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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 480

Number of Logic Elements/Cells 4800

Total RAM Bits 49152

Number of I/O 303

Number of Gates 120000

Voltage - Supply 1.71V ~ 1.89V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 484-BBGA, FCBGA

Supplier Device Package 484-FBGA (23x23)
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Mercury Programmable Logic Device Family Data Sheet
Figure 4. Receiver & Transmitter Diagrams for CDR Mode Notes (1), (2)
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Notes to Figure 4:
(1) EP1M350 devices have 18 individual receiver and transmitter channels. EP1M120 

devices have 8 individual receiver and transmitter channels. Receiver and 
transmitter channel numbers in parenthesis are for EP1M350 devices.

(2) W = 1 to 12, 14, 16, 18, or 20
J = 3 to 12, 14, 16, 18, or 20
W does not have to equal J.

(3) For every receiver channel in EP1M350 and EP1M120 devices, the ÷J recovered 
clock can drive the priority column interconnect for use as a clock.

(4) The two center channels adjacent to the HSDI PLLs (channels 4 and 5 for EP1M120 
devices, channels 9 and 10 for EP1M350 devices) can drive the Mercury device’s 
global clocks.

(5) HSDI_CLK1 and HSDI_CLK2 pins must be differential. These clock pins drive 
HSDI PLLs only. They do not drive to the logic array.

The multiplied reference clock is also used to synchronize and serialize at 
the transmitter side. 

Up to two different serial data rates are supported for input channels or 
output channels. Received data must be non-return-to-zero (NRZ).

Table 7 defines the support for CDR-mode applications. Table 8 shows the 
supported data rates for each speed grade.

Notes to Table 7:
(1) The VCM operating range for AC-coupled applications is from 0 to 0.7 V and from 1.8 to 2.4 V.
(2) Use AC-coupled LVDS or another I/O standard. The DC-coupled LVDS I/O standard provides performance up to 

1.0 Gbps.

f For more information on CDR, see AN 130: CDR in Mercury Devices.

Table 7. CDR-Mode Applications

Data Rate CDR Mode

DC-Coupled 
LVDS

DC-Coupled 
LVPECL

DC-Coupled 
3.3-V PCML

AC-Coupled 
LVDS (1)

AC-Coupled 
LVPECL (1)

AC-Coupled 
3.3-V PCML 

(1)

1.0 to 1.25 Gbps (2) v v v v v

≤ 1.0 Gbps v v v v v v
Altera Corporation  13
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Figure 5. Mercury LAB Structure

Notes to Figure 5:
(1) Priority column lines drive priority row lines, but not other row lines.
(2) The RapidLAB interconnect can be driven by priority column lines, but not other column lines.
(3) In multiplier mode, the RapidLAB interconnect drives LEs directly.

Mercury devices use an interleaved LAB structure, which allows each 
LAB to drive two local interconnect areas. Every other LE drives to either 
the left or right local interconnect area, alternating by LE. The local 
interconnect can drive LEs within the same LAB or adjacent LABs. This 
feature minimizes use of the row and column interconnects, providing 
higher performance and flexibility. Each LAB structure can drive 30 LEs 
through fast local interconnects. 

The 10 LEs in the LAB are driven by 
two local interconnect areas. The LAB 
can drive two local interconnect areas.

Local Interconnect

Column and Priority
Column Interconnect (1)

Row and Priority
Row Interconnect (1)

RapidLAB Interconnect

to LAB in Row Above

to LAB in Row Below

Leap Line
Interconnect

(2)

(3) (3)
Altera Corporation  15



Mercury Programmable Logic Device Family Data Sheet
Figure 7. Mercury LE

Notes to Figure 7:
(1) FastLUT interconnect uses the data4 input.
(2) LAB carry-out can only be generated by LE 4 and/or LE 10.

Each LE’s programmable register can be configured for D, T, JK, or SR 
operation. The register’s clock, clock enable, and clear control signals can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the register is bypassed and the output 
of the LUT drives directly to the outputs of the LE.

Each LE has four data inputs that can drive the internal LUT. One of these 
inputs has a shorter delay than the others, improving overall LE 
performance. This input is chosen automatically by the Quartus II 
software as appropriate.

labclk1
labclk2

labclr
labpre

Carry-In1

Carry-In0

LAB Carry-In

Clock & 
Clock Enable

Select

LAB Carry-Out (2)

Carry-Out1

Carry-Out0

Look-Up
Table
(LUT)

Carry
Chain

to Local, Row, and
Column Routing

to Local, Row, and
Column Routing

Programmable
Register

PRN

CLRN

D Q

ENA

Register Bypass

Packed 
Register Select

Chip-Wide
Reset

labclkena1
labclkena2

Synchronous
Load and 

Clear Logic

LAB-wide
Synchronous 

Load
LAB-wide

Synchronous 
Clear

Asynchronous 
Clear/Preset/
Load Logic

data1
data2
data3

data4 (1)

FastLUT
Routing to next LE

LE Clock 
Enable
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Figure 8. Normal-Mode LE Note (1)

Notes to Figure 8:
(1) LEs in normal mode support register packing.
(2) When using the carry-in in normal mode, the packed register feature is unavailable.
(3) There are two LAB-wide clock enables per LAB in addition to LE-specific clock enables.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. A LE in arithmetic mode contains four 2-input LUTs. The 
first two 2-input LUTs compute two summations based on a possible 
carry of 1 or 0; the other two LUTs generate carry outputs for the two 
possible chains of the carry-select look-ahead (CSLA) circuitry. As shown 
in Figure 9, the LAB carry-in signal selects the appropriate carry-in chain 
(either carry-in0 or carry-in1). The logic level of the chain selected 
in turn selects which parallel sum is generated as a combinatorial or 
registered output. For example, when implementing an adder, this output 
is the signal comprised of the sum data1 + data2 + carry, where carry is 
0 or 1. The other two LUTs use the data1 and data2 signals to generate 
two possible carry-out signals—one for a carry of 1 and the other for a 
carry of 0. The carry-in0 signal acts as the carry select for the 
carry-out0 output; carry-in1 acts as the carry select for the 
carry-out1 output. LEs in arithmetic mode can drive out registered and 
unregistered versions of the LUT output. Figure 9 shows a Mercury LE in 
arithmetic mode.

PRN/ALDn

CLRN

D Q
4-Input
LUT

LE-Out 

LE-Out 

LE-Out 
ENA

data1
data2
data3

data4   

Carry-In from
Previous LE (2)

Registered
Output

Combinatorial
Output

LAB-Wide Clock Enable (3)
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The arithmetic mode also offers clock enable, counter enable, synchronous 
up/down control, synchronous clear, and synchronous load options. The 
counter enable and synchronous up/down control signals are generated 
from the data inputs of the LAB local interconnect. The synchronous clear 
and synchronous load options are LAB-wide signals that affect all 
registers in the LAB. Consequently, if any of the LEs in a LAB use the 
counter mode, other LEs in that LAB must be used as part of the same 
counter or be used for a combinatorial function. The Quartus II software 
automatically places any registers that are not used by the counter into 
other LABs.

Figure 9. Arithmetic Mode LE

Carry-Select Look-Ahead Chain

The CSLA chain provides a very fast carry-forward function between LEs 
in arithmetic mode or multiplier mode. The CSLA chain uses the 
redundant carry calculation to increase the speed of carry functions. The 
LE can calculate sum and carry values for a possible carry-in of 1 and 
carry-in of 0 in parallel. The carry-in0 and carry-in1 signals from a 
lower-order bit drive forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the CSLA 
chain. CSLA chains can begin in any LE within a LAB. 

LUT

LUT

LUT

LUT

data1

LAB Carry-In

data2

data3

Carry-In0

Carry-In1

Carry-Out0 Carry-Out1

PRN/ALDn

CLRn

D Q

LAB-Wide
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Load

LAB-Wide 
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Clear
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ENA
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For a typical 16 × 16-bit binary tree multiplier, five stages are needed to 
determine the final product. The Mercury LE multiplier mode allows the 
partial product formation stage (Stage 1) and the first sum of stages 
(Stage 2) to be combined in a single stage, shown in Figure 13. This 
feature, combined with the direct connection between RapidLAB lines 
and LEs in multiplier mode, allows the fast dedicated implementation of 
multipliers.
Altera Corporation  27
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Figure 16. FastLUT Interconnect

ESB rows also have their own interconnect resources to communicate 
horizontally and vertically with LAB rows. The ESB rows at the top and 
bottom of the device have their own set of row and priority row 
interconnect resources. For vertical communication, all LAB column 
interconnect lines traverse to the ESBs. This includes leap lines, which 
allow the adjacent LAB rows to communicate with the ESBs.

The row interconnect resources can be driven directly by LEs or ESBs in 
that row. Further, the column interconnect resources can drive a row line, 
allowing LEs, IOEs, and ESBs to drive elements in a different row via the 
column and row resources.

The column interconnect resources can be directly driven by LEs, IOEs, or 
ESBs within that column. The priority column and leap line resources can 
be driven directly by LEs. These lines enable high-speed vertical 
communication in the device for timing-critical paths. The column 
resources route signals between rows. A column resource can drive row 
resources directly, allowing fast connections between rows.

LE 1

LE 2

LE 3

LE 4

LE 5

LE 6

LE 7

LE 8

LE 9

LE 10

FastLUT
Routing to
Adjacent LE

Local Interconnect
Routing Among LEs
in the LAB
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Table 9 summarizes how various elements of the Mercury architecture 
drive each other.

Notes to Table 9:
(1) This direct connection is possible through the FastLUT connection.
(2) IOEs can connect to the adjacent LAB’s local interconnects in the associated LAB row.
(3) IOEs can connect to row and priority row interconnects in the associated LAB row.
(4) This connection is used for multiplier mode.

Embedded 
System Block

The ESB can implement various types of memory blocks, including quad-
port, true dual-port, dual- and single-port RAM, ROM, FIFO, and CAM 
blocks. 

The ESB includes input and output registers; the input registers 
synchronize reads and/or writes, and the output registers can pipeline 
designs to further increase system performance. The ESB offers a quad 
port mode, which supports up to four port operations, two reads and two 
writes simultaneously, with the ability for a different clock on each of the 
four ports. Figure 17 shows the ESB quad-port block diagram.

Table 9. Mercury Routing Scheme

Source Destination

LE Local 
Interconnect

IOE ESB Row 
Interconnect

ESB Row Priority 
Row

RapidLAB 
Interconnect

Column Priority 
Column

Leap 
Lines

LE v 
(1)

v v v v v v v

Local 
Interconnect

v v

IOE v (2) v
(3)

v (3) v v

ESB Row 
Interconnect

v

ESB v v v v

Row v

Priority Row v

RapidLAB 
Interconnect

v
(4)

v

Column v v v v

Priority 
Column

v v v v v

Leap Lines v v v v v
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ESBs can implement synchronous RAM, which is easier to use than 
asynchronous RAM. A circuit using asynchronous RAM must generate 
the RAM write enable (WE) signal while ensuring that its data and address 
signals meet setup and hold time specifications relative to the WE signal. 
In contrast, the ESB’s synchronous RAM generates its own WE signal and 
is self-timed with respect to the global clock. Circuits using the ESB’s self-
timed RAM must only meet the setup and hold time specifications relative 
to the global clock.

ESBs are grouped together in rows at the top and bottom of the device for 
fast horizontal communication. The ESB row interconnect can be driven 
by any ESB in the row. The row interconnect drives the ESB local 
interconnect, which in turn drives the ESB ports. ESB outputs drive the 
ESB local interconnect, which can drive row interconnect as well as all 
types of column interconnect, including leap lines. The leap lines allow 
fast access between ESBs and the adjacent LAB row. 

When implementing memory, each ESB can be configured in any of the 
following sizes for quad port and true dual-port memory modes: 256 × 16; 
512 × 8; 1,024 × 4; 2,048 × 2; or 4,096 × 1. For dual-port and single-port 
modes, the ESB can be configured for 128 × 32 in addition to the list above. 
For variable port width RAMs, any port width ratio combination must be 
1, 2, 4, 8, or 16. For example, a RAM with data ports of width 1 and 16 or 
2 and 32 will work, but not 1 and 32.

The ESB can also be split in half and used for two independent 2,048-bit 
single-port or dual-port RAM blocks. For example, one half of the ESB can 
be used as a 128 × 16 memory single-port memory while the other half can 
be used for a 1,024 × 2 dual-port memory. This effectively doubles the 
number of RAMs a Mercury device can implement for its given number 
of ESBs. The Quartus II software automatically merges two logical 
memory functions in a design into an ESB; the designer does not need to 
merge the functions manually.

By combining multiple ESBs, the Quartus II software implements larger 
memory blocks automatically. For example, two 256 × 16 RAM blocks can 
be combined to form a 256 × 32 RAM block, and two 512 × 8 RAM blocks 
can be combined to form a 512 × 16 RAM block. Memory performance 
does not degrade for memory blocks up to 4,096 words deep. Each ESB 
can implement a 4,096-word-deep memory; the ESBs are used in parallel, 
eliminating the need for any external control logic and its associated 
delays. To create a high-speed memory block more than 4,096 words 
deep, the Quartus II software will automatically combine ESBs with LE 
control logic.
Altera Corporation  37
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Figure 19. ESB in Read/Write Clock Mode Notes (1), (2)

Notes to Figure 19:
(1) Only half of the ESB, either A or B, is used for dual-port configuration.
(2) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
(3) This configuration is supported for dual-port configuration.
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Figure 23. Encoded CAM Address Outputs

Figure 24. Unencoded CAM Address Outputs

Notes to Figure 24:
(1) For an unencoded output, the ESB only supports 31 input data bits. One input bit 

is used by the select line to choose one of the two banks of 16 outputs.
(2) If the select input is a 1, then CAM outputs odd words between 1 through 15. If 

the select input is a 0, CAM outputs words even words between 0 through 14.

In single-match mode, it takes two clock cycles to write into CAM, but 
only one clock cycle to read from CAM. In this mode, both encoded and 
unencoded outputs are available without external logic. Single-match 
mode is better suited for designs without duplicate data in the memory.

CAM

data[31..0] = 45

addr[15..0] = 12
Encoded Output

match = 1

AddressData

10
11
12
13

15
27
45
85

CAM

data[30..0] =45 (1)

select (2)

q0

Unencoded outputs.
q12 goes high to
signify a match.

q12

q13

q14

q15

AddressData

10
11
12
13

15
27
45
85
44 Altera Corporation
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Each row of I/O pins has an associated LAB row for driving to and from 
the core of the Mercury device. For a given I/O band row, its associated 
LAB row is located below it with the exception of the bottom I/O band 
row. The bottom I/O band is located at the bottom periphery of the 
device, hence its associated LAB row is located above it. Figure 29 shows 
an example of an I/O band to associated LAB row interconnect in a 
Mercury device.

There is a maximum of two IOEs associated with each LAB in the 
associated LAB row. The local interconnect of the associated LAB drives 
the IOEs. Since local interconnect is shared with the LAB neighbor, any 
given LAB can directly drive up to four IOEs. The local interconnect 
drives the data and OE signals when the IOE is used as an output or 
bidirectional pin.

Figure 29. IOE Connection to Interconnects and Adjacent LAB Note (1)

Note to Figure 29:
(1) INA: unregistered input; INB: registered/unregistered input; INC: registered/unregistered input or OE register 

output in DDR mode.

The IOEs drive registered or combinatorial versions of input data into the 
device. The unregistered input data can be driven to the local interconnect 
(for fast input setup), row and priority row interconnect, and column and 
priority column interconnects. The registered data can also be driven to 
the same row and column resources. The OE register output can be fed 
back through column and row interconnects to implement DDR I/O pins.

LAB LAB LAB

I/O Band
Row

Associated
LAB Row

IOE Pair

INA

INC

INB OUT INA

INC

INB OUT

Row Interconnect

Priority Row 
Interconnect

All Column Interconnects

Associated LAB
to IOE Pair Local Interconnect

IOE pairs drive unregistered 
inputs to the associated 
LAB's local interconnect.

The associated LAB and its 
neighbor can drive a given IOE 
pair through the local interconnect.

IOEIOE

IOE Pair

INA

INC

INB OUT INA

INC

INB OUT

IOEIOE

IOE Pair

INA

INC

INB OUT INA

INC

INB OUT

IOEIOE

To Local
Interconnect

To Next
LAB
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The PLLs in Mercury devices are enabled through the Quartus II software. 
External devices are not required to use these features.

Advanced ClockBoost Multiplication & Division

Each Mercury PLL includes circuitry that provides clock synthesis for up 
to four outputs (three internal outputs and one external output) using 
m/(n × output divider) scaling. When a PLL is locked, the locked output 
clock aligns to the rising edge of the input clock. The closed loop equation 
for Figure 31 gives an output frequency fclock0 = (m/(n × k))fIN, 
fclock1 = (m/(n × p))fIN, fclock2 = (m/(n × q))fIN, and 
fclock_ext = (m/(n × v))fIN or fclock1. These equations allow the 
multiplication or division of clocks by a programmable number. The 
Quartus II software automatically chooses the appropriate scaling factors 
according to the frequency, multiplication, and division values entered.

A single PLL in a Mercury device allows for multiple user-defined 
multiplication and division ratios that are not possible even with multiple 
delay-locked loops (DLLs). For example, if a frequency scaling factor of 
3.75 is needed for a given input clock, a multiplication factor of 15 and a 
division factor of 4 can be entered. This advanced multiplication scaling 
can be performed with a single PLL, making it unnecessary to cascade 
PLL outputs. 

External Clock Outputs

Mercury devices have four low-jitter external clocks available for external 
clock sources. Other devices on the board can use these outputs as clock 
sources. 

There are three modes for external clock outputs. Multiplication is 
allowed in all external clock output modes.

■ Zero Delay Buffer: The external clock output pin is phase aligned 
with the clock input pin for zero delay. Programmable phase shift 
and time delay shift are not allowed in this configuration. 
Multiplication is allowed with the zero delay buffer mode. The 
MegaWizard interface for altclklock should be used to verify 
possible clock settings.

■ External Feedback: The external feedback input pin is phase aligned 
with clock input pin. By aligning these clocks, you can actively 
remove clock delay and skew between devices. Multiplication is 
allowed with the external feedback mode. This mode has the same 
restrictions as zero delay buffer mode.
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f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

■ Jam Programming & Test Language Specification

Generic Testing Each Mercury device is functionally tested. Complete testing of each 
configurable static random access memory (SRAM) bit and all logic 
functionality ensures 100% yield. AC test measurements for Mercury 
devices are made under conditions equivalent to those shown in 
Figure 33. Multiple test patterns can be used to configure devices during 
all stages of the production flow.
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Table 23. LVTTL Specifications Note (10)

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

II Input pin leakage current VIN = 0 V or VCCIO –10 10 µA

VOH High-level output voltage IOH = –4 mA 2.4 V

VOL Low-level output voltage IOL = 4 mA 0.45 V

Table 24. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Power supply voltage range 3.0 3.6 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

II Input pin leakage current VIN = 0 V or VCCIO –10 10 µA

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

0.2 V

Table 25. 2.5-V I/O Specifications Note (10)

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply voltage 2.375 2.625 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

II Input pin leakage current VIN = 0 V or VCCIO 10 10 µA

VOH High-level output voltage IOH = –0.1 mA 2.1 V

IOH = –1 mA 2.0 V

IOH = –2 mA 1.7 V

VOL Low-level output voltage IOL = 0.1 mA 0.2 V

IOH = 1 mA 0.4 V

IOH = 2 mA 0.7 V
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Figures 34 and 35 show receiver input and transmitter output waveforms, 
respectively, for all differential I/O standards (LVPECL, 3.3-V PCML, 
LVDS, and HyperTransport technology).

Figure 34. Receiver Input Waveforms for Differential I/O Standards

Table 26. 1.8-V I/O Specifications Note (10)

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply voltage 1.71 1.89 V

VI H High-level input voltage 0.65 × VCCIO 4.1 V

VIL Low-level input voltage –0.5 0.35 × VCCIO V

II Input pin leakage current VIN = 0 V or VCCIO –10 10 µA

VOH High-level output voltage IOH = –2 mA VCCIO – 0.45 V

VOL Low-level output voltage IOL = 2 mA 0.45 V

Single-Ended Waveform

Differential Waveform

Positive Channel (p) = VIH

Negative Channel (n) = VIL

Ground

±VID

+VID

− VID
VID (Peak-to-Peak)

VCM

p − n = 0 V
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Tables 44 and 45 describe the Mercury device’s external timing 
parameters.

Notes to Tables 44 and 45:
(1) These timing parameters are sample-tested only.
(2) All timing parameters are either to and/or from pins, including global clock pins.

Table 44. Mercury External Timing Parameters Notes (1), (2)

Symbol Parameter Conditions

tINSU Setup time with global clock at IOE register

tINH Hold time with global clock at IOE register

tOUTCO Clock-to-output delay with global clock at IOE register C1 = 35 pF

tINSUPLL Setup time with PLL clock at IOE input register

tINHPLL Hold time with PLL clock at IOE input register

tOUTCOPLL Clock-to-output delay with PLL clock at IOE output register C1 = 35 pF

Table 45. Mercury External Bidirectional Timing Parameters Notes (1), (2)

Symbol Parameter Conditions

tINSUBIDIR Setup time for bidirectional pins with gobal clock at IOE input register

tINHBIDIR Hold time for bidirectional pins with global clock at IOE input register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE 
output register

C1 = 35 pF

tXZBIDIR Synchronous IOE output enable register to output buffer disable delay C1 = 35 pF

tZXBIDIR Synchronous IOE output enable register output buffer enable delay C1 = 35 pF

tINSUBIDIRPLL Setup time for bidirectional pins with PLL clock at IOE input register

tINHBIDIRPLL Hold time for bidirectional pins with PLL clock at IOE input register

tOUTCOBIDIRPLL Clock-to-output delay for bidirectional pins with PLL clock at IOE output 
register

C1 = 35 pF

tXZBIDIRPLL Synchronous IOE output enable register to output buffer disable delay 
with PLL

C1 = 35 pF

tZXBIDIRPLL Synchronous IOE output enable register output buffer enable delay 
with PLL

C1 = 35 pF
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Before and during device configuration, all I/O pins are pulled to VCCIO 
by a built-in weak pull-up resistor.

SRAM configuration elements allow Mercury devices to be reconfigured 
in-circuit by loading new configuration data into the device. Real-time 
reconfiguration is performed by forcing the device into command mode 
with a device pin, loading different configuration data, reinitializing the 
device, and resuming user-mode operation. In-field upgrades can be 
performed by distributing new configuration files.

Configuration Schemes

The configuration data for a Mercury device can be loaded with one of five 
configuration schemes (see Table 52), chosen on the basis of the target 
application. A configuration device, intelligent controller, or the JTAG 
port can be used to control the configuration of a Mercury device. When a 
configuration device is used, the system can configure automatically at 
system power-up.

By connecting the configuration enable (nCE) and configuration enable 
output (nCEO) pins on each device, multiple Mercury devices can be 
configured in any of five configuration schemes.

f For more information on configuration, see Application Note 116 
(Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices).

Device Pin-
Outs

See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information.

Table 52. Data Sources for Configuration

Configuration Scheme Data Source

Configuration device Configuration device

Passive serial (PS) MasterBlasterTM or ByteBlasterMVTM download cable 
or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG MasterBlaster or ByteBlasterMV download cable or a 
microprocessor with a Jam STAPL or JBC file
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Revision 
History

The information contained in the Mercury Programmable Logic Device 
Family Data Sheet version 2.2 supersedes information published in 
previous versions.

Version 2.2

The following changes were made to the Mercury Programmable Logic 
Device Family Data Sheet version 2.2:

■ Updated the condition values (symbols II and IOZ) in Table 22.

Version 2.1

The following changes were made to the Mercury Programmable Logic 
Device Family Data Sheet version 2.1:

■ Updated Table 8.
■ Updated EP1M350 regular I/O banks in Table 13.
■ Updated Note (6) in Table 14.

Version 2.0

The following changes were made to the Mercury Programmable Logic 
Device Family Data Sheet version 2.0:

■ Changed all references to PCML to 3.3-V PCML.
■ Updated Table 4.
■ Updated “High-Speed Differential Interface” on page 8.
■ Added Tables 6 through 8.
■ Added Figures 34 and 35.
■ Updated I/O specifications in Tables 28 and 29.
■ Updated Mercury device capacitance in Table 43.
■ Updated EP1M120 device timing in Tables 46 through 49.
■ Added EP1M350 device timing in Tables 50 and 51.
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