E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HCS12X
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SCI, SPI
Peripherals	LCD, LVD, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 16x10b SAR
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s912xhz512f1val

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	8.4.4	Stop Mode Operation
		Chapter 9
		Analog-to-Digital Converter (ATD10B16CV4)
		Block Description
91	Introdu	ction 377
<i>,</i> ,,,	9.1.1	Features
	9.1.2	Modes of Operation
	9.1.3	Block Diagram
9.2	Externa	l Signal Description
	9.2.1	ANx (x = 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) — Analog Input Channel <i>x</i> Pins
		379
	9.2.2	ETRIG3, ETRIG2, ETRIG1, ETRIG0 — External Trigger Pins
	9.2.3	V _{RH} , V _{RL} — High Reference Voltage Pin, Low Reference Voltage Pin
	9.2.4	V _{DDA} , V _{SSA} — Analog Circuitry Power Supply Pins
9.3	Memor	y Map and Register Definition
	9.3.1	Module Memory Map
	9.3.2	Register Descriptions
9.4	Functio	nal Description
	9.4.1	Analog Sub-block
	9.4.2	Digital Sub-Block
~ ~	9.4.3	Operation in Low Power Modes
9.5	Initializ	ation/Application Information
	9.5.1	Setting up and starting an A/D conversion
0.6	9.5.2	Aborting an A/D conversion
9.6	Kesets	
9./	Interrup	ns

Chapter 10

Liquid Crystal Display (LCD32F4BV1) Block Description

10.1	Introduc	tion	1
	10.1.1	Features	1
	10.1.2	Modes of Operation	1
	10.1.3	Block Diagram	2
10.2	External	Signal Description	3
	10.2.1	BP[3:0] — Analog Backplane Pins	3
	10.2.2	FP[31:0] — Analog Frontplane Pins	3
	10.2.3	VLCD — LCD Supply Voltage Pin	3
10.3	Memory	Map and Register Definition	3
	10.3.1	Module Memory Map	3
	10.3.2	Register Descriptions	5

Vector Address ¹	XGATE Channel ID ²	Interrupt Source	CCR Mask	Local Enable
Vector base + 0xBC	0x5E	Reserved	l bit	Reserved
Vector base + 0xBA	0x5D	EEPROM	l bit	ECNFG (CCIE, CBEIE)
Vector base + 0xB8	0x5C	FLASH	l bit	FCNFG (CCIE, CBEIE)
Vector base + 0xB6	0x5B	CAN0 wake-up	l bit	CANORIER (WUPIE)
Vector base + 0xB4	0x5A	CAN0 errors	l bit	CANORIER (CSCIE, OVRIE)
Vector base + 0xB2	0x59	CAN0 receive	l bit	CAN0RIER (RXFIE)
Vector base + 0xB0	0x58	CAN0 transmit	l bit	CAN0TIER (TXEIE[2:0])
Vector base + 0xAE	0x57	CAN1 wake-up	l bit	CAN1RIER (WUPIE)
Vector base + 0xAC	0x56	CAN1 errors	l bit	CAN1RIER (CSCIE, OVRIE)
Vector base + 0xAA	0x55	CAN1 receive	l bit	CAN1RIER (RXFIE)
Vector base + 0xA8	0x54	CAN1 transmit	l bit	CAN1TIER (TXEIE[2:0])
Vector base + 0xA6	0x53	Reserved	l bit	Reserved
Vector base + 0xA4	0x52	Reserved	l bit	Reserved
Vector base + 0xA2	0x51	SSD4	l bit	MDC4CTL (MCZIE, AOVIE)
Vector base + 0xA0	0x50	SSD0	l bit	MDC0CTL (MCZIE, AOVIE)
Vector base + 0x9E	0x4F	SSD1	l bit	MDC1CTL (MCZIE, AOVIE)
Vector base+ 0x9C	0x4E	SSD2	l bit	MDC2CTL (MCZIE, AOVIE)
Vector base+ 0x9A	0x4D	SSD3	l bit	MDC3CTL (MCZIE, AOVIE)
Vector base + 0x98	0x4C	SSD5	l bit	MDC5CTL (MCZIE, AOVIE)
Vector base + 0x96	0x4B	Motor Control Timer Overflow	l bit	MCCTL1 (MCOCIE)
Vector base + 0x94	0x4A	Reserved	l bit	Reserved
Vector base + 0x92	0x49	Reserved	l bit	Reserved
Vector base + 0x90	0x48	Reserved	l bit	Reserved
Vector base + 0x8E	0x47	Reserved	l bit	Reserved
Vector base+ 0x8C	0x46	PWM emergency shutdown	l bit	PWMSDN (PWMIE)
Vector base + 0x8A	0x45	Reserved	l bit	Reserved
Vector base + 0x88	0x44	Reserved	l bit	Reserved
Vector base + 0x86	0x43	Reserved	l bit	Reserved
Vector base + 0x84	0x42	Reserved	l bit	Reserved
Vector base + 0x82	0x41	IIC1 Bus	l bit	IB1CR (IBIE)
Vector base + 0x80	0x40	Low-voltage interrupt (LVI)	l bit	VREGCTRL (LVIE)
Vector base + 0x7E	0x3F	Autonomous periodical interrupt (API)	l bit	VREGAPICTRL (APIE)
Vector base + 0x7C	0x3E	Reserved	l bit	Reserved
Vector base + 0x7A	0x3D	Periodic interrupt timer channel 0	l bit	PITINTE (PINTE0)

Table 1-9. Interrupt Vector Locations (Sheet 2 of 3)

Chapter 2 Port Integration Module (S12XHZPIMV1)

2.3.12.2 Port U Input Register (PTIU)

Module Base + 0x0039

Read: Anytime. Write: Never, writes to this register have no effect.

If the associated slew rate control is enabled (digital input buffer is disabled), a read returns a "1". If the associated slew rate control is disabled (digital input buffer is enabled), a read returns the status of the associated pin.

2.3.12.3 Port U Data Direction Register (DDRU)

Module Base + 0x003A

	7	6	5	4	3	2	1	0
R W	DDRU7	DDRU6	DDRU5	DDRU4	DDRU3	DDRU2	DDRU1	DDRU0
Reset	0	0	0	0	0	0	0	0

Figure 2-68. Port U Data Direction Register (DDRU)

Read: Anytime. Write: Anytime.

This register configures port pins PU[7:0] as either input or output.

When enabled, the SSD or MC modules force the I/O state to be an output for each associated pin and the associated Data Direction Register bit has no effect. If the SSD and MC modules are disabled, the corresponding Data Direction Register bits revert to control the I/O direction of the associated pins.

Table 2-5	53. DDRU	Field	Descriptions
-----------	----------	-------	--------------

Field	Description
7:0 DDRU[7:0]	 Data Direction Port U 0 Associated pin is configured as input. 1 Associated pin is configured as output.

Chapter 3 512 Kbyte Flash Module (S12XFTX512K4V3)

Figure 3-24. Determination Procedure for PRDIV8 and FDIV Bits

Chapter 5 XGATE (S12XGATEV2)

CPCH

Compare Immediate 8 bit Constant with Carry (High Byte)

CPCH

Operation

RS.H - IMM8 - $C \Rightarrow$ NONE, only condition code flags get updated

Subtracts the carry bit and the 8 bit constant IMM8 contained in the instruction code from the high byte of the source register RD using binary subtraction and updates the condition code register accordingly. The carry bit and Zero bits are taken into account to allow a 16 bit compare in the form of

CMPL R2,#LOWBYTE CPCH R2,#HIGHBYTE BCC ; branch condition

Remark: There is no equivalent operation using triadic addressing. Comparing the values of two registers can be performed by using the subtract instruction with R0 as destination register.

CCR Effects

Ν	Ζ	V	С
Δ	Δ	Δ	Δ

N: Set if bit 15 of the result is set; cleared otherwise.

- Z: Set if the result is \$00 and Z was set before this operation; cleared otherwise.
- V: Set if a two's complement overflow resulted from the operation; cleared otherwise. RS[15] & IMM8[7] & result[15] | RS[15] & IMM8[7] & result[15]
- C: Set if there is a carry from the bit 15 of the result; cleared otherwise. $\overline{RS[15]} \& IMM8[7] | \overline{RS[15]} \& result[15] | IMM8[7] \& result[15]$

Code and CPU Cycles

Source Form	Address Mode		Machine Code							
CPCH RD, #IMM8	IMM8	1	1	0	1	1	RS	IMM8	Р	

EXTAL input frequency. In full stop mode (PSTP = 0), the EXTAL pin is pulled down by an internal resistor of typical 200 k Ω .

NOTE

Freescale recommends an evaluation of the application board and chosen resonator or crystal by the resonator or crystal supplier.

Loop controlled circuit is not suited for overtone resonators and crystals.

Figure 8-2. Loop Controlled Pierce Oscillator Connections (XCLKS = 0)

NOTE

Full swing Pierce circuit is not suited for overtone resonators and crystals without a careful component selection.

* R_s can be zero (shorted) when use with higher frequency crystals. Refer to manufacturer's data.

Chapter 10 Liquid Crystal Display (LCD32F4BV1) Block Description

10.4.5.4 1/3 Duty Multiplexed with 1/3 Bias Mode

Duty = 1/3: DUTY1 = 1, DUTY0 = 1

Bias = 1/3:BIAS = 0 or BIAS = 1

 $V_0 = VSSX, V_1 = VLCD * 1/3, V_2 = VLCD * 2/3, V_3 = VLCD$

- BP3 is not used, a maximum of 96 segments are displayed.

Figure 10-12. 1/3 Duty and 1/3 Bias

Chapter 11 Motor Controller (MC10B12CV2) Block Description

Offset	ifset Module Base + 0x0020 0x0037Access: User read/write															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	9	80	דס	De	D5	ПИ	50	20	0	0	0	0	0	0	0	0
W	0	00	יט	00	00	04	03									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		= Unin	= Unimplemented or Reserved													

Figure 11-9. Motor Controller Duty Cycle Register x (MCDCx) with FAST = 1

Table 11-10. MCDCx Field Descriptions

Field	Description
0	SIGN — The SIGN bit is used to define which output will drive the PWM signal in (dual) full-H-bridge modes. The
S	SIGN bit has no effect in half-bridge modes. See Section 11.4.1.3.2, "Sign Bit (S)", and table Table 11-12 for detailed information about the impact of RECIRC and SIGN bit on the PWM output.

Whenever FAST = 1, the bits D10, D9, D1, and D0 will be set to 0 if the duty cycle register is written.

For example setting MCDCx = 0x0158 with FAST = 0 gives the same output waveform as setting MCDCx = 0x5600 with FAST = 1 (with FAST = 1, the low byte of MCDCx needs not to be written).

The state of the FAST bit has impact only during write and read operations. A change of the FAST bit (set or clear) without writing a new value does not impact the internal interpretation of the duty cycle values.

To prevent the output from inconsistent signals, the duty cycle registers are double buffered. The motor controller module will use working registers to generate the output signals. The working registers are copied from the bus accessible registers at the following conditions:

- MCPER is set to 0 (all channels are disabled in this case)
- MCAM[1:0] of the respective channel is set to 0 (channel is disabled)
- A PWM timer counter overflow occurs while in half H-bridge or full H-bridge mode
- A PWM channel pair is configured to work in Dual Full H-Bridge mode and a PWM timer counter overflow occurs after the odd¹ duty cycle register of the channel pair has been written.

In this way, the output of the PWM will always be either the old PWM waveform or the new PWM waveform, not some variation in between.

Reads of this register return the most recent value written. Reads do not necessarily return the value of the currently active sign, duty cycle, and dither functionality due to the double buffering scheme.

^{1.} Odd duty cycle register: MCDCx+1, $x = 2 \cdot n$

Chapter 11 Motor Controller (MC10B12CV2) Block Description

11.4.1.3.4 Relationship Between RECIRC Bit, S Bit, MCOM Bits, PWM State, and Output Transistors

Please refer to Figure 11-16 for the output transistor assignment.

Figure 11-16. Output Transistor Assignment

Table 11-13 illustrates the state of the output transistors in different states of the PWM motor controller module. '—' means that the state of the output transistor is not controlled by the motor controller.

Mode	MCOM[1:0]	PWM Duty	RECIRC	S	T1	T2	Т3	T4
Off	Don't care		Don't care	Don't care		—	_	_
Half H-Bridge	00	Active	Don't care	Don't care	_	_	OFF	ON
Half H-Bridge	00	Passive	Don't care	Don't care	_	—	ON	OFF
Half H-Bridge	01	Active	Don't care	Don't care	OFF	ON	_	_
Half H-Bridge	01	Passive	Don't care	Don't care	ON	OFF	—	—
(Dual) Full	10 or 11	Active	0	0	ON	OFF	OFF	ON
(Dual) Full	10 or 11	Passive	0	0	ON	OFF	ON	OFF
(Dual) Full	10 or 11	Active	0	1	OFF	ON	ON	OFF
(Dual) Full	10 or 11	Passive	0	1	ON	OFF	ON	OFF
(Dual) Full	10 or 11	Active	1	0	ON	OFF	OFF	ON
(Dual) Full	10 or 11	Passive	1	0	OFF	ON	OFF	ON
(Dual) Full	10 or 11	Active	1	1	OFF	ON	ON	OFF
(Dual) Full	10 or 11	Passive	1	1	OFF	ON	OFF	ON

Table 11-13. State of Output Transistors in Various Modes

NOTE

A separate read/write for high byte and low byte gives a different result than accessing the register as a word.

If the RDMCL bit in the MDCCTL register is cleared, reads of the MDCCNT register will return the present value of the count register. If the RDMCL bit is set, reads of the MDCCNT register will return the contents of the load register.

With a 0x0000 write to the MDCCNT register, the modulus counter stays at zero and does not set the MCZIF flag in the SSDFLG register.

If modulus mode is not enabled (MODMC = 0), a write to the MDCCNT register immediately updates the load register and the counter register with the value written to it. The modulus counter will count down from this value and will stop at 0x0000.

If modulus mode is enabled (MODMC = 1), a write to the MDCCNT register updates the load register with the value written to it. The count register will not be updated with the new value until the next counter underflow. The FLMC bit in the MDCCTL register can be used to immediately update the count register with the new value if an immediate load is desired.

The modulus down counter clock frequency is the bus frequency divided by 64 or 512.

12.3.2.6 Integration Accumulator Register (ITGACC)

Write: Never.

NOTE

A separate read for high byte and low byte gives a different result than accessing the register as a word.

Chapter 13 Inter-Integrated Circuit (IICV3) Block Description

IBC[7:0] (hex)	SCL Divider (clocks)	SDA Hold (clocks)	SCL Hold (start)	SCL Hold (stop)
59	192	18	92	98
5A	224	34	108	114
5B	256	34	124	130
5C	288	50	140	146
5D	320	50	156	162
5E	384	66	188	194
5F	480	66	236	242
60	320	34	156	162
61	384	34	188	194
62	448	66	220	226
63	512	66	252	258
64	576	98	284	290
65	640	98	316	322
66	768	130	380	386
67	960	130	476	482
68	640	66	316	322
69	768	66	380	386
6A	896	130	444	450
6B	1024	130	508	514
6C	1152	194	572	578
6D	1280	194	636	642
6E	1536	258	764	770
6F	1920	258	956	962
70	1280	130	636	642
71	1536	130	764	770
72	1792	258	892	898
73	2048	258	1020	1026
74	2304	386	1148	1154
75	2560	386	1276	1282
76	3072	514	1532	1538
77	3840	514	1916	1922
78	2560	258	1276	1282
79	3072	258	1532	1538
7A	3584	514	1788	1794
7B	4096	514	2044	2050
7C	4608	770	2300	2306
7D	5120	770	2556	2562
7E	6144	1026	3068	3074
7F	7680	1026	3836	3842
MUL=4				
80	72	28	24	44
81	80	28	28	48
82	88	32	32	52
83	96	32	36	56
84	104	36	40	60

15.3.2 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register diagram with an associated figure number. Writes to a reserved register locations do not have any effect and reads of these locations return a zero. Details of register bit and field function follow the register diagrams, in bit order.

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0000 SCIBDH ¹	R W	IREN	TNP1	TNP0	SBR12	SBR11	SBR10	SBR9	SBR8
0x0001 SCIBDL ¹	R W	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
0x0002 SCICR1 ¹	R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
0x0000 SCIASR1 ²	R W	RXEDGIF	0	0	0	0	BERRV	BERRIF	BKDIF
0x0001 SCIACR1 ²	R W	RXEDGIE	0	0	0	0	0	BERRIE	BKDIE
0x0002	R	0	0	0	0	0	BERRM1	BERRM0	BKDFE
SCIACRZ	w							_	
0x0003 SCICR2	R W	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
0x0004	R	TDRE	тс	RDRF	IDLE	OR	NF	FE	PF
SCISR1	w								
0x0005 SCISR2	R W	AMAP	0	0	TXPOL	RXPOL	BRK13	TXDIR	RAF
0x0006	R	R8		0	0	0	0	0	0
SCIDRH	w		T8						
0x0007	R∫	R7	R6	R5	R4	R3	R2	R1	R0
SCIDRL	w	T7	T6	T5	T4	Т3	T2	T1	Т0

1. These registers are accessible if the AMAP bit in the SCISR2 register is set to zero.

2, These registers are accessible if the AMAP bit in the SCISR2 register is set to one.

= Unimplemented or Reserved

Figure 15-2. SCI Register Summary

19.3.2.31 Modulus Down-Counter Count Register (MCCNT)

Module Base + 0x0036

Figure 19-57. Modulus Down-Counter Count Register High (MCCNT)

Module Base + 0x0037

_	7	6	5	4	3	2	1	0
R W	MCCNT7	MCCNT6	MCCNT5	MCCNT4	MCCNT3	MCCNT2	MCCNT1	MCCNT0
Reset	1	1	1	1	1	1	1	1

Figure 19-58. Modulus Down-Counter Count Register Low (MCCNT)

Read: Anytime

Write: Anytime.

All bits reset to one.

A full access for the counter register will take place in one clock cycle.

NOTE

A separate read/write for high byte and low byte will give different results than accessing them as a word.

If the RDMCL bit in MCCTL register is cleared, reads of the MCCNT register will return the present value of the count register. If the RDMCL bit is set, reads of the MCCNT will return the contents of the load register.

If a 0x0000 is written into MCCNT when LATQ and BUFEN in ICSYS register are set, the input capture and pulse accumulator registers will be latched.

With a 0x0000 write to the MCCNT, the modulus counter will stay at zero and does not set the MCZF flag in MCFLG register.

If the modulus down counter is enabled (MCEN = 1) and modulus mode is enabled (MODMC = 1), a write to MCCNT will update the load register with the value written to it. The count register will not be updated with the new value until the next counter underflow.

If modulus mode is not enabled (MODMC = 0), a write to MCCNT will clear the modulus prescaler and will immediately update the counter register with the value written to it and down-counts to 0x0000 and stops.

The FLMC bit in MCCTL can be used to immediately update the count register with the new value if an immediate load is desired.

Chapter 20 Voltage Regulator (S12VREG3V3V5)

Table 20-10. Interrupt Vectors

Interrupt Source	Local Enable
Autonomous periodical interrupt (API)	APIE = 1

20.4.10.1 Low-Voltage Interrupt (LVI)

In FPM, VREG_3V3 monitors the input voltage V_{DDA} . Whenever V_{DDA} drops below level V_{LVIA} , the status bit LVDS is set to 1. On the other hand, LVDS is reset to 0 when V_{DDA} rises above level V_{LVID} . An interrupt, indicated by flag LVIF = 1, is triggered by any change of the status bit LVDS if interrupt enable bit LVIE = 1.

NOTE

On entering the reduced power mode, the LVIF is not cleared by the VREG_3V3.

20.4.10.2 Autonomous Periodical Interrupt (API)

As soon as the configured timeout period of the API has elapsed, the APIF bit is set. An interrupt, indicated by flag APIF = 1, is triggered if interrupt enable bit APIE = 1.

22.3.2.8.7 Debug Comparator Data High Mask Register (DBGXDHM)

Address: 0x002E

Figure 22-20. Debug Comparator Data High Mask Register (DBGXDHM)

Read: Anytime. See Table 22-29 for visible register encoding.

Write: If DBG not armed. See Table 22-29 for visible register encoding.

Table 22-37. DBGXDHM Field Descriptions

Field	Description
7–0 Bits[15:8]	 Comparator Data High Mask Bits — The Comparator data high mask bits control whether the selected comparator compares the data bus bits [15:8] to the corresponding comparator data compare bits. This register is available only for comparators A and C. 0 Do not compare corresponding data bit 1 Compare corresponding data bit

22.3.2.8.8 Debug Comparator Data Low Mask Register (DBGXDLM)

Address: 0x002F

Figure 22-21. Debug Comparator Data Low Mask Register (DBGXDLM)

Read: Anytime. See Table 22-29 for visible register encoding.

Write: If DBG not armed. See Table 22-29 for visible register encoding.

Table 22-38. DBGXDLM Field Descriptions

Field	Description
7–0 Bits[7:0]	 Comparator Data Low Mask Bits — The Comparator data low mask bits control whether the selected comparator compares the data bus bits [7:0] to the corresponding comparator data compare bits. This register is available only for comparators A and C. 0 Do not compare corresponding data bit 1 Compare corresponding data bit

22.4 Functional Description

This section provides a complete functional description of the S12XDBG module. If the part is in secure mode, the S12XDBG module can generate breakpoints but tracing is not possible.

Chapter 22 S12X Debug (S12XDBGV3) Module

22.4.5.3.1 Information Byte Organization

The format of the control information byte is dependent upon the active trace mode as described below. In Normal, Loop1, or Pure PC modes tracing of XGATE activity, XINF is used to store control information. In Normal, Loop1, or Pure PC modes tracing of CPU12X activity, CINF is used to store control information. In Detail Mode, CXINF contains the control information

XGATE Information Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
XSD	XSOT	хсот	XDV	0	0	0	0

Figure 22-23. XGATE Information Byte XINF

Field	Description
7 XSD	 Source Destination Indicator — This bit indicates if the corresponding stored address is a source or destination address. This is only used in Normal and Loop1 mode tracing. O Source address 1 Destination address or Start of Thread or Continuation of Thread
6 XSOT	Start Of Thread Indicator — This bit indicates that the corresponding stored address is a start of thread address. This is only used in Normal and Loop1 mode tracing.NOTE. This bit only has effect on devices where the XGATE module supports multiple interrupt levels.0Stored address not from a start of thread1Stored address from a start of thread
5 XCOT	 Continuation Of Thread Indicator — This bit indicates that the corresponding stored address is the first address following a return from a higher priority thread. This is only used in Normal and Loop1 mode tracing. NOTE. This bit only has effect on devices where the XGATE module supports multiple interrupt levels. 0 Stored address not from a continuation of thread 1 Stored address from a continuation of thread
4 XDV	Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from both sources in Normal, Loop1 and Pure PC modes, to indicate that the XGATE trace buffer entry is valid.0Trace buffer entry is invalid 11Trace buffer entry is valid
XIGATE infe hit setting	

XGATE FLOW	SOT1	SOT2	JAL	RTS	COT1	RTS
XSD		▲	▲		▲	
XSOT	A	▲				
хсот					▲	

Figure 22-24. XGATE info bit setting

Figure 22-24 indicates the XGATE information bit setting when switching between threads, the initial thread starting at SOT1 and continuing at COT1 after the higher priority thread2 has ended.

- ⁴ Refer to Section A.1.4, "Current Injection" for more details
- ⁵ Parameter only applies in stop or pseudo stop mode.

Table A-7. I/O Characteristics for Port C, D, PE5, PE6, and PE7 for Reduced Input Voltage Thresholds

Condit	Conditions are 4.5 V < V_{DD5} < 5.5 V Temperature from -40°C to +140°C, unless otherwise noted										
Num	С	Rating	Symbol	Min	Тур	Мах	Unit				
1	Ρ	Input high voltage	VIH	1.75	—	—	V				
2	Ρ	Input low voltage	VIL	—	_	0.75	V				
3	С	Input hysteresis	VHYS		100	—	mV				

A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode and the CPU and XGATE code is executed from RAM, V_{DD5} =5.5V, internal voltage regulator is enabled and the bus frequency is 40MHz using a 4-MHz oscillator in loop controlled Pierce mode. Production testing is performed using a square wave signal at the EXTAL input.

Appendix A Electrical Characteristics

A.2.2.2 Source Capacitance

When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage ≤ 1 LSB, then the external filter capacitor, $C_f \geq 1024 * (C_{INS}-C_{INN})$.

A.2.2.3 Current Injection

There are two cases to consider.

- 1. A current is injected into the channel being converted. The channel being stressed has conversion values of \$3FF (\$FF in 8-bit mode) for analog inputs greater than V_{RH} and \$000 for values less than V_{RL} unless the current is higher than specified as disruptive condition.
- 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance.

The additional input voltage error on the converted channel can be calculated as:

$$V_{ERR} = K * R_S * I_{INJ}$$

with I_{INJ} being the sum of the currents injected into the two pins adjacent to the converted channel.

Conditions are shown in Table A-4 unless otherwise noted										
Num	С	Rating	Тур	Max	Unit					
1	С	Max input source resistance	R _S	_	_	1	KΩ			
2	Т	Total input capacitance Non sampling Sampling	C _{INN} C _{INS}			10 22	pF			
3	С	Disruptive analog input current	I _{NA}	-2.5		2.5	mA			
4	С	Coupling ratio positive current injection	К _р	_	_	10 ⁻⁴	A/A			
5	С	Coupling ratio negative current injection	K _n	_	_	10 ⁻²	A/A			

Table A-12. ATD Electrical Characteristics

Appendix A Electrical Characteristics

A.9.2 Normal Expanded Mode (External Wait Feature Enabled)

Figure A-11. Example 1b: Normal Expanded Mode — Stretched Read Access

0x000E–0x000F External Bus Interface (S12XEBI) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x000E	EBICTL0	R	ITHRS	0	HDBE	ASIZ4	ASIZ3	ASIZ2	ASIZ1	ASIZ0
0x000E		R		0	0	0	0	EVETDO	EVOTD1	EVETRO
UXUUUF	EDICILI	W	EVVAILE					ENGIRZ	EVOIRI	ENSIRU

0x0010–0x0017 Module Mapping Control (S12XMMC) Map 2 of 4

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x0010	GPAGE	R W	0	GP6	GP5	GP4	GP3	GP2	GP1	GP0	
0x0011	DIRECT	R W	DP15	DP14	DP13	DP12	DP11	DP10	DP9	DP8	
0x0012	Percented	R	0	0	0	0	0	0	0	0	
	Reserved	W									
0.0040	MMCCTL1	R	0	0	0	0	0	EROMON	ROMHM	ROMON	
0X0013		W									
020014	Reserved	Percented	R	0	0	0	0	0	0	0	0
0X0014		W									
020015	Reserved	R	0	0	0	0	0	0	0	0	
00015		b Reserveu	W								
0x0016	RPAGE	R W	RP7	RP6	RP5	RP4	RP3	RP2	RP1	RP0	
0x0017	EPAGE	R W	EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0	

0x0018–0x001B Miscellaneous Peripheral

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0.0010	Reserved	R	0	0	0	0	0	0	0	0
0X0010		W								
020010	Reserved	R	0	0	0	0	0	0	0	0
0,0019		W								
0×001 0	PARTIDH	R	1	1	1	0	0	1	0	0
0001A		W								
0x001B	PARTIDL	R	0	0	0	0	0	0	0	0
		W								

0x001C-0x001F Port Integration Module (PIM) Map 3 of 5

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x001C	ECLKCTL	KCTI R			0 0	0	0	0		
		ECLKCIL W	NLOLK	NOLIVIZ					EDIVI	EDIVO