

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                       |
|----------------------------|--------------------------------------------------------------|
| Core Processor             | HCS12X                                                       |
| Core Size                  | 16-Bit                                                       |
| Speed                      | 50MHz                                                        |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, LINbus, SCI, SPI          |
| Peripherals                | LCD, Motor control PWM, POR, PWM, WDT                        |
| Number of I/O              | 117                                                          |
| Program Memory Size        | 256KB (256K x 8)                                             |
| Program Memory Type        | FLASH                                                        |
| EEPROM Size                | 4K x 8                                                       |
| RAM Size                   | 16K x 8                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.35V ~ 5.5V                                                 |
| Data Converters            | A/D 16x10b                                                   |
| Oscillator Type            | External                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                            |
| Mounting Type              | Surface Mount                                                |
| Package / Case             | 144-LQFP                                                     |
| Supplier Device Package    | 144-LQFP (20x20)                                             |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12xhz256cag |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



### 1.5.2.4 System Wait Mode

This mode is entered when the CPU executes the WAI instruction. In this mode the CPU will not execute instructions. The internal CPU clock is switched off. All peripherals and the XGATE can be active in system wait mode. For further power consumption savings, the peripherals can individually turn off their local clocks. Asserting  $\overline{\text{RESET}}$ ,  $\overline{\text{XIRQ}}$ ,  $\overline{\text{IRQ}}$  or any other interrupt that has not been masked ends system wait mode.

## 1.5.3 Freeze Mode

The enhanced capture timer, pulse width modulator, analog-to-digital converter, the periodic interrupt timer and the XGATE module provide a software programmable option to freeze the module status during the background debug module is active. This is useful when debugging application software. For detailed description of the behavior of the ATD, ECT, PWM, XGATE and PIT when the background debug module is active consult the corresponding module block description chapters.

## 1.6 Resets and Interrupts

Consult the S12XCPU block description chapter for information on exception processing.

### 1.6.1 Vectors

Table 1-9 lists all interrupt sources and vectors in the default order of priority. The interrupt module (S12XINT) provides an interrupt vector base register (IVBR) to relocate the vectors. Associated with each I-bit maskable service request is a configuration register. It selects if the service request is enabled, the service request priority level and whether the service request is handled either by the S12X CPU or by the XGATE module.



#### Chapter 2 Port Integration Module (S12XHZPIMV1)

| Address Offset  | Use                                       | Access |
|-----------------|-------------------------------------------|--------|
| 0x0208          | Port S I/O Register (PTS)                 | R/W    |
| 0x0209          | Port S Input Register (PTIS)              | R      |
| 0x020A          | Port S Data Direction Register (DDRS)     | R/W    |
| 0x020B          | Port S Reduced Drive Register (RDRS)      | R/W    |
| 0x020C          | Port S Pull Device Enable Register (PERS) | R/W    |
| 0x020D          | Port S Polarity Select Register (PPSS)    | R/W    |
| 0x020E          | Port S Wired-OR Mode Register (WOMS)      | R/W    |
| 0x020F          | Port S Slew Rate Register (SRRS)          | R/W    |
| 0x0210          | Port M I/O Register (PTM)                 | R/W    |
| 0x0211          | Port M Input Register (PTIM)              | R      |
| 0x0212          | Port M Data Direction Register (DDRM)     | R/W    |
| 0x0213          | Port M Reduced Drive Register (RDRM)      | R/W    |
| 0x0214          | Port M Pull Device Enable Register (PERM) | R/W    |
| 0x0215          | Port M Polarity Select Register (PPSM)    | R/W    |
| 0x0216          | Port M Wired-OR Mode Register (WOMM)      | R/W    |
| 0x0217          | Port M Slew Rate Register (SRRM)          | R/W    |
| 0x0218          | Port P I/O Register (PTP)                 | R/W    |
| 0x0219          | Port P Input Register (PTIP)              | R      |
| 0x021A          | Port P Data Direction Register (DDRP)     | R/W    |
| 0x021B          | Port P Reduced Drive Register (RDRP)      | R/W    |
| 0x021C          | Port P Pull Device Enable Register (PERP) | R/W    |
| 0x021D          | Port P Polarity Select Register (PPSP)    | R/W    |
| 0x021E          | Port P Wired-OR Mode Register (WOMP)      | R/W    |
| 0x021F          | Port P Slew Rate Register (SRRP)          | R/W    |
| 0x0220 - 0x022F | Reserved                                  | _      |
| 0x0230          | Port L I/O Register (PTL)                 | R/W    |
| 0x0231          | Port L Input Register (PTIL)              | R      |
| 0x0232          | Port L Data Direction Register (DDRL)     | R/W    |
| 0x0233          | Port L Reduced Drive Register (RDRL)      | R/W    |
| 0x0234          | Port L Pull Device Enable Register (PERL) | R/W    |
| 0x0235          | Port L Polarity Select Register (PPSL)    | R/W    |
| 0x0236          | Reserved                                  | -      |
| 0x0237          | Port L Slew Rate Register (SRRL)          | R/W    |
| 0x0238          | Port U I/O Register (PTU)                 | R/W    |
| 0x0239          | Port U Input Register (PTIU)              | R      |
| 0x023A          | Port U Data Direction Register (DDRU)     | R/W    |
| 0x023B          | Port U Slew Rate Register (SRRU)          | R/W    |
| 0x023C          | Port U Pull Device Enable Register (PERU) | R/W    |
| 0x023D          | Port U Polarity Select Register (PPSU)    | R/W    |
| 0x023E - 0x023F | Reserved                                  |        |

#### Table 2-2. S12XHZPIM Memory Map (continued)

MC9S12XHZ512 Data Sheet, Rev. 1.06

| Field            | Description                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------|
| 7:0<br>DDRA[7:0] | Data Direction Port A0 Associated pin is configured as input.1 Associated pin is configured as output. |

#### Table 2-3. DDRA Field Descriptions

## 2.3.1.4 Port B Data Direction Register (DDRB)

Module Base + 0x0055



Figure 2-5. Port B Data Direction Register (DDRB)

Read: Anytime. Write: Anytime.

This register configures port pins PB[7:0] as either input or output. If a LCD frontplane driver is enabled (and LCD module is enabled), it outputs an analog signal to the corresponding pin and the associated Data Direction Register bit has no effect. If a LCD frontplane driver is disabled (or LCD module is disabled), the corresponding Data Direction Register bit reverts to control the I/O direction of the associated pin.

| Field            | Description                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------|
| 7:0<br>DDRB[7:0] | Data Direction Port B0 Associated pin is configured as input.1 Associated pin is configured as output. |



## 2.3.4 Port K

Port K pins can be used for either general-purpose I/O, or the liquid crystal display (LCD) driver, or the external address bus outputs ADDR22-ADDR16 muxed with master access output ACC2-ACC0 and instruction pipe signals IQSTAT3-IQSTAT0, or inputs EWAIT and ROMCTL. Refer to the LCD block description chapter for information on enabling and disabling the LCD and its frontplane drivers. Refer to the S12X\_EBI block description chapter for information on external bus.

## 2.3.4.1 Port K I/O Register (PTK)

Module Base + 0x0051

| _      | 7                                  | 6                    | 5                    | 4                    | 3                       | 2                       | 1                       | 0                       |
|--------|------------------------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| R<br>W | PTK7                               | PTK6                 | PTK5                 | PTK4                 | PTK3                    | PTK2                    | PTK1                    | PTK0                    |
| XEBI:  | ROMCTL <sup>1</sup><br>or<br>EWAIT | ADDR22<br>or<br>ACC2 | ADDR21<br>or<br>ACC1 | ADDR20<br>or<br>ACC0 | ADDR19<br>or<br>IQSTAT3 | ADDR18<br>or<br>IQSTAT2 | ADDR17<br>or<br>IQSTAT1 | ADDR16<br>or<br>IQSTAT0 |
| LCD:   | FP23                               |                      |                      |                      | BP3                     | BP2                     | BP1                     | BP0                     |
| Reset  | 0                                  | 0                    | 0                    | 0                    | 0                       | 0                       | 0                       | 0                       |

Figure 2-12. Port K I/O Register (PTK)

<sup>1</sup> Function active when  $\overline{\text{RESET}}$  asserted.

Read: Anytime. Write: Anytime.

If the associated data direction bit (DDRKx) is set to 1 (output), a read returns the value of the I/O register bit.

If the associated data direction bit (DDRKx) is set to 0 (input) and the LCD frontplane driver is enabled (and LCD module is enabled), the associated I/O register bit (PTKx) reads "1".

If the associated data direction bit (DDRKx) is set to 0 (input) and the LCD frontplane driver is disabled (or LCD module is disabled), a read returns the value of the pin.

### 2.3.4.2 Port K Data Direction Register (DDRK)

Module Base + 0x0055

| _      | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| R<br>W | DDRK7 | DDRK6 | DDRK5 | DDRK4 | DDRK3 | DDRK2 | DDRK1 | DDRK0 |
| Reset  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Figure 2-13. Port K Data Direction Register (DDRK)

Read: Anytime. Write: Anytime.

MC9S12XHZ512 Data Sheet, Rev. 1.06

I



### 3.4.2.1 Erase Verify Command

The erase verify operation will verify that a Flash block is erased.

An example flow to execute the erase verify operation is shown in Figure 3-25. The erase verify command write sequence is as follows:

- 1. Write an aligned word to a valid address in the Flash array memory to start the command write sequence for the erase verify command. The address and data written will be ignored. Multiple Flash blocks can be simultaneously erase verified by writing to the same relative address in each Flash block.
- 2. Write the erase verify command, 0x05, to the FCMD register.
- 3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the erase verify command.

After launching the erase verify command, the CCIF flag in the FSTAT register will set after the operation has completed unless a new command write sequence has been buffered. The number of bus cycles required to execute the erase verify operation is equal to the number of addresses in a Flash block plus 14 bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. Upon completion of the erase verify operation, the BLANK flag in the FSTAT register will be set if all addresses in the selected Flash blocks are verified to be erased. If any address in a selected Flash block is not erased, the erase verify operation will terminate and the BLANK flag in the FSTAT register will remain clear. The MRDS bits in the FTSTMOD register will determine the sense-amp margin setting during the erase verify operation.



ROLRotate LeftROLOperationImage: Construction of the second secon

n = RS or IMM4

Rotates the bits in register RD n positions to the left. The lower n bits of the register RD are filled with the upper n bits. Two source forms are available. In the first form, the parameter n is contained in the instruction code as an immediate operand. In the second form, the parameter is contained in the lower bits of the source register RS[3:0]. All other bits in RS are ignored. If n is zero, no shift will take place and the register RD will be unaffected; however, the condition code flags will be updated.

### **CCR Effects**

| Ν | Ζ | V | С |  |  |
|---|---|---|---|--|--|
| Λ | Λ | 0 |   |  |  |

- N: Set if bit 15 of the result is set; cleared otherwise.
- Z: Set if the result is \$0000; cleared otherwise.
- V: 0; cleared.
- C: Not affected.

### Code and CPU Cycles

| Source Form   | Address<br>Mode |   | Machine Code |   |   |   |    |      |   |   |   | Cycles |   |   |
|---------------|-----------------|---|--------------|---|---|---|----|------|---|---|---|--------|---|---|
| ROL RD, #IMM4 | IMM4            | 0 | 0            | 0 | 0 | 1 | RD | IMM4 |   | 1 | 1 | 1      | 0 | Р |
| ROL RD, RS    | DYA             | 0 | 0            | 0 | 0 | 1 | RD | RS   | 1 | 0 | 1 | 1      | 0 | Р |



Chapter 7 Clocks and Reset Generator (S12CRGV6)

## 7.3.2 Register Descriptions

This section describes in address order all the CRG registers and their individual bits.

| Register<br>Name |        | Bit 7      | 6          | 5            | 4          | 3          | 2          | 1          | Bit 0      |
|------------------|--------|------------|------------|--------------|------------|------------|------------|------------|------------|
| 0x_00<br>SYNR    | R<br>W | 0          | 0          | SYN5         | SYN4       | SYN3       | SYN2       | SYN1       | SYN0       |
| 0x_01<br>REFDV   | R<br>W | 0          | 0          | REFDV5       | REFDV4     | REFDV3     | REFDV2     | REFDV1     | REFDV0     |
| 0x_02<br>CTFLG   | R<br>W | 0          | 0          | 0            | 0          | 0          | 0          | 0          | 0          |
| 0x_03<br>CRGFLG  | R<br>W | RTIF       | PORF       | LVRF         |            |            | SCMIF      | SCM        |            |
| 0x_04<br>CRGINT  | R<br>W | RTIE       | ILAF       | 0            | LOCKIE     | 0          | 0          | SCMIE      | 0          |
| 0x_05<br>CLKSEL  | R<br>W | PLLSEL     | PSTP       | 0            | 0          | PLLWAI     | 0          | RTIWAI     | COPWAI     |
| 0x_06<br>PLLCTL  | R<br>W | CME        | PLLON      | AUTO         | ACQ        | FSTWKP     | PRE        | PCE        | SCME       |
| 0x_07<br>RTICTL  | R<br>W | RTDEC      | RTR6       | RTR5         | RTR4       | RTR3       | RTR2       | RTR1       | RTR0       |
| 0x_08<br>COPCTL  | R<br>W | WCOP       | RSBCK      | 0<br>WRTMASK | 0          | 0          | CR2        | CR1        | CR0        |
| 0x_09<br>FORBYP  | R<br>W | 0          | 0          | 0            | 0          | 0          | 0          | 0          | 0          |
| 0x_0A<br>CTCTL   | R<br>W | 1          | 0          | 0            | 0          | 0          | 0          | 0          | 0          |
| 0x_0B<br>ARMCOP  | R<br>W | 0<br>Bit 7 | 0<br>Bit 6 | 0<br>Bit 5   | 0<br>Bit 4 | 0<br>Bit 3 | 0<br>Bit 2 | 0<br>Bit 1 | 0<br>Bit 0 |
|                  | Г      |            |            |              |            |            |            |            |            |

= Unimplemented or Reserved

| Figure 7-3. | S12CRGV6 | Register | Summary |
|-------------|----------|----------|---------|
|-------------|----------|----------|---------|



#### Chapter 7 Clocks and Reset Generator (S12CRGV6)

|            |                             |                             |                             | R                            | TR[6:4] =                                                     |                                                             |                               |                               |
|------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|-------------------------------|
| RTR[3:0]   | 000<br>(1x10 <sup>3</sup> ) | 001<br>(2x10 <sup>3</sup> ) | 010<br>(5x10 <sup>3</sup> ) | 011<br>(10x10 <sup>3</sup> ) | 100<br>(20x10 <sup>3</sup> )                                  | 101<br>(50x10 <sup>3</sup> )                                | 110<br>(100x10 <sup>3</sup> ) | 111<br>(200x10 <sup>3</sup> ) |
| 0000 (÷1)  | 1x10 <sup>3</sup>           | 2x10 <sup>3</sup>           | 5x10 <sup>3</sup>           | 10x10 <sup>3</sup>           | 20x10 <sup>3</sup>                                            | 50x10 <sup>3</sup>                                          | 100x10 <sup>3</sup>           | 200x10 <sup>3</sup>           |
| 0001 (÷2)  | 2x10 <sup>3</sup>           | 4x10 <sup>3</sup>           | 10x10 <sup>3</sup>          | 20x10 <sup>3</sup>           | 40x10 <sup>3</sup>                                            | 0 <sup>3</sup> 100x10 <sup>3</sup> 200x10 <sup>3</sup>      |                               | 400x10 <sup>3</sup>           |
| 0010 (÷3)  | 3x10 <sup>3</sup>           | 6x10 <sup>3</sup>           | 15x10 <sup>3</sup>          | 30x10 <sup>3</sup>           | 60x10 <sup>3</sup>                                            | 0x10 <sup>3</sup> 150x10 <sup>3</sup> 300x10 <sup>3</sup>   |                               | 600x10 <sup>3</sup>           |
| 0011 (÷4)  | 4x10 <sup>3</sup>           | 8x10 <sup>3</sup>           | 20x10 <sup>3</sup>          | 40x10 <sup>3</sup>           | 80x10 <sup>3</sup> 200x10 <sup>3</sup> 400x10 <sup>3</sup>    |                                                             | 400x10 <sup>3</sup>           | 800x10 <sup>3</sup>           |
| 0100 (÷5)  | 5x10 <sup>3</sup>           | 10x10 <sup>3</sup>          | 25x10 <sup>3</sup>          | 50x10 <sup>3</sup>           | x10 <sup>3</sup> 100x10 <sup>3</sup> 250x10 <sup>3</sup> 500x |                                                             | 500x10 <sup>3</sup>           | 1x10 <sup>6</sup>             |
| 0101 (÷6)  | 6x10 <sup>3</sup>           | 12x10 <sup>3</sup>          | 30x10 <sup>3</sup>          | 60x10 <sup>3</sup>           | 120x10 <sup>3</sup>                                           | 120x10 <sup>3</sup> 300x10 <sup>3</sup> 600x10 <sup>3</sup> |                               | 1.2x10 <sup>6</sup>           |
| 0110 (÷7)  | 7x10 <sup>3</sup>           | 14x10 <sup>3</sup>          | 35x10 <sup>3</sup>          | 70x10 <sup>3</sup>           | 140x10 <sup>3</sup>                                           | 350x10 <sup>3</sup>                                         | 700x10 <sup>3</sup>           | 1.4x10 <sup>6</sup>           |
| 0111 (÷8)  | 8x10 <sup>3</sup>           | 16x10 <sup>3</sup>          | 40x10 <sup>3</sup>          | 80x10 <sup>3</sup>           | 160x10 <sup>3</sup>                                           | 160x10 <sup>3</sup> 400x10 <sup>3</sup> 800x10 <sup>3</sup> |                               | 1.6x10 <sup>6</sup>           |
| 1000 (÷9)  | 9x10 <sup>3</sup>           | 18x10 <sup>3</sup>          | 45x10 <sup>3</sup>          | 90x10 <sup>3</sup>           | 180x10 <sup>3</sup>                                           | 450x10 <sup>3</sup>                                         | 900x10 <sup>3</sup>           | 1.8x10 <sup>6</sup>           |
| 1001 (÷10) | 10 x10 <sup>3</sup>         | 20x10 <sup>3</sup>          | 50x10 <sup>3</sup>          | 100x10 <sup>3</sup>          | 200x10 <sup>3</sup>                                           | 500x10 <sup>3</sup>                                         | 1x10 <sup>6</sup>             | 2x10 <sup>6</sup>             |
| 1010 (÷11) | 11 x10 <sup>3</sup>         | 22x10 <sup>3</sup>          | 55x10 <sup>3</sup>          | 110x10 <sup>3</sup>          | 220x10 <sup>3</sup>                                           | 550x10 <sup>3</sup>                                         | 1.1x10 <sup>6</sup>           | 2.2x10 <sup>6</sup>           |
| 1011 (÷12) | 12x10 <sup>3</sup>          | 24x10 <sup>3</sup>          | 60x10 <sup>3</sup>          | 120x10 <sup>3</sup>          | 240x10 <sup>3</sup>                                           | 600x10 <sup>3</sup>                                         | 1.2x10 <sup>6</sup>           | 2.4x10 <sup>6</sup>           |
| 1100 (÷13) | 13x10 <sup>3</sup>          | 26x10 <sup>3</sup>          | 65x10 <sup>3</sup>          | 130x10 <sup>3</sup>          | 260x10 <sup>3</sup>                                           | 650x10 <sup>3</sup>                                         | 1.3x10 <sup>6</sup>           | 2.6x10 <sup>6</sup>           |
| 1101 (÷14) | 14x10 <sup>3</sup>          | 28x10 <sup>3</sup>          | 70x10 <sup>3</sup>          | 140x10 <sup>3</sup>          | 280x10 <sup>3</sup>                                           | 700x10 <sup>3</sup>                                         | 1.4x10 <sup>6</sup>           | 2.8x10 <sup>6</sup>           |
| 1110 (÷15) | 15x10 <sup>3</sup>          | 30x10 <sup>3</sup>          | 75x10 <sup>3</sup>          | 150x10 <sup>3</sup>          | 300x10 <sup>3</sup>                                           | 750x10 <sup>3</sup>                                         | 1.5x10 <sup>6</sup>           | 3x10 <sup>6</sup>             |
| 1111 (÷16) | 16x10 <sup>3</sup>          | 32x10 <sup>3</sup>          | 80x10 <sup>3</sup>          | 160x10 <sup>3</sup>          | 320x10 <sup>3</sup>                                           | 800x10 <sup>3</sup>                                         | 1.6x10 <sup>6</sup>           | 3.2x10 <sup>6</sup>           |



### 10.4.5.3 1/2 Duty Multiplexed with 1/3 Bias Mode

Duty = 1/2:DUTY1 = 1, DUTY0 = 0 Bias = 1/3:BIAS = 1  $V_0 = VSSX, V_1 = VLCD * 1/3, V_2 = VLCD * 2/3, V_3 = VLCD$ 

- BP2 and BP3 are not used, a maximum of 64 segments are displayed.



MC9S12XHZ512 Data Sheet, Rev. 1.06



Chapter 11 Motor Controller (MC10B12CV2) Block Description

## 11.4.2 PWM Duty Cycle

The PWM duty cycle for the motor controller channel x can be determined by dividing the decimal representation of bits D[10:0] in MCDCx by the decimal representation of the bits P[10:0] in MCPER and multiplying the result by 100% as shown in the equation below:

Effective PWM Channel X % Duty Cycle = 
$$\frac{DUTY}{MCPER} \cdot 100\%$$

### NOTE

x = PWM Channel Number = 0, 1, 2, 3 ... 11. This equation is only valid if DUTY  $\leq=$  MCPER and MCPER is not equal to 0.

Whenever  $D[10:0] \ge P[10:0]$ , a constant low level (RECIRC = 0) or high level (RECIRC = 1) will be output.

### 11.4.3 Motor Controller Counter Clock Source

Figure 11-22 shows how the PWM motor controller timer counter clock source is selected.



Figure 11-22. Motor Controller Counter Clock Selection

The peripheral bus clock is the source for the motor controller counter prescaler. The motor controller counter clock rate,  $f_{TC}$ , is set by selecting the appropriate prescaler value. The prescaler is selected with the MCPRE[1:0] bits in motor controller control register 0 (MCCTL0). The motor controller channel frequency of operation can be calculated using the following formula if DITH = 0:

Motor Channel Frequency (Hz) = 
$$\frac{f_{TC}}{MCPER \cdot M}$$

#### MC9S12XHZ512 Data Sheet, Rev. 1.06



#### Chapter 14 Freescale's Scalable Controller Area Network (S12MSCANV3)



Figure 14-16. MSCAN Reserved Register

1. Read: Always reads zero in normal system operation modes Write: Unimplemented in normal system operation modes

#### NOTE

Writing to this register when in special system operating modes can alter the MSCAN functionality.

### 14.3.2.14 MSCAN Miscellaneous Register (CANMISC)

This register provides additional features.



1. Read: Anytime

Write: Anytime; write of '1' clears flag; write of '0' ignored

#### Table 14-21. CANMISC Register Field Descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>BOHOLD | Bus-off State Hold Until User Request — If BORM is set in MSCAN Control Register 1 (CANCTL1) this bitindicates whether the module has entered the bus-off state. Clearing this bit requests the recovery from bus-off.Refer to Section 14.5.2, "Bus-Off Recovery," for details.0 Module is not bus-off or recovery has been requested by user in bus-off state1 Module is bus-off and holds this state until user request |

## 14.3.2.15 MSCAN Receive Error Counter (CANRXERR)

This register reflects the status of the MSCAN receive error counter.

MC9S12XHZ512 Data Sheet, Rev. 1.06





Figure 14-33. Identifier Register 3 — Standard Mapping

### 14.3.3.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received. The number of bytes to be transmitted or received is determined by the data length code in the corresponding DLR register.

Module Base + 0x00X4 to Module Base + 0x00XB

| _      | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| R<br>W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| Reset: | х   | х   | х   | х   | x   | х   | х   | х   |

Figure 14-34. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping

| Table 14-33. | DSR0-DSR7 | <b>Register Field</b> | Descriptions |
|--------------|-----------|-----------------------|--------------|
|              |           | riogiotor i lora      | Dooonphono   |

| Field          | Description   |
|----------------|---------------|
| 7-0<br>DB[7:0] | Data bits 7-0 |



| MODFEN | SSOE | Master Mode                                    | Slave Mode |
|--------|------|------------------------------------------------|------------|
| 0      | 0    | SS not used by SPI                             | SS input   |
| 0      | 1    | SS not used by SPI                             | SS input   |
| 1      | 0    | $\overline{\text{SS}}$ input with MODF feature | SS input   |
| 1      | 1    | $\overline{SS}$ is slave select output         | SS input   |

#### Table 16-2. SS Input / Output Selection

## 16.3.2.2 SPI Control Register 2 (SPICR2)

Module Base +0x0001



Figure 16-4. SPI Control Register 2 (SPICR2)

### Read: Anytime

Write: Anytime; writes to the reserved bits have no effect

| Table 16-3 | . SPICR2 | Field | Descri | ptions |
|------------|----------|-------|--------|--------|
|------------|----------|-------|--------|--------|

| Field        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>MODFEN  | <ul> <li>Mode Fault Enable Bit — This bit allows the MODF failure to be detected. If the SPI is in master mode and MODFEN is cleared, then the SS port pin is not used by the SPI. In slave mode, the SS is available only as an input regardless of the value of MODFEN. For an overview on the impact of the MODFEN bit on the SS port pin configuration, refer to Table 16-4. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state.</li> <li>0 SS port pin is not used by the SPI.</li> <li>1 SS port pin with MODF feature.</li> </ul> |
| 3<br>BIDIROE | <ul> <li>Output Enable in the Bidirectional Mode of Operation — This bit controls the MOSI and MISO output buffer of the SPI, when in bidirectional mode of operation (SPC0 is set). In master mode, this bit controls the output buffer of the MOSI port, in slave mode it controls the output buffer of the MISO port. In master mode, with SPC0 set, a change of this bit will abort a transmission in progress and force the SPI into idle state.</li> <li>0 Output buffer disabled.</li> <li>1 Output buffer enabled.</li> </ul>                                                                     |
| 1<br>SPISWAI | <ul> <li>SPI Stop in Wait Mode Bit — This bit is used for power conservation while in wait mode.</li> <li>SPI clock operates normally in wait mode.</li> <li>Stop SPI clock generation when in wait mode.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |
| 0<br>SPC0    | <b>Serial Pin Control Bit 0</b> — This bit enables bidirectional pin configurations as shown in Table 16-4. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state.                                                                                                                                                                                                                                                                                                                                                                          |



## 16.4.3 Transmission Formats

During an SPI transmission, data is transmitted (shifted out serially) and received (shifted in serially) simultaneously. The serial clock (SCK) synchronizes shifting and sampling of the information on the two serial data lines. A slave select line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. Optionally, on a master SPI device, the slave select line can be used to indicate multiple-master bus contention.



Figure 16-10. Master/Slave Transfer Block Diagram

### 16.4.3.1 Clock Phase and Polarity Controls

Using two bits in the SPI control register 1, software selects one of four combinations of serial clock phase and polarity.

The CPOL clock polarity control bit specifies an active high or low clock and has no significant effect on the transmission format.

The CPHA clock phase control bit selects one of two fundamentally different transmission formats.

Clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transmissions to allow a master device to communicate with peripheral slaves having different requirements.

## 16.4.3.2 CPHA = 0 Transfer Format

The first edge on the SCK line is used to clock the first data bit of the slave into the master and the first data bit of the master into the slave. In some peripherals, the first bit of the slave's data is available at the slave's data out pin as soon as the slave is selected. In this format, the first SCK edge is issued a half cycle after  $\overline{SS}$  has become low.

A half SCK cycle later, the second edge appears on the SCK line. When this second edge occurs, the value previously latched from the serial data input pin is shifted into the LSB or MSB of the shift register, depending on LSBFE bit.

After this second edge, the next bit of the SPI master data is transmitted out of the serial data output pin of the master to the serial input pin on the slave. This process continues for a total of 16 edges on the SCK line, with data being latched on odd numbered edges and shifted on even numbered edges.



#### Chapter 18 Pulse-Width Modulator (S12PWM8B8CV1)

Either left aligned or center aligned output mode can be used in concatenated mode and is controlled by the low order CAEx bit. The high order CAEx bit has no effect.

Table 18-11 is used to summarize which channels are used to set the various control bits when in 16-bit mode.

| CONxx | PWMEx | PPOLx | PCLKx | CAEx | PWMx<br>Output |
|-------|-------|-------|-------|------|----------------|
| CON67 | PWME7 | PPOL7 | PCLK7 | CAE7 | PWM7           |
| CON45 | PWME5 | PPOL5 | PCLK5 | CAE5 | PWM5           |
| CON23 | PWME3 | PPOL3 | PCLK3 | CAE3 | PWM3           |
| CON01 | PWME1 | PPOL1 | PCLK1 | CAE1 | PWM1           |

Table 18-11. 16-bit Concatenation Mode Summary

### 18.4.2.8 PWM Boundary Cases

Table 18-12 summarizes the boundary conditions for the PWM regardless of the output mode (left aligned or center aligned) and 8-bit (normal) or 16-bit (concatenation).

| PWMDTYx                     | PWMPERx                                    | PPOLx | PWMx Output |
|-----------------------------|--------------------------------------------|-------|-------------|
| \$00<br>(indicates no duty) | >\$00                                      | 1     | Always low  |
| \$00<br>(indicates no duty) | >\$00                                      | 0     | Always high |
| XX                          | \$00 <sup>1</sup><br>(indicates no period) | 1     | Always high |
| ХХ                          | \$00 <sup>1</sup><br>(indicates no period) | 0     | Always low  |
| >= PWMPERx                  | XX                                         | 1     | Always high |
| >= PWMPERx                  | XX                                         | 0     | Always low  |

 Table 18-12. PWM Boundary Cases

<sup>1</sup> Counter = \$00 and does not count.

## 18.5 Resets

The reset state of each individual bit is listed within the Section 18.3.2, "Register Descriptions" which details the registers and their bit-fields. All special functions or modes which are initialized during or just following reset are described within this section.

- The 8-bit up/down counter is configured as an up counter out of reset.
- All the channels are disabled and all the counters do not count.



Chapter 19 Enhanced Capture Timer (ECT16B8CV3)

## 19.4.3 Interrupts

This section describes interrupts originated by the ECT block. The MCU must service the interrupt requests. Table 19-39 lists the interrupts generated by the ECT to communicate with the MCU.

#### Table 19-39. ECT Interrupts

| Interrupt Source             | Description                                     |
|------------------------------|-------------------------------------------------|
| Timer channel 7–0            | Active high timer channel interrupts 7–0        |
| Modulus counter underflow    | Active high modulus counter interrupt           |
| Pulse accumulator B overflow | Active high pulse accumulator B interrupt       |
| Pulse accumulator A input    | Active high pulse accumulator A input interrupt |
| Pulse accumulator A overflow | Pulse accumulator overflow interrupt            |
| Timer overflow               | Timer Overflow interrupt                        |

The ECT only originates interrupt requests. The following is a description of how the module makes a request and how the MCU should acknowledge that request. The interrupt vector offset and interrupt number are chip dependent.

### 19.4.3.1 Channel [7:0] Interrupt

This active high output will be asserted by the module to request a timer channel 7–0 interrupt to be serviced by the system controller.

### 19.4.3.2 Modulus Counter Interrupt

This active high output will be asserted by the module to request a modulus counter underflow interrupt to be serviced by the system controller.

### **19.4.3.3** Pulse Accumulator B Overflow Interrupt

This active high output will be asserted by the module to request a timer pulse accumulator B overflow interrupt to be serviced by the system controller.

### 19.4.3.4 Pulse Accumulator A Input Interrupt

This active high output will be asserted by the module to request a timer pulse accumulator A input interrupt to be serviced by the system controller.

### **19.4.3.5 Pulse Accumulator A Overflow Interrupt**

This active high output will be asserted by the module to request a timer pulse accumulator A overflow interrupt to be serviced by the system controller.



- Destination address of RTI, RTS, and RTC instructions.
- · Vector address of interrupts, except for SWI and BDM vectors

LBRA, BRA, BSR, BGND as well as non-indexed JMP, JSR, and CALL instructions are not classified as change of flow and are not stored in the trace buffer.

COF addresses are defined as follows for the XGATE:

- Source address of taken conditional branches
- Destination address of indexed JAL instructions.
- First XGATE code address in a thread

Change-of-flow addresses stored include the full 23-bit address bus of CPU12X, the 16-bit address bus for the XGATE module and an information byte, which contains a source/destination bit to indicate whether the stored address was a source address or destination address.

#### NOTE

When an CPU12X COF instruction with destination address is executed, the destination address is stored to the trace buffer on instruction completion, indicating the COF has taken place. If an interrupt occurs simultaneously then the next instruction carried out is actually from the interrupt service routine. The instruction at the destination address of the original program flow gets executed after the interrupt service routine.

In the following example an IRQ interrupt occurs during execution of the indexed JMP at address MARK1. The BRN at the destination (SUB\_1) is not executed until after the IRQ service routine but the destination address is entered into the trace buffer to indicate that the indexed JMP COF has taken place.

|         | LDX  | #SUB_1                       |     |                                               |
|---------|------|------------------------------|-----|-----------------------------------------------|
| MARK1   | JMP  | 0,X                          | ;   | IRQ interrupt occurs during execution of this |
| MARK2   | NOP  |                              | ;   |                                               |
| SUB_1   | BRN  | *                            | ;   | JMP Destination address TRACE BUFFER ENTRY 1  |
|         |      |                              | ;   | RTI Destination address TRACE BUFFER ENTRY 3  |
|         | NOP  |                              | ;   |                                               |
| ADDR1   | DBNE | A, PART5                     | ;   | Source address TRACE BUFFER ENTRY 4           |
| IRQ_ISR | LDAB | #\$F0                        | ;   | IRQ Vector \$FFF2 = TRACE BUFFER ENTRY 2      |
|         | STAB | VAR_C1                       |     |                                               |
|         | RTI  |                              | ;   |                                               |
|         | The  | e execution flow taking into | 0 8 | account the IRQ is as follows                 |

|         | LDX  | #SUB_1  |   |
|---------|------|---------|---|
| MARK1   | JMP  | 0 , X   | ; |
| IRQ_ISR | LDAB | #\$F0   | ; |
|         | STAB | VAR_C1  |   |
|         | RTI  |         | ; |
| SUB_1   | BRN  | *       |   |
|         | NOP  |         | ; |
| ADDR1   | DBNE | A,PART5 | ; |

# Chapter 25 Memory Mapping Control (S12XMMCV3)

| Version<br>Number | Revision<br>Date | Effective<br>Date | Author | Description of Changes                                                                                                                                                                                            |
|-------------------|------------------|-------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v03.00            | 25 May 2005      | 05/25/2005        |        | Generic S12XMMC BlockGuide is meant for S12X<br>derivatives.<br>- Added FLEXRAY IP like a Master Block.<br>- Major Cleanup,.<br>- Added condional texts to different configurations.<br>- Added Internal section. |
| v03.01            | 21 July 2005     | 07/21/2005        |        | Clarify in details External Spaces accesses and firmware<br>in single chip modes<br>Update reviewed wording                                                                                                       |

## 25.1 Introduction

This section describes the functionality of the module mapping control (MMC) sub-block of the S12X platform. The block diagram of the MMC is shown in Figure 25-1.

The MMC module controls the multi-master priority accesses, the selection of internal resources and external space. Internal buses, including internal memories and peripherals, are controlled in this module. The local address space for each master is translated to a global memory space.



| Signal  | I/O | Description        | Availability                        |
|---------|-----|--------------------|-------------------------------------|
| MODC    | I   | Mode input         | Latched after<br>RESET (active low) |
| MODB    | I   | Mode input         | Latched after<br>RESET (active low) |
| MODA    | I   | Mode input         | Latched after<br>RESET (active low) |
| EROMCTL | I   | EROM control input | Latched after<br>RESET (active low) |
| ROMCTL  | I   | ROM control input  | Latched after<br>RESET (active low) |

#### Table 25-2. External Input Signals Associated with the MMC

#### Table 25-3. External Output Signals Associated with the MMC

| Signal | 1/0 | Description        |    | /  | Available | in Modes  | 6  |    |
|--------|-----|--------------------|----|----|-----------|-----------|----|----|
| Signal | 1/0 | Description        | NS | SS | NX        | ES        | EX | ST |
| CS0    | 0   | Chip select line 0 |    |    | (see Tab  | ole 25-4) |    |    |
| CS1    | 0   | Chip select line 1 | 1  |    |           |           |    |    |
| CS2    | 0   | Chip select line 2 |    |    |           |           |    |    |
| CS3    | 0   | Chip select line 3 |    |    |           |           |    |    |



# Appendix E Detailed Register Map

The following tables show the detailed register map of the MC9S12XHZ512.

### 0x0000–0x0009 Port Integration Module (PIM) Map 1 of 5

| Address | Name  | _      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0x0000  | PORTA | R<br>W | PA7   | PA6   | PA5   | PA4   | PA3   | PA2   | PA1   | PA 0  |
| 0x0001  | PORTB | R<br>W | PB7   | PB6   | PB5   | PB4   | PB3   | PB2   | PB1   | PB0   |
| 0x0002  | DDRA  | R<br>W | DDRA7 | DDRA6 | DDRA5 | DDRA4 | DDRA3 | DDRA2 | DDRA1 | DDRA0 |
| 0x0003  | DDRB  | R<br>W | DDRB7 | DDRB6 | DDRB5 | DDRB4 | DDRB3 | DDRB2 | DDRB1 | DDRB0 |
| 0x0004  | PORTC | R<br>W | PC7   | PC6   | PC5   | PC4   | PC3   | PC2   | PC1   | PC0   |
| 0x0005  | PORTD | R<br>W | PD7   | PD6   | PD5   | PD4   | PD3   | PD2   | PD1   | PD0   |
| 0x0006  | DDRC  | R<br>W | DDRC7 | DDRC6 | DDRC5 | DDRC4 | DDRC3 | DDRC2 | DDRC1 | DDRC0 |
| 0x0007  | DDRD  | R<br>W | DDRD7 | DDRD6 | DDRD5 | DDRD4 | DDRD3 | DDRD2 | DDRD1 | DDRD0 |
| 0x0008  | PORTE | R      | PE7   | PE6   | PE5   | PE4   | PE3   | PE2   | PE1   | PE0   |
|         |       | R      |       |       |       |       |       |       | 0     | 0     |
| 0x0009  | DDRE  | w      | DDRE7 | DDRE6 | DDRE5 | DDRE4 | DDRE3 | DDRE2 |       |       |

### 0x000A-0x000B Module Mapping Control (S12XMMC) Map 1 of 4

| Address       | Name    |   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------|---------|---|-------|-------|-------|-------|-------|-------|-------|-------|
| 0x000A MMCCTL | MMCCTLO | R | 0     | 0     | 0     | 0     | 0     | CS2E  | C91E  | CSOF  |
|               |         | W |       |       |       |       |       | COZL  | COIL  | COUL  |
| 0v000B        | MODE    | R | MODC  | MODB  | MODA  | 0     | 0     | 0     | 0     | 0     |
| UXUUUD        | NODE    | W | NIODC | NODB  | MODA  |       |       |       |       |       |

### 0x000C-0x000D Port Integration Module (PIM) Map 2 of 5

| Address | Name   |   | Bit 7  | Bit 6  | Bit 5 | Bit 4   | Bit 3 | Bit 2 | Bit 1   | Bit 0   |
|---------|--------|---|--------|--------|-------|---------|-------|-------|---------|---------|
| 0x000C  | PUCR   | R | PUPKE  | BKPUF  | 0     | PUPFF   | PUPDE | PUPCE | PUPBE   | PUPAF   |
| 0,0000  | roon   | W | TOTILE | DIVIOL |       | 1 OI LL | 10102 | 10102 | 1 OF DE | 1 OT AL |
| 0v000   | RUBI// | R | BUDK   | 0      | 0     | RUDE    | חםחפ  | BUBC  | RUBB    | RDPA    |
| 00000   | NDINIV | W | KDLK   |        |       | RUFE    | NDFD  | NDI C | INDI D  | NDFA    |