

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	·
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf84at-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F84A device. Additional information may be found in the PIC[®] Mid-Range Reference Manual, (DS33023), which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16F84A belongs to the mid-range family of the $PIC^{\textcircled{R}}$ microcontroller devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 1K words, which translates to 1024 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 68 bytes. Data EEPROM is 64 bytes.

There are also 13 I/O pins that are user-configured on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- · Change on PORTB interrupt
- Timer0 clock input

Table 1-1 details the pinout of the device with descriptions and details for each pin.

FIGURE 1-1: PIC16F84A BLOCK DIAGRAM

3.1 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 3-1: DATA EEPROM READ

BCF	STATUS, RPO	;	Bank 0
MOVLW	CONFIG_ADDR	;	
MOVWF	EEADR	;	Address to read
BSF	STATUS, RPO	;	Bank 1
BSF	EECON1, RD	;	EE Read
BCF	STATUS, RPO	;	Bank 0
MOVF	EEDATA, W	;	W = EEDATA

3.2 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 3-2: DATA EEPROM WRITE

		BSF	STATUS, F	RP0	;	Bank 1
		BCF	INICON, C	315	ï	DISADIE INIS.
		BSF	EECON1, W	VREN	;	Enable Write
		MOVLW	55h		;	
		MOVWF	EECON2		;	Write 55h
	_ e	MOVLW	AAh		;	
Q.	2 0	MOVWF	EECON2		;	Write AAh
	n en	BSF	EECON1,WF	2	;	Set WR bit
Q	eq 1				;	begin write
	2 00	BSF	INTCON, G	GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

3.3 Write Verify

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 3-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

Generally, the EEPROM write failure will be a bit which was written as a '0', but reads back as a '1' (due to leakage off the bit).

EXAMPLE 3-3: WRITE VERIFY

	BCF	STATUS, RPO	;	Bank 0
	:		;	Any code
	:		;	can go here
	MOVF	EEDATA,W	;	Must be in Bank 0
	BSF	STATUS, RPO	;	Bank 1
READ				
	BSF	EECON1, RD	;	YES, Read the
			;	value written
	BCF	STATUS, RPO	;	Bank 0
			;	
			;	Is the value written
			;	(in W reg) and
			;	read (in EEDATA)
			;	the same?
			;	
	SUBWF	EEDATA, W	;	
	BTFSS	STATUS, Z	;	Is difference 0?
	GOTO	WRITE_ERR	;	NO, Write error

TABLE 3-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
08h	EEDATA	EEPRO	EEPROM Data Register				XXXX XXXX	uuuu uuuu			
09h	EEADR	EEPRO	EEPROM Address Register xxxx				XXXX XXXX	uuuu uuuu			
88h	EECON1		—	—	EEIF	WRERR	WREN	WR	RD	0 x000	0 q000
89h	EECON2	EEPRO	M Contro	l Registe	r 2						

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- · Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- Interrupt-on-overflow from FFh to 00h

Figure 5-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual (DS33023).

5.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, TOSE (OPTION_REG<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

5.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 5-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 5-1: TIMER0 BLOCK DIAGRAM

TABLE 6-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1/C1	OSC2/C2
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 33 pF	15 - 33 pF
XT	100 kHz	100 - 150 pF	100 - 150 pF
	2 MHz	15 - 33 pF	15 - 33 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	4 MHz	15 - 33 pF	15 - 33 pF
	20 MHz	15 - 33 pF	15 - 33 pF
Note:	Higher capa of the oscill start-up time guidance on mode, as we driving crysta cation. Sinc characteristic crystal ma values of ext For VDD > 4. mended.	citance increas lator, but also ator, but also but also values ly. Rs may be all as XT mode als with low drive e each crysta cs, the user sho nufacturer for ternal compone $5V, C1 = C2 \approx 3$	es the stability increases the are for design required in HS to avoid over- ve level specifi- l has its own buld consult the r appropriate ents. 30 pF is recom-

6.2.3 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) values, capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values. The user needs to take into account variation, due to tolerance of the external R and C components. Figure 6-3 shows how an R/C combination is connected to the PIC16F84A.

FIGURE 6-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 6-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

6.9 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users wish to save key register values during an interrupt (e.g., W register and STATUS register). This is implemented in software.

The code in Example 6-1 stores and restores the STATUS and W register's values. The user defined registers, W_TEMP and STATUS_TEMP are the temporary storage locations for the W and STATUS registers values.

Example 6-1 does the following:

- a) Stores the W register.
- b) Stores the STATUS register in STATUS_TEMP.
- c) Executes the Interrupt Service Routine code.
- d) Restores the STATUS (and bank select bit) register.
- e) Restores the W register.

PUSH	MOVWF	W_TEMP	; Copy W to TEMP register,
	SWAPF	STATUS, W	; Swap status to be saved into W
	MOVWF	STATUS_TEMP	; Save status to STATUS_TEMP register
ISR	:		:
	:		; Interrupt Service Routine
	:		; should configure Bank as required
	:		;
POP	SWAPF	STATUS_TEMP,W	; Swap nibbles in STATUS_TEMP register
			; and place result into W
	MOVWF	STATUS	; Move W into STATUS register
			; (sets bank to original state)
	SWAPF	W_TEMP, F	; Swap nibbles in W_TEMP and place result in W_TEMP
	SWAPF	W_TEMP, W	; Swap nibbles in W_TEMP and place result into W
1			

6.10 Watchdog Timer (WDT)

The Watchdog Timer is a free running On-Chip RC Oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT wake-up causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming configuration bit WDTE as a '0' (Section 6.1).

6.10.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION_REG register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a WDT time-out.

6.11 Power-down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (wake-up from SLEEP).

6.11.1 SLEEP

The Power-down mode is entered by executing the SLEEP instruction.

If enabled, the Watchdog Timer is cleared (but keeps running), the PD bit (STATUS<3>) is cleared, the TO bit (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For the lowest current consumption in SLEEP mode, place all I/O pins at either VDD or VSS, with no external circuitry drawing current from the I/O pins, and disable external clocks. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.

6.11.2 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. WDT wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or data EEPROM write complete.

Peripherals cannot generate interrupts during SLEEP, since no on-chip Q clocks are present.

The first event ($\overline{\text{MCLR}}$ Reset) will cause a device RESET. The two latter events are considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of a device RESET. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

While the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

FIGURE 6-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS, or LP oscillator mode assumed.

- 2: TOST = 1024TOSC (drawing not to scale). This delay will not be there for RC osc mode.
- 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

6.11.3 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

6.12 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

6.13 ID Locations

Four memory locations (2000h - 2004h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the four Least Significant bits of ID location are usable.

6.14 In-Circuit Serial Programming

PIC16F84A microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed.

For complete details of Serial Programming, please refer to the In-Circuit Serial Programming[™] (ICSP[™]) Guide, (DS30277).

7.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 7-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 7-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 7-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compat- ibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
PC	Program Counter
то	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 7-2 lists the instructions recognized by the MPASMTM Assembler.

Figure 7-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 7-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC[®] Mid-Range Reference Manual (DS33023).

7.1 Instruction Descriptions

ADDLW	Add Literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \le k \le 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.			

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W						
Syntax:	[<i>label</i>] ANDLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	(W) .AND. (k) \rightarrow (W)						
Status Affected:	Z						
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.						

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is exe- cuted instead, making this a 2Tcy instruction.

9.1 DC Characteristics

PIC16LF84A-04 (Commercial, Industrial)									
PIC16F84A-04 (Commercial, Industrial, Extended) PIC16F84A-20 (Commercial, Industrial, Extended)			Stand Opera	Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)					
Param No.	Symbol	Characteristic	Min Typ† Max Units Conditions				Conditions		
	Vdd	Supply Voltage							
D001		16LF84A	2.0		5.5	V	XT, RC, and LP osc configuration		
D001		16F84A	4.0	—	5.5	V	XT, RC and LP osc configuration		
D001A			4.5	—	5.5	V	HS osc configuration		
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5	—	—	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal		Vss	_	V	See section on Power-on Reset for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_		V/ms			
	IDD	Supply Current (Note 2)							
D010		16LF84A	—	1	4	mA	RC and XT osc configuration (Note 4) Fosc = 2.0 MHz, VDD = 5.5V		
D010		16F84A	—	1.8	4.5	mA	RC and XT osc configuration (Note 4) Fosc = 4.0 MHz, VDD = 5.5V		
D010A D013			_	3 10	10 20	mA mA	RC and XT osc configuration (Note 4) FOSC = 4.0 MHz , VDD = 5.5V (During FLASH programming) HS osc configuration (PIC16F84A-20) FOSC = 20 MHz , VDD = 5.5V		
D014		16LF84A	—	15	45	μA	LP osc configuration FOSC = 32 kHz, VDD = 2.0V, WDT disabled		

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NR Not rated for operation.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - T0CKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula IR = VDD/2REXT (mA) with REXT in kOhm.
 - 5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD measurement.

9.1 DC Characteristics (Continued)

PIC16LF84A-04 (Commercial, Industrial)									
PIC16F84A-04 (Commercial, Industrial, Extended) PIC16F84A-20 (Commercial, Industrial, Extended)			Stand Opera	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
	Ipd	Power-down Current (Note 3)						
D020		16LF84A							
D020		16F84A-20 16F84A-04							
D021A		16LF84A	_	0.4	1.0	μΑ	VDD = 2.0V, WDT disabled, industrial		
D021A		16F84A-20 16F84A-04	_	1.5 1.0	3.5 3.0	μΑ μΑ	VDD = 4.5V, WDT disabled, industrial VDD = 4.0V, WDT disabled, industrial		
D021B		16F84A-20 16F84A-04	_	1.5 1.0	5.5 5.0	μΑ μΑ	VDD = 4.5V, WDT disabled, extended VDD = 4.0V, WDT disabled, extended		
		Module Differential Current (Note 5)							
D022	Δ IWDT	Watchdog Timer	—	.20	16	μA	VDD = 2.0V, Industrial, Commercial		
				3.5	20	μΑ	VDD = $4.0V$, Commercial VDD = $4.0V$ Industrial Extended		
				4.8	25	μΑ	$V_{DD} = 4.5V$. Commercial		
			_	4.8	30	μA	VDD = 4.5V, Industrial, Extended		

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NR Not rated for operation.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - TOCKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula IR = VDD/2REXT (mA) with REXT in kOhm.
- The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD measurement.

9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial)

DC Characteristics All Pins Except Power Supply Pins			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC specifications(Section 9.1)					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Conditions		
	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V \text{ (Note 4)}$	
D030A			Vss	—	0.16Vdd	V	Entire range (Note 4)	
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V	Entire range	
D032		MCLR, RA4/T0CKI	Vss	—	0.2Vdd	V		
D033		OSC1 (XT, HS and LP modes)	Vss	—	0.3Vdd	V	(Note 1)	
D034		OSC1 (RC mode)	Vss		0.1Vdd	V		
	VIH	Input High Voltage						
		I/O ports:		—				
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$ (Note 4)	
D040A			0.25VDD+0.8	_	VDD	V	Entire range (Note 4)	
D041		with Schmitt Trigger buffer	0.8 VDD	_	Vdd		Entire range	
D042		MCLR,	0.8 VDD	_	Vdd	V		
D042A		RA4/T0CKI	0.8 Vdd	_	8.5	V		
D043		OSC1 (XT, HS and LP modes)	0.8 Vdd	_	Vdd	V	(Note 1)	
D043A		OSC1 (RC mode)	0.9 Vdd		Vdd	V		
D050	VHYS	Hysteresis of Schmitt Trigger Inputs	—	0.1		V		
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5.0V, VPIN = VSS	
	lı∟	Input Leakage Current (Notes 2, 3)						
D060		I/O ports	_	—	±1	μΑ	$\label{eq:VSS} \begin{split} &Vss \leq V \text{PIN} \leq V \text{DD}, \\ &Pin \text{ at hi-impedance} \end{split}$	
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1	_	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: The user may choose the better of the two specs.

FIGURE 10-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE, -40° TO +125°C)

PIC16F84A

FIGURE 10-13: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	N	IILLIMETER	ERS	
Dimension Lin	nits	MIN	NOM	MAX	
Number of Pins	Ν		18		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	I	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D		11.55 BSC		
Chamfer (Optional)	h	0.25 - 0.75			
Foot Length	L	0.40	I	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5° - 15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimer	nsion Limits	MIN	NOM	MAX		
Number of Pins	Ν	20				
Pitch	е	0.65 BSC				
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12