

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SCI, SPI
Peripherals	LCD, Motor control PWM, POR, PWM, WDT
Number of I/O	117
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12xhz256vag

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3.5.5 Slew Rate Control Register (SRCR)

Module Base + 0x0055

Read: Anytime. Write: Anytime.

This register enables the slew rate control and disables the digital input buffer for the pins associated with ports A, B, C, D, E, and K.

Field	Description
7 SRRK	 Slew Rate of Port K Disables slew rate control and enables digital input buffer for all port K pins. Enables slew rate control and disables digital input buffer for all port K pins.
4 SRRE	 Slew Rate of Port E Disables slew rate control and enables digital input buffer for all port E pins. Enables slew rate control and disables digital input buffer for all port E pins.
3 SRRD	 Slew Rate of Port D Disables slew rate control and enables digital input buffer for all port D pins. Enables slew rate control and disables digital input buffer for all port D pins.
2 SRRC	 Slew Rate of Port C Disables slew rate control and enables digital input buffer for all port C pins. Enables slew rate control and disables digital input buffer for all port C pins.
1 SRRB	 Slew Rate of Port B Disables slew rate control and enables digital input buffer for all port B pins. Enables slew rate control and disables digital input buffer for all port B pins.
0 SRRA	Slew Rate of Port A 0 Disables slew rate control and enables digital input buffer for all port A pins. 1 Enables slew rate control and disables digital input buffer for all port A pins.

Table 2-14. SRCR Field Descriptions

Chapter 2 Port Integration Module (S12XHZPIMV1)

2.3.7.2 Port L Input Register (PTIL)

Module Base + 0x0031

Figure 2-28. Port L Input Register (PTIL)

Read: Anytime. Write: Never, writes to this register have no effect.

If the LCD frontplane driver of an associated I/O pin is enabled (and LCD module is enabled) or the associated ATDDIEN0 bit is set to 0 (digital input buffer is disabled), a read returns a 1.

If the LCD frontplane driver of an associated I/O pin is disabled (or LCD module is disabled) and the associated ATDDIEN0 bit is set to 1 (digital input buffer is enabled), a read returns the status of the associated pin.

2.3.7.3 Port L Data Direction Register (DDRL)

Module Base + 0x0032

Figure 2-29. Port L Data Direction Register (DDRL)

Read: Anytime. Write: Anytime.

This register configures port pins PL[7:0] as either input or output.

If a LCD frontplane driver is enabled (and LCD module is enabled), it outputs an analog signal to the corresponding pin and the associated Data Direction Register bit has no effect. If a LCD frontplane driver is disabled (or LCD module is disabled), the corresponding Data Direction Register bit reverts to control the I/O direction of the associated pin.

Table	2-21.	DDRL	Field	Descriptions
-------	-------	------	-------	--------------

Field	Description
7:0	Data Direction Port L
DDRL[7:0]	0 Associated pin is configured as input.
	1 Associated pin is configured as output.

I

2.3.10.2 Port S Input Register (PTIS)

Module Base + 0x0009

Read: Anytime. Write: Never, writes to this register have no effect.

This register always reads back the status of the associated pins.

2.3.10.3 Port S Data Direction Register (DDRS)

Module Base + 0x000A

	7	6	5	4	3	2	1	0
R W	DDRS7	DDRS6	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0
Reset	0	0	0	0	0	0	0	0

Figure 2-52. Port S Data Direction Register (DDRS)

Read: Anytime. Write: Anytime.

This register configures port pins PS[7:0] as either input or output.

When the SPI is enabled, the PS[7:4] pins become the SPI bidirectional pins. The associated Data Direction Register bits have no effect.

When the SCI1 transmitter is enabled, the PS[3] pin becomes the TXD1 output pin and the associated Data Direction Register bit has no effect. When the SCI1 receiver is enabled, the PS[2] pin becomes the RXD1 input pin and the associated Data Direction Register bit has no effect.

When the SCI0 transmitter is enabled, the PS[1] pin becomes the TXD0 output pin and the associated Data Direction Register bit has no effect. When the SCI0 receiver is enabled, the PS[0] pin becomes the RXD0 input pin and the associated Data Direction Register bit has no effect.

If the SPI, SCI1 and SCI0 functions are disabled, the corresponding Data Direction Register bit reverts to control the I/O direction of the associated pin.

Table	2-38.	DDRS	Field	Descriptions
-------	-------	------	-------	--------------

Field	Description
7:0 DDRS[7:0]	Data Direction Port S0 Associated pin is configured as input.1 Associated pin is configured as output.

2.6 Interrupts

2.6.1 General

Port AD generates an edge sensitive interrupt if enabled. It offers eight I/O pins with edge triggered interrupt capability in wired-or fashion. The interrupt enable as well as the sensitivity to rising or falling edges can be individually configured on per pin basis. All eight bits/pins share the same interrupt vector. Interrupts can be used with the pins configured as inputs (with the corresponding ATDDIEN1 bit set to 1)or outputs.

An interrupt is generated when a bit in the port interrupt flag register and its corresponding port interrupt enable bit are both set. This external interrupt feature is capable to wake up the CPU when it is in stop or wait mode.

A digital filter on each pin prevents pulses (Figure 2-87) shorter than a specified time from generating an interrupt. The minimum time varies over process conditions, temperature and voltage (Figure 2-86 and Table 2-68).

Figure 2-86. Interrupt Glitch Filter on Port AD (PPS = 0)

	Mode								
Pulse	STOF	ō	STOP ¹						
		Unit		Unit					
Ignored	t _{pulse} <= 3	Bus Clock	t _{pulse} <= 3.2	μs					
Uncertain	3 < t _{pulse} < 4	Bus Clock	3.2 < t _{pulse} < 10	μs					
Valid	t _{pulse} >= 4	Bus Clock	t _{pulse} >= 10	μs					

Table 2-68. Pulse Detection Criteria

¹ These values include the spread of the oscillator frequency over temperature, voltage and process.

Chapter 4 4 Kbyte EEPROM Module (S12XEETX4KV2)

4.1 Introduction

This document describes the EETX4K module which includes a 4 Kbyte EEPROM (nonvolatile) memory. The EEPROM memory may be read as either bytes, aligned words, or misaligned words. Read access time is one bus cycle for bytes and aligned words, and two bus cycles for misaligned words.

The EEPROM memory is ideal for data storage for single-supply applications allowing for field reprogramming without requiring external voltage sources for program or erase. Program and erase functions are controlled by a command driven interface. The EEPROM module supports both block erase (all memory bytes) and sector erase (4 memory bytes). An erased bit reads 1 and a programmed bit reads 0. The high voltage required to program and erase the EEPROM memory is generated internally. It is not possible to read from the EEPROM block while it is being erased or programmed.

CAUTION

An EEPROM word (2 bytes) must be in the erased state before being programmed. Cumulative programming of bits within a word is not allowed.

4.1.1 Glossary

Command Write Sequence — A three-step MCU instruction sequence to execute built-in algorithms (including program and erase) on the EEPROM memory.

4.1.2 Features

- 4 Kbytes of EEPROM memory divided into 1024 sectors of 4 bytes
- Automated program and erase algorithm
- Interrupts on EEPROM command completion and command buffer empty
- Fast sector erase and word program operation
- 2-stage command pipeline
- Sector erase abort feature for critical interrupt response
- Flexible protection scheme to prevent accidental program or erase
- Single power supply for all EEPROM operations including program and erase

4.1.3 Modes of Operation

Program, erase and erase verify operations (please refer to Section 4.4.1, "EEPROM Command Operations" for details).

MC9S12XHZ512 Data Sheet, Rev. 1.06

Chapter 5 XGATE (S12XGATEV2)

CPCH

Compare Immediate 8 bit Constant with Carry (High Byte)

CPCH

Operation

RS.H - IMM8 - $C \Rightarrow$ NONE, only condition code flags get updated

Subtracts the carry bit and the 8 bit constant IMM8 contained in the instruction code from the high byte of the source register RD using binary subtraction and updates the condition code register accordingly. The carry bit and Zero bits are taken into account to allow a 16 bit compare in the form of

CMPL R2,#LOWBYTE CPCH R2,#HIGHBYTE BCC ; branch condition

Remark: There is no equivalent operation using triadic addressing. Comparing the values of two registers can be performed by using the subtract instruction with R0 as destination register.

CCR Effects

Ν	Ζ	V	С
Δ	Δ	Δ	Δ

N: Set if bit 15 of the result is set; cleared otherwise.

- Z: Set if the result is \$00 and Z was set before this operation; cleared otherwise.
- V: Set if a two's complement overflow resulted from the operation; cleared otherwise. RS[15] & IMM8[7] & result[15] | RS[15] & IMM8[7] & result[15]
- C: Set if there is a carry from the bit 15 of the result; cleared otherwise. $\overline{RS[15]} \& IMM8[7] | \overline{RS[15]} \& result[15] | IMM8[7] \& result[15]$

Code and CPU Cycles

Source Form	Address Mode	Machine Code					Cycles		
CPCH RD, #IMM8	IMM8	1	1	0	1	1	RS	IMM8	Р

Load Immediate 8 bit Constant (Low Byte)

Operation

LDL

IMM8 \Rightarrow RD.L; $\$00 \Rightarrow$ RD.H

Loads an eight bit immediate constant into the low byte of register RD. The high byte is cleared.

CCR Effects

Ν	Ζ	V	С

- N: Not affected.
- Z: Not affected.
- V: Not affected.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode		Machine Code					Cycles	
LDL RD, #IMM8	IMM8	1	1	1	1	0	RD	IMM8	Р

Chapter 5 XGATE (S12XGATEV2)

SEX

Sign Extend Byte to Word

Operation

The result in RD is the 16 bit sign extended representation of the original two's complement number in the low byte of RD.L.

CCR Effects

Ν	Ζ	V	С
Δ	Δ	0	—

N: Set if bit 15 of the result is set; cleared otherwise.

- Z: Set if the result is \$0000; cleared otherwise.
- V: 0; cleared.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode		Machine Code						Cycles							
SEX RD	MON	0	0	0	0	0	RD	1	1	1	1	0	1	0	0	Р

Chapter 7 Clocks and Reset Generator (S12CRGV6)

7.1.2 Modes of Operation

This subsection lists and briefly describes all operating modes supported by the CRG.

• Run mode

All functional parts of the CRG are running during normal run mode. If RTI or COP functionality is required, the individual bits of the associated rate select registers (COPCTL, RTICTL) have to be set to a nonzero value.

• Wait mode

In this mode, the PLL can be disabled automatically depending on the PLLSEL bit in the CLKSEL register.

• Stop mode

Depending on the setting of the PSTP bit, stop mode can be differentiated between full stop mode (PSTP = 0) and pseudo stop mode (PSTP = 1).

— Full stop mode

The oscillator is disabled and thus all system and core clocks are stopped. The COP and the RTI remain frozen.

Pseudo stop mode

The oscillator continues to run and most of the system and core clocks are stopped. If the respective enable bits are set, the COP and RTI will continue to run, or else they remain frozen.

• Self clock mode

Self clock mode will be entered if the clock monitor enable bit (CME) and the self clock mode enable bit (SCME) are both asserted and the clock monitor in the oscillator block detects a loss of clock. As soon as self clock mode is entered, the CRG starts to perform a clock quality check. Self clock mode remains active until the clock quality check indicates that the required quality of the incoming clock signal is met (frequency and amplitude). Self clock mode should be used for safety purposes only. It provides reduced functionality to the MCU in case a loss of clock is causing severe system conditions.

Table 13-8. IBCR Field Descriptions

Field	Description
7 IBEN	 I-Bus Enable — This bit controls the software reset of the entire IIC bus module. The module is reset and disabled. This is the power-on reset situation. When low the interface is held in reset but registers can be accessed The IIC bus module is enabled. This bit must be set before any other IBCR bits have any effect If the IIC bus module is enabled in the middle of a byte transfer the interface behaves as follows: slave mode ignores the current transfer on the bus and starts operating whenever a subsequent start condition is detected. Master mode will not be aware that the bus is busy, hence if a start cycle is initiated then the current bus cycle may become corrupt. This would ultimately result in either the current bus master or the IIC bus module losing arbitration, after which bus operation would return to normal.
6 IBIE	 I-Bus Interrupt Enable Interrupts from the IIC bus module are disabled. Note that this does not clear any currently pending interrupt condition Interrupts from the IIC bus module are enabled. An IIC bus interrupt occurs provided the IBIF bit in the status register is also set.
5 MS/SL	Master/Slave Mode Select Bit — Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START signal is generated on the bus, and the master mode is selected. When this bit is changed from 1 to 0, a STOP signal is generated and the operation mode changes from master to slave. A STOP signal should only be generated if the IBIF flag is set. MS/SL is cleared without generating a STOP signal when the master loses arbitration. 0 Slave Mode 1 Master Mode
4 Tx/Rx	Transmit/Receive Mode Select Bit — This bit selects the direction of master and slave transfers. When addressed as a slave this bit should be set by software according to the SRW bit in the status register. In master mode this bit should be set according to the type of transfer required. Therefore, for address cycles, this bit will always be high. 0 Receive 1 Transmit
3 TXAK	 Transmit Acknowledge Enable — This bit specifies the value driven onto SDA during data acknowledge cycles for both master and slave receivers. The IIC module will always acknowledge address matches, provided it is enabled, regardless of the value of TXAK. Note that values written to this bit are only used when the IIC bus is a receiver, not a transmitter. 0 An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte data 1 No acknowledge signal response is sent (i.e., acknowledge bit = 1)
2 RSTA	 Repeat Start — Writing a 1 to this bit will generate a repeated START condition on the bus, provided it is the current bus master. This bit will always be read as a low. Attempting a repeated start at the wrong time, if the bus is owned by another master, will result in loss of arbitration. 1 Generate repeat start cycle
1 RESERVED	Reserved — Bit 1 of the IBCR is reserved for future compatibility. This bit will always read 0.
0 IBSWAI	I Bus Interface Stop in Wait Mode 0 IIC bus module clock operates normally 1 Halt IIC bus module clock generation in wait mode

Wait mode is entered via execution of a CPU WAI instruction. In the event that the IBSWAI bit is set, all clocks internal to the IIC will be stopped and any transmission currently in progress will halt. If the CPU were woken up by a source other than the IIC module, then clocks would restart and the IIC would resume

Chapter 14 Freescale's Scalable Controller Area Network (S12MSCANV3)

Figure 14-16. MSCAN Reserved Register

1. Read: Always reads zero in normal system operation modes Write: Unimplemented in normal system operation modes

NOTE

Writing to this register when in special system operating modes can alter the MSCAN functionality.

14.3.2.14 MSCAN Miscellaneous Register (CANMISC)

This register provides additional features.

1. Read: Anytime

Write: Anytime; write of '1' clears flag; write of '0' ignored

Table 14-21. CANMISC Register Field Descriptions

Field	Description
0 BOHOLD	Bus-off State Hold Until User Request — If BORM is set in MSCAN Control Register 1 (CANCTL1) this bitindicates whether the module has entered the bus-off state. Clearing this bit requests the recovery from bus-off.Refer to Section 14.5.2, "Bus-Off Recovery," for details.0 Module is not bus-off or recovery has been requested by user in bus-off state1 Module is bus-off and holds this state until user request

14.3.2.15 MSCAN Receive Error Counter (CANRXERR)

This register reflects the status of the MSCAN receive error counter.

MC9S12XHZ512 Data Sheet, Rev. 1.06

Chapter 16 Serial Peripheral Interface (S12SPIV4)

In slave mode, if the \overline{SS} line is not deasserted between the successive transmissions then the content of the SPI data register is not transmitted; instead the last received byte is transmitted. If the \overline{SS} line is deasserted for at least minimum idle time (half SCK cycle) between successive transmissions, then the content of the SPI data register is transmitted.

In master mode, with slave select output enabled the \overline{SS} line is always deasserted and reasserted between successive transfers for at least minimum idle time.

16.4.3.3 CPHA = 1 Transfer Format

Some peripherals require the first SCK edge before the first data bit becomes available at the data out pin, the second edge clocks data into the system. In this format, the first SCK edge is issued by setting the CPHA bit at the beginning of the 8-cycle transfer operation.

The first edge of SCK occurs immediately after the half SCK clock cycle synchronization delay. This first edge commands the slave to transfer its first data bit to the serial data input pin of the master.

A half SCK cycle later, the second edge appears on the SCK pin. This is the latching edge for both the master and slave.

When the third edge occurs, the value previously latched from the serial data input pin is shifted into the LSB or MSB of the SPI shift register, depending on LSBFE bit. After this edge, the next bit of the master data is coupled out of the serial data output pin of the master to the serial input pin on the slave.

This process continues for a total of 16 edges on the SCK line with data being latched on even numbered edges and shifting taking place on odd numbered edges.

Data reception is double buffered, data is serially shifted into the SPI shift register during the transfer and is transferred to the parallel SPI data register after the last bit is shifted in.

After the 16th SCK edge:

- Data that was previously in the SPI data register of the master is now in the data register of the slave, and data that was in the data register of the slave is in the master.
- The SPIF flag bit in SPISR is set indicating that the transfer is complete.

Figure 16-12 shows two clocking variations for CPHA = 1. The diagram may be interpreted as a master or slave timing diagram because the SCK, MISO, and MOSI pins are connected directly between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The \overline{SS} line is the slave select input to the slave. The \overline{SS} pin of the master must be either high or reconfigured as a general-purpose output not affecting the SPI.

Chapter 17 Periodic Interrupt Timer (S12PIT24B4CV1)

Register Name		Bit 7	6	5	4	3	2	1	Bit 0			
0x000D PITLD1 (Low)	R W	PLD7	PLD6	PLD5	PLD4	PLD3	PLD2	PLD1	PLD0			
0x000E PITCNT1 (High)	R W	PCNT15	PCNT14	PCNT13	PCNT12	PCNT11	PCNT10	PCNT9	PCNT8			
0x000F PITCNT1 (Low)	R W	PCNT7	PCNT6	PCNT5	PCNT4	PCNT3	PCNT2	PCNT1	PCNT0			
0x0010 PITLD2 (High)	R W	PLD15	PLD14	PLD13	PLD12	PLD11	PLD10	PLD9	PLD8			
0x0011 PITLD2 (Low)	R W	PLD7	PLD6	PLD5	PLD4	PLD3	PLD2	PLD1	PLD0			
0x0012 PITCNT2 (High)	R W	PCNT15	PCNT14	PCNT13	PCNT12	PCNT11	PCNT10	PCNT9	PCNT8			
0x0013 PITCNT2 (Low)	R W	PCNT7	PCNT6	PCNT5	PCNT4	PCNT3	PCNT2	PCNT1	PCNT0			
0x0014 PITLD3 (High)	R W	PLD15	PLD14	PLD13	PLD12	PLD11	PLD10	PLD9	PLD8			
0x0015 PITLD3 (Low)	R W	PLD7	PLD6	PLD5	PLD4	PLD3	PLD2	PLD1	PLD0			
0x0016 PITCNT3 (High)	R W	PCNT15	PCNT14	PCNT13	PCNT12	PCNT11	PCNT10	PCNT9	PCNT8			
0x0017 PITCNT3 (Low)	R W	PCNT7	PCNT6	PCNT5	PCNT4	PCNT3	PCNT2	PCNT1	PCNT0			
	[= Unimplemented or Reserved									

Figure 17-2. PIT Register Summary (Sheet 2 of 2)

All bits reset to zero.

The two 8-bit pulse accumulators PAC1 and PAC0 are cascaded to form the PACB 16-bit pulse accumulator. When PACB in enabled, (PBEN = 1 in PBCTL) the PACN1 and PACN0 registers contents are respectively the high and low byte of the PACB.

When PACN1 overflows from 0x00FF to 0x0000, the interrupt flag PBOVF in PBFLG is set.

Full count register access will take place in one clock cycle.

NOTE

A separate read/write for high byte and low byte will give a different result than accessing them as a word.

When clocking pulse and write to the registers occurs simultaneously, write takes priority and the register is not incremented.

19.3.2.19 16-Bit Modulus Down-Counter Control Register (MCCTL)

Module Base + 0x0026

_	7	6	5	4	3	2	1	0			
R	MCZI	MODMC	RDMCI					MCEN		MCPR0	
w	MOZI	MODINC	REMOL	ICLAT	FLMC						
Reset	0	0	0	0	0	0	0	0			

Figure 19-42. 16-Bit Modulus Down-Counter Control Register (MCCTL)

Read: Anytime

Write: Anytime

All bits reset to zero.

Table 19-23. MCCTL Field Descriptions

Field	Description						
7 MCZI	Modulus Counter Underflow Interrupt Enable 0 Modulus counter interrupt is disabled. 1 Modulus counter interrupt is enabled.						
6 MODMC	 Modulus Mode Enable The modulus counter counts down from the value written to it and will stop at 0x0000. Modulus mode is enabled. When the modulus counter reaches 0x0000, the counter is loaded with the latest value written to the modulus count register. Note: For proper operation, the MCEN bit should be cleared before modifying the MODMC bit in order to reset the modulus counter to 0xFFFF. 						
5 RDMCL	Read Modulus Down-Counter Load 0 Reads of the modulus count register (MCCNT) will return the present value of the count register. 1 Reads of the modulus count register (MCCNT) will return the contents of the load register.						

Chapter 19 Enhanced Capture Timer (ECT16B8CV3)

19.4.3 Interrupts

This section describes interrupts originated by the ECT block. The MCU must service the interrupt requests. Table 19-39 lists the interrupts generated by the ECT to communicate with the MCU.

Table 19-39. ECT Interrupts

Interrupt Source	Description
Timer channel 7–0	Active high timer channel interrupts 7–0
Modulus counter underflow	Active high modulus counter interrupt
Pulse accumulator B overflow	Active high pulse accumulator B interrupt
Pulse accumulator A input	Active high pulse accumulator A input interrupt
Pulse accumulator A overflow	Pulse accumulator overflow interrupt
Timer overflow	Timer Overflow interrupt

The ECT only originates interrupt requests. The following is a description of how the module makes a request and how the MCU should acknowledge that request. The interrupt vector offset and interrupt number are chip dependent.

19.4.3.1 Channel [7:0] Interrupt

This active high output will be asserted by the module to request a timer channel 7–0 interrupt to be serviced by the system controller.

19.4.3.2 Modulus Counter Interrupt

This active high output will be asserted by the module to request a modulus counter underflow interrupt to be serviced by the system controller.

19.4.3.3 Pulse Accumulator B Overflow Interrupt

This active high output will be asserted by the module to request a timer pulse accumulator B overflow interrupt to be serviced by the system controller.

19.4.3.4 Pulse Accumulator A Input Interrupt

This active high output will be asserted by the module to request a timer pulse accumulator A input interrupt to be serviced by the system controller.

19.4.3.5 Pulse Accumulator A Overflow Interrupt

This active high output will be asserted by the module to request a timer pulse accumulator A overflow interrupt to be serviced by the system controller.

Chapter 22 S12X Debug (S12XDBGV3) Module

2 data entries, thus in this case the DBGCNT[0] is incremented after each separate entry. In Detail mode DBGCNT[0] remains cleared whilst the other DBGCNT bits are incremented on each trace buffer entry.

XGATE and CPU12X COFs occur independently of each other and the profile of COFs for the two sources is totally different. When both sources are being traced in Normal or Loop1 mode, for each COF from one source, there may be many COFs from the other source, depending on user code. COF events could occur far from each other in the time domain, on consecutive cycles or simultaneously. When a COF occurs in either source (S12X or XGATE) a trace buffer entry is made and the corresponding CDV or XDV bit is set. The current PC of the other source is simultaneously stored to the trace buffer even if no COF has occurred, in which case CDV/XDV remains cleared indicating the address is not associated with a COF, but is simply a snapshot of the PC contents at the time of the COF from the other source.

Single byte data accesses in Detail Mode are always stored to the low byte of the trace buffer (CDATAL or XDATAL) and the high byte is cleared. When tracing word accesses, the byte at the lower address is always stored to trace buffer byte3 and the byte at the higher address is stored to byte2

Mada	8-Byte Wide Word Buffer											
Mode	7	6	5	4	3	2	1	0				
XGATE	CXINF1	CADRH1	CADRM1	CADRL1	XDATAH1	XDATAL1	XADRM1	XADRL1				
Detail	CXINF2	CADRH2	CADRM2	CADRL2	XDATAH2	XDATAL2	XADRM2	XADRL2				
CPU12X	CXINF1	CADRH1	CADRM1	CADRL1	CDATAH1	CDATAL1	XADRM1	XADRL1				
Detail	CXINF2	CADRH2	CADRM2	CADRL2	CDATAH2	CDATAL2	XADRM2	XADRL2				
Both	XINF0		XPCM0	XPCL0	CINF0	CPCH0	CPCM0	CPCL0				
Other Modes	XINF1		XPCM1	XPCL1	CINF1	CPCH1	CPCM1	CPCL1				
XGATE	XINF1		XPCM1	XPCL1	XINF0		XPCM0	XPCL0				
Other Modes	XINF3		XPCM3	XPCL3	XINF2		XPCM2	XPCL2				
			CPCM1		CINEO	СРСНО	CPCMO					
CPU12X		CFCHI	CFCMI	CFCLI	CINFU			CFCL0				
Other Modes	CINF3	CPCH3	CPCM3	CPCL3	CINF2	CPCH2	CPCM2	CPCL2				

CPU12X Information Byte

Figure 22-25. CPU12X Information Byte CINF

 Table 22-45. CINF Field Descriptions

Field	Description
7 CSD	 Source Destination Indicator — This bit indicates if the corresponding stored address is a source or destination address. This is only used in Normal and Loop1 mode tracing. 0 Source address 1 Destination address
6 CVA	 Vector Indicator — This bit indicates if the corresponding stored address is a vector address Vector addresses are destination addresses, thus if CVA is set, then the corresponding CSD is also set. This is only used in Normal and Loop1 mode tracing. This bit has no meaning in Pure PC mode. 0 Indexed jump destination address 1 Vector destination address
4 CDV	Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from both sources in Normal, Loop1 and Pure PC modes, to indicate that the CPU12X trace buffer entry is valid.0Trace buffer entry is invalid1Trace buffer entry is valid

CXINF Information Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFREE	CSZ	CRW	COCF	XACK	XSZ	XRW	XOCF

Figure 22-26. Information Byte CXINF

This describes the format of the information byte used only when tracing in Detail Mode. When tracing from the CPU12X in Detail Mode, information is stored to the trace buffer on all cycles except opcode fetch and free cycles. The XGATE entry stored on the same line is a snapshot of the XGATE program counter. In this case the CSZ and CRW bits indicate the type of access being made by the CPU12X, whilst the XACK and XOCF bits indicate if the simultaneous XGATE cycle is a free cycle (no bus acknowledge) or opcode fetch cycle. Similarly when tracing from the XGATE in Detail Mode, information is stored to the trace buffer on all cycles except opcode fetch and free cycles. The CPU12X entry stored on the same line is a snapshot of the CPU12X program counter. In this case the XSZ and XRW bits indicate the type of access being made by the XGATE, whilst the CFREE and COCF bits indicate if the simultaneous CPU12X cycle is a free cycle or opcode fetch cycle.

Table 22-46. CXINF Field Descriptions

Field	Description
7 CFREE	 CPU12X Free Cycle Indicator — This bit indicates if the stored CPU12X address corresponds to a free cycle. This bit only contains valid information when tracing the XGATE accesses in Detail Mode. O Stored information corresponds to free cycle 1 Stored information does not correspond to free cycle

MC9S12XHZ512 Data Sheet Rev. 1.06

A.5 Reset, Oscillator, and PLL

This section summarizes the electrical characteristics of the various startup scenarios for oscillator and phase-locked loop (PLL).

A.5.1 Startup

Table A-17 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block Guide.

Conditions are shown in Table A-4unless otherwise noted										
Num	С	Rating	Symbol	Min	Тур	Max	Unit			
1	D	Reset input pulse width, minimum input time	PW _{RSTL}	2	—	—	t _{osc}			
2	D	Startup from reset	n _{RST}	192	—	196	n _{osc}			
3	D	Interrupt pulse width, IRQ edge-sensitive mode	PW _{IRQ}	20	—	—	ns			
4	D	Wait recovery startup time	t _{WRS}	_	—	14	t _{cyc}			
5	D	Fast wakeup from STOP ¹	t _{fws}	_	50	—	μs			

Table A-17. Startup Characteristics

 $^1~V_{DD1}$ filter capacitor 220 nF, V_{DD5} = 5 V, T= 25°C

A.5.1.1 POR

The release level V_{PORR} and the assert level V_{PORA} are derived from the V_{DD} supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .

A.5.1.2 SRAM Data Retention

Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when V_{DD5} is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG flags register has not been set.

A.5.1.3 External Reset

When external reset is asserted for a time greater than PW_{RSTL} the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset.

A.5.1.4 Stop Recovery

Out of stop the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system.

Appendix E Detailed Register Map

0x0200–0x027F Port Integration Module (PIM) Map 5 of 5

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x0245	PPSV	R W	PPSV7	PPSV6	PPSV5	PPSV4	PPSV3	PPSV2	PPSV1	PPSV0	
0x0246	Reserved	R	0	0	0	0	0	0	0	0	
0.02.0		W									
0x0247	Reserved	R	0	0	0	0	0	0	0	0	
		W									
0x0248	PTW	R W	PTW7	PTW6	PTW5	PTW4	PTW3	PTW2	PTW1	PTW0	
0x0249	PTIW	R	PTIW7	PTIW6	PTIW5	PTIW4	PTIW3	PTIW2	PTIW1	PTIW0	
		W									
0x024A	DDRW	R W	DDRW7	DDRW7	DDRW	DDRW4	DDRW3	DDRW2	DDRW1	DDRW0	
0x024B	SRRW	R W	SRRW7	SRRW6	SRRW5	SRRW4	SRRW3	SRRW2	SRRW1	SRRW0	
0x024C	PERW	R W	PERW7	PERW6	PERW5	PERW4	PERW3	PERW2	PERW1	PERW0	
0x024D	PPSW	R W	PPSW7	PPSW6	PPSW5	PPSW4	PPSW3	PPSW2	PPSW1	PPSW0	
02024E	Reserved	R	0	0	0	0	0	0	0	0	
070245		W									
0x024F	Reserved	R	0	0	0	0	0	0	0	0	
		W									
0x0250	Reserved	R	0	0	0	0	0	0	0	0	
		W									
0x0251	PTAD	R W	PTAD7	PTAD6	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0	
0x0252	Reserved	R	0	0	0	0	0	0	0	0	
		W									
0x0253	PTIAD	R W	PTIAD7	PTIAD6	PTIAD5	PTIAD4	PTIAD3	PTIAD2	PTIAD1	PTIAD0	
0x0254	Reserved	R	0	0	0	0	0	0	0	0	
0.00201		W									
0x0255	DDRAD	R W	DDRAD7	DDRAD6	DDRAD5	DDRAD4	DDRAD3	DDRAD2	DDRAD1	DDRAD0	
0x0256	Reserved	Reserved	R	0	0	0	0	0	0	0	0
0/10/200		W									
0x0257	RDRAD	R W	RD1AD7	RDRAD6	RDRAD5	RDRAD4	RDRAD3	RDRAD2	RDRAD1	RDRAD0	
0x0258	Reserved	R	0	0	0	0	0	0	0	0	
		W									
0x0259	PERAD	R W	PERAD7	PERAD6	PERAD5	PERAD4	PERAD3	PERAD2	PERAD1	PERAD0	
0x025A	Reserved	R	0	0	0	0	0	0	0	0	
		W									
0x025B	PPSAD	R W	PPSAD7	PPSAD6	PPSAD5	PPSAD4	PPSAD3	PPSAD2	PPSAD1	PPSAD0	

MC9S12XHZ512 Data Sheet, Rev. 1.06

0x0340–0x0367 Periodic Interrupt Timer (PIT) Map (continued)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x034A	PITCNT0 (hi)	R W	PCNT15	PCNT14	PCNT13	PCNT12	PCNT11	PCNT10	PCNT9	PCNT8
0x034B	PITCNT0 (lo)	R W	PCNT7	PCNT6	PCNT5	PCNT4	PCNT3	PCNT2	PCNT1	PCNT0
0x034C	PITLD1 (hi)	R W	PLD15	PLD14	PLD13	PLD12	PLD11	PLD10	PLD9	PLD8
0x034D	PITLD1 (lo)	R W	PLD7	PLD6	PLD5	PLD4	PLD3	PLD2	PLD1	PLD0
0x034E	PITCNT1 (hi)	R W	PCNT15	PCNT14	PCNT13	PCNT12	PCNT11	PCNT10	PCNT9	PCNT8
0x034F	PITCNT1 (lo)	R W	PCNT7	PCNT6	PCNT5	PCNT4	PCNT3	PCNT2	PCNT1	PCNT0
0x0350	PITLD2 (hi)	R W	PLD15	PLD14	PLD13	PLD12	PLD11	PLD10	PLD9	PLD8
0x0351	PITLD2 (lo)	R W	PLD7	PLD6	PLD5	PLD4	PLD3	PLD2	PLD1	PLD0
0x0352	PITCNT2 (hi)	R W	PCNT15	PCNT14	PCNT13	PCNT12	PCNT11	PCNT10	PCNT9	PCNT8
0x0353	PITCNT2 (lo)	R W	PCNT7	PCNT6	PCNT5	PCNT4	PCNT3	PCNT2	PCNT1	PCNT0
0x0354	PITLD3 (hi)	R W	PLD15	PLD14	PLD13	PLD12	PLD11	PLD10	PLD9	PLD8
0x0355	PITLD3 (lo)	R W	PLD7	PLD6	PLD5	PLD4	PLD3	PLD2	PLD1	PLD0
0x0356	PITCNT3 (hi)	R W	PCNT15	PCNT14	PCNT13	PCNT12	PCNT11	PCNT10	PCNT9	PCNT8
0x0357	PITCNT3 (lo)	R W	PCNT7	PCNT6	PCNT5	PCNT4	PCNT3	PCNT2	PCNT1	PCNT0
0x0358-	Reserved	R	0	0	0	0	0	0	0	0
0x0367	iveseiven	W								

0x0368–0x037F Reserved

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0368– 0x037F	Reserved	R	0	0	0	0	0	0	0	0
		W								