit	PWRTE	PWRTE	PWRTE	PWRTE	
Recommended value of REXT for RC oscillator circuits	Rext = 3kΩ - 100kΩ	Rext = 5kΩ - 100kΩ	Rext = 5kΩ - 100kΩ	Rext = 3kΩ - 100kΩ	
GIE bit unintentional enable	If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re- enabled by the user's Interrupt Service Routine (the RETFIE instruction).	N/A	N/A	N/A	
Packages	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC, SSOP	
Open Drain High Voltage (VoD)	14V	12V	12V	8.5V	

APPENDIX C: MIGRATION FROM BASELINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following is the list of feature improvements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes, both in program memory (2K now as opposed to 512K before) and the register file (128 bytes now versus 32 bytes before).
- 2. A PC latch register (PCLATH) is added to handle program memory paging. PA2, PA1 and PA0 bits are removed from the STATUS register and placed in the OPTION register.
- 3. Data memory paging is redefined slightly. The STATUS register is modified.
- 4. Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions, TRIS and OPTION, are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to eight-deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, the Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange features.
- 13. T0CKI pin is also a port pin (RA4/T0CKI).
- 14. FSR is a full 8-bit register.
- 15. "In system programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).

To convert code written for PIC16C5X to PIC16F84A, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables for reallocation.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support