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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 480

Number of Logic Elements/Cells 4800

Total RAM Bits 49152

Number of I/O 303

Number of Gates 120000

Voltage - Supply 1.71V ~ 1.89V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 484-BBGA, FCBGA

Supplier Device Package 484-FBGA (23x23)

Purchase URL https://www.e-xfl.com/product-detail/intel/ep1m120f484i6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/ep1m120f484i6-4499823
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


Mercury Programmable Logic Device Family Data Sheet
...and More 
Features

■ Advanced high-speed I/O features
– Robust I/O standard support, including LVTTL, PCI up to 

66 MHz, 3.3-V AGP in 1× and 2× modes, 3.3-V SSTL-3 and 2.5-V 
SSTL-2, GTL+, HSTL, CTT, LVDS, LVPECL, and 3.3-V PCML

– High-speed differential interface (HSDI) with dedicated 
circuitry for CDR at up to 1.25 Gbps for LVDS, LVPECL, and 
3.3-V PCML

– Support for source-synchronous True-LVDSTM circuitry up to 
840 megabits per second (Mbps) for LVDS, LVPECL, and 3.3-V 
PCML

– Up to 18 input and 18 output dedicated differential channels of 
high-speed LVDS, LVPECL, or 3.3-V PCML

– Built-in 100-Ω termination resistor on HSDI data and clock 
differential pairs

– Flexible-LVDSTM circuitry provides 624-Mbps support on up to 
100 channels with the EP1M350 device

– Versatile three-register I/O element (IOE) supporting double 
data rate I/O (DDRIO), double data-rate (DDR) SDRAM, zero 
bus turnaround (ZBT) SRAM, and quad data rate (QDR) SRAM

■ Designed for low-power operation 
– 1.8-V internal supply voltage (VCCINT)
– MultiVoltTM I/O interface voltage levels (VCCIO) compatible 

with 1.5-V, 1.8-V, 2.5-V, and 3.3-V devices
– 5.0-V tolerant with external resistor

■ Advanced interconnect structure
– Multi-level FastTrack® Interconnect structure providing fast, 

predictable interconnect delays
– Optimized high-speed Priority FastTrack Interconnect for 

routing critical paths in a design
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– FastLUTTM connection allowing high speed direct connection 
between LEs in the same logic array block (LAB)

– Leap lines allowing a single LAB to directly drive LEs in adjacent 
rows

– The RapidLAB interconnect providing a high-speed connection 
to a 10-LAB-wide region

– Dedicated clock and control signal resources, including four 
dedicated clocks, six dedicated fast global signals, and additional 
row-global signals
2 Altera Corporation



Mercury Programmable Logic Device Family Data Sheet
Mercury device I/O pins are evenly distributed across the entire device 
area; other Altera device families have I/O pins placed on the device 
periphery. Mercury device I/O pin placement allows for higher I/O count 
at a given die size; pad size is no longer a limiting issue. Each I/O pin is 
fed by an IOE. IOEs are grouped in IOE row bands from the top to the 
bottom of the device. IOE row bands are separated by several LAB rows. 
LABs from the associated LAB row closest to the I/O row band drive IOEs 
through the local interconnect. This feature allows fast clock-to-output 
times when a pin is driven by any of the 10 LEs in the adjacent associated 
LAB. Each IOE contains a bidirectional buffer along with an input register, 
output register, output enable (OE) register, and input latch for DDR. 
When used with a global clock, these dedicated registers provide 
exceptional bidirectional I/O performance.

IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI 
compliance; 3.3-V, 64-bit, 133-MHz PCI-X compliance; Joint Test Action 
Group (JTAG) boundary-scan test (BST) support; output drive strength 
control; slew-rate control; tri-state buffers; bus-hold circuitry; 
programmable pull-up resisters; programmable input and output delays; 
and open-drain outputs. Mercury devices offer enhanced I/O support, 
including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, HSTL, 
LVPECL, 3.3-V PCML, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, 
CTT, and 3.3-V AGP I/O standards. CDR (up to 1.25 Gbps) and source-
synchronous (up to 840 Mbps) transfers are supported with HSDI 
circuitry for LVDS, LVPECL, and 3.3-V PCML I/O standards.

The ESB can implement a variety of memory functions, including CAM, 
quad-port RAM, true dual-port RAM, dual- and single-port RAM, ROM, 
and FIFO functions. ESBs are grouped into two rows: one at the top and 
one at the bottom of the device. Embedding the memory directly into the 
die improves performance and reduces die area compared to distributed-
RAM implementations. Moreover, the abundance of cascadable ESBs, in 
conjunction with the ability for one ESB to implement two separate 
memory blocks, ensures that the Mercury device can implement multiple 
wide memory blocks for high-density designs. The ESB’s high speed 
ensures the implemention of small memory blocks without any speed 
penalty. The abundance of ESBs ensures that designers can create as many 
different-sized memory blocks as the system requires. Figure 1 shows an 
overview of the Mercury device. 
6 Altera Corporation
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Figure 1. Mercury Architecture Block Diagram Note (1)

Note to Figure 1:
(1) Figure 1 shows an EP1M120 device. Mercury devices have a varying number of rows, columns, and ESBs, as shown 

in Table 5.

Table 5 lists the resources available in Mercury devices.

Associated LAB Row

Buried LAB Row

Buried LAB Row

Associated LAB Row

Buried LAB Row

Buried LAB Row

Associated LAB Row

Buried LAB Row

Buried LAB Row

Associated LAB Row

Associated LAB Row

Buried LAB Row

ESB ESB ESB ESB ESB ESB

ESB ESB ESB ESB ESB ESB

Local Interconnect: 
Connects LEs within
the Same or Adjacent
LABs

Row and Priority Row 
Interconnect: Connects
LABs within a Row

Column and Priority
Column Interconnect: 
Connects LABs within 
Different Rows (Top 
to Bottom)

Leap Lines: Connects
Adjacent LABs in 
Same Column

RapidLAB Interconnect:
Connects Any 10
Consecutive LABs
within a Row from
a Central LAB

I/O Band with HSDI

I/O Band

I/O Band

I/O Band

I/O Band

Table 5. Mercury Device Resources

Device LAB Rows LAB Columns I/O Row Bands ESBs

EP1M120 12 40 5 12

EP1M350 18 80 4 28
Altera Corporation  7
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Notes to Figure 4:
(1) EP1M350 devices have 18 individual receiver and transmitter channels. EP1M120 

devices have 8 individual receiver and transmitter channels. Receiver and 
transmitter channel numbers in parenthesis are for EP1M350 devices.

(2) W = 1 to 12, 14, 16, 18, or 20
J = 3 to 12, 14, 16, 18, or 20
W does not have to equal J.

(3) For every receiver channel in EP1M350 and EP1M120 devices, the ÷J recovered 
clock can drive the priority column interconnect for use as a clock.

(4) The two center channels adjacent to the HSDI PLLs (channels 4 and 5 for EP1M120 
devices, channels 9 and 10 for EP1M350 devices) can drive the Mercury device’s 
global clocks.

(5) HSDI_CLK1 and HSDI_CLK2 pins must be differential. These clock pins drive 
HSDI PLLs only. They do not drive to the logic array.

The multiplied reference clock is also used to synchronize and serialize at 
the transmitter side. 

Up to two different serial data rates are supported for input channels or 
output channels. Received data must be non-return-to-zero (NRZ).

Table 7 defines the support for CDR-mode applications. Table 8 shows the 
supported data rates for each speed grade.

Notes to Table 7:
(1) The VCM operating range for AC-coupled applications is from 0 to 0.7 V and from 1.8 to 2.4 V.
(2) Use AC-coupled LVDS or another I/O standard. The DC-coupled LVDS I/O standard provides performance up to 

1.0 Gbps.

f For more information on CDR, see AN 130: CDR in Mercury Devices.

Table 7. CDR-Mode Applications

Data Rate CDR Mode

DC-Coupled 
LVDS

DC-Coupled 
LVPECL

DC-Coupled 
3.3-V PCML

AC-Coupled 
LVDS (1)

AC-Coupled 
LVPECL (1)

AC-Coupled 
3.3-V PCML 

(1)

1.0 to 1.25 Gbps (2) v v v v v

≤ 1.0 Gbps v v v v v v
Altera Corporation  13
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Each LE has two outputs that drive the local, row, and column routing 
resources. Each output can be driven independently by the LUT’s or 
register’s output. For example, the LUT can drive one output, while the 
register drives the other output. This feature, called register packing, 
improves device utilization because the register and the LUT can be used 
for unrelated functions. The LE can also drive out registered and 
unregistered versions of the LUT output.

LE Operating Modes

The Mercury LE can operate in one of the following modes:

■ Normal
■ Arithmetic
■ Multiplier

Each operating mode uses LE resources differently. In each operating 
mode, eight available inputs to the LE—the four data inputs from the LAB 
local interconnect; carry-in0, carry-in1 from the previous LE; the 
LAB carry-in from the previous carry-chain generation; and the FastLUT 
Connection input from the previous LE—are directed to different 
destinations to implement the desired logic function. LAB-wide signals 
provide clock, asynchronous clear, asynchronous preset, asynchronous 
load, synchronous clear, synchronous load, and clock enable control for 
the register. These LAB-wide signals are available in all normal and 
arithmetic LE modes.

The Quartus II software, in conjunction with parameterized functions 
such as LPM and DesignWare functions, automatically chooses the 
appropriate mode for common functions, such as counters, adders, and 
multipliers. If required, the designer can also create special-purpose 
functions that specify which LE operating mode to use for optimal 
performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect and a single carry-in are inputs to a four-input LUT. The 
Quartus II Compiler automatically selects the carry-in or the data3 signal 
as one of the inputs to the LUT. The LUT (combinatorial) output can be 
driven to the FastLUT connection to the next LE in the LAB. LEs in normal 
mode support packed registers. Figure 8 shows an LE in normal mode.
Altera Corporation  19
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Figure 10. CSLA Details

The Quartus II Compiler can create CSLA logic automatically during 
design processing. Alternatively, the designer can create CSLA logic 
manually during design entry. Parameterized functions such as library of 
parameterized modules (LPM) and DesignWare functions automatically 
take advantage of carry chains for the appropriate functions.
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The Quartus II Compiler creates carry chains longer than ten LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain skips intermediate LABs in a row structure. A carry chain longer 
than one LAB skips either from an even-numbered LAB to the next even-
numbered LAB, or from an odd-numbered LAB to the next odd-
numbered LAB. For example, the last LE of the first LAB in a LAB row 
carries to the first LE of the third LAB in the same LAB row.

Multiplier Mode

Multiplier mode is used for implementing high-speed multipliers up to 
16 × 16 in size. The LUT implements the partial product formation and 
summation in a single stage for a N × M-bit multiply operation. A single 
LE can implement the summation of ANBM + 1 + AN + 1BM for the 
multiplier and multiplicand inputs. To increase the speed of the 
multiplication, LAB wide signals are used to control the partial product 
sum generation. These multiplier LAB-wide signals use the LABCLKENA1 
and PRESET/ASYNCLOAD resources. The multiplier mode takes 
advantage of the CSLA circuitry for optimized sum and carry generation 
in the partial product sum. There is a special CSLA circuitry mode used 
for the multiplier where the carry chain runs vertically between LABs in 
the same column. The Quartus II Compiler automatically uses this special 
mode for dedicated multiplier implementation only. The summation of 
the multiplier and multiplicand bits is driven out along with the carry-
out0 and carry-out1 bits. The combinatorial or registered versions of 
the sum can be driven out, allowing the multiplier to be pipelined.

The RapidLAB interconnect has dedicated fast connections to the LE 
inputs in multiplier mode, further increasing the speed of the multiplier. 
These dedicated connections allow RapidLAB lines to avoid delay 
incurred by driving onto local interconnects and then into the LE.

The Quartus II software implements parameterized functions that use the 
multiplier mode automatically when multiply operators are used.

Figure 11 shows a Mercury device LE in multiplier mode.
24 Altera Corporation
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Figure 15. Leap Line Interconnect

FastLUT Interconnect

Mercury devices include an enhanced interconnect structure within LABs 
for faster routing of LE output to LE input connections. The FastLUT 
connection allows the combinatorial output of an LE to directly drive the 
fast input of the LE directly below it, bypassing the local interconnect. This 
resource can be used as a high speed connection for wide fan-in functions 
from LE 1 to LE 10 in the same LAB. Figure 16 shows a FastLUT 
interconnect.
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Figure 17. ESB Quad-Port Block Diagram

In addition to quad port memory, the ESB also supports true dual-port, 
dual-port, and single-port RAM. True dual-port RAM supports any 
combination of two port operations: two reads, two writes, or one read 
and one write. Dual-port memory supports a simultaneous read and 
write. For single-port memory, independent read and write is supported. 
Figure 18 shows these different RAM memory port configurations for an 
ESB.
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Figure 19. ESB in Read/Write Clock Mode Notes (1), (2)

Notes to Figure 19:
(1) Only half of the ESB, either A or B, is used for dual-port configuration.
(2) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
(3) This configuration is supported for dual-port configuration.
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Input/Output Clock Mode

An ESB using input/output clock mode can also use up to four clocks. On 
each of the two ports, A or B, one clock controls all registers for inputs into 
the ESB: data input, WE, RE, read address, and write address. The other 
clock controls the ESB data output registers. Each ESB port, A or B, also 
supports independent read clock enable, write clock enable, and 
asynchronous clear signals. Input/output clock mode is commonly used 
for applications where the reads and writes occur at the same system 
frequency, but require different clock enable signals for the input and 
output registers. Figure 20 shows the ESB in input/output clock mode.
40 Altera Corporation
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CAM is used for high-speed search operations. When searching for data 
within a RAM block, the search is performed serially. Thus, finding a 
particular data word can take many cycles. CAM searches all addresses in 
parallel and outputs the address storing a particular word. When a match 
is found, a match flag is set high. CAM is ideally suited for applications 
such as Ethernet address lookup, data compression, pattern recognition, 
cache tags, fast routing table lookup, and high-bandwidth address 
filtering. Figure 22 shows the CAM block diagram.

Figure 22. CAM Block Diagram

The Mercury on-chip CAM provides faster system performance than 
traditional discrete CAM. Integrating CAM and logic into the Mercury 
device eliminates off-chip and on-chip delays, improving system 
performance.

When in CAM mode, the ESB implements a 32-word, 32-bit CAM. Wider 
or deeper CAM, such as a 32-word, 64-bit or 128-word, 32-bit block, can 
be implemented by combining multiple CAM blocks with some ancillary 
logic implemented in LEs. The Quartus II software automatically 
combines ESBs and LEs to create larger CAM blocks.

CAM supports writing “don’t care” bits into words of the memory. The 
don’t-care bit can be used as a mask for CAM comparisons; any bit set to 
don’t-care has no effect on matches.

CAM can generate outputs in three different modes: single-match mode, 
multiple-match mode, and fast multiple-match mode. In each mode, the 
ESB outputs the matched data’s location as an encoded or unencoded 
address. When encoded, the ESB outputs an encoded address of the data’s 
location. For instance, if the data is located in address 12, the ESB output 
is 12. When unencoded, each ESB port uses its 16 outputs to show the 
location of the data over two clock cycles. In this case, if the data is located 
in address 12, the 12th output line goes high. Figures 22 and 23 show the 
encoded CAM outputs and unencoded CAM outputs, respectively.
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Figure 26. Mercury IOE

Note to Figure 26:
(1) This programmable delay has four settings: off and three levels of delay.

Double Data Rate I/O

Mercury device’s have three register IOEs to support the DDRIO feature, 
which makes double data rate interfaces possible by clocking data on both 
positive and negative clock edges. The IOE in Mercury devices supports 
double data rate input and double data rate output modes.
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Table 12 describes the I/O standards supported by Mercury devices.

Each regular I/O band row contains two I/O banks. The number of I/O 
banks in a Mercury device depends on the number of I/O band rows. The 
top I/O band contains four regular I/O banks specifically designed for 
HSDI. The top I/O band banks and dedicated clock inputs support LVDS, 
LVPECL, and 3.3-V PCML. 3.3-V PCML is an open-drain standard and 
therefore requires external termination to 3.3 V. All other standards are 
supported by all I/O banks. The top I/O banks 1, 2, 3, and 4 only support 
non-HSDI I/O pins if the design does not use HSDI circuitry. If the design 
uses any HSDI channel, banks 1, 2, 3, and 4 all do not support regular I/O 
pins.

Additionally, the EP1M350 device includes the Flexible-LVDS feature, 
providing support for up to 100 LVDS channels on all regular I/O banks. 
Regular I/O banks in EP1M350 devices include dedicated LVDS input 
and output buffers that do not require any external components except for 
100-Ω termination resistors on receiver channels.

Table 12. Mercury Supported I/O Standards

I/O Standard Type Input 
Reference 

Voltage (VREF) 
(V)

Output
Supply
Voltage

(VCCIO) (V)

Board 
Termination 

Voltage
(VTT) (V)

LVTTL Single-ended N/A 3.3 N/A

LVCMOS Single-ended N/A 3.3 N/A

2.5 V Single-ended N/A 2.5 N/A

1.8 V Single-ended N/A 1.8 N/A

3.3-V PCI Single-ended N/A 3.3 N/A

3.3-V PCI-X Single-ended N/A 3.3 N/A

LVDS Differential N/A 3.3 N/A

LVPECL Differential N/A 3.3 N/A

3.3-V PCML Differential N/A 3.3 3.3

GTL+ Voltage referenced 1.0 N/A 1.5

HSTL class I and II Voltage referenced 0.75 1.5 0.75

SSTL-2 class I and II Voltage referenced 1.25 2.5 1.25

SSTL-3 class I and II Voltage referenced 1.5 3.3 1.5

AGP Voltage referenced 1.32 3.3 N/A

CTT Voltage referenced 1.5 3.3 1.5
Altera Corporation  57
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Figure 30. I/O Bank Layout

Notes to Figure 30:
(1) If HSDI I/O channels are not used, the HSDI banks can be used as regular I/O banks.
(2) When used as regular I/O banks, these banks must be set to the same VCCIO level, but can have separate VREF bank 

settings.

f For more information on I/O standards, see Application Note 117 (Using 
Selectable I/O Standards in Altera Devices).

MultiVolt I/O Interface

The Mercury architecture supports the MultiVolt I/O interface feature, 
which allows Mercury devices in all packages to interface with devices 
with different supply voltages. The devices have one set of VCC pins for 
internal operation and input buffers (VCCINT), and another set for I/O 
output drivers (VCCIO).

Input, Output, or HSDI Transmitter (1), (2)
Input, Output, or HSDI Receiver (1)

Input, Output, or HSDI Transmitter (1), (2)
Input, Output, or HSDI Receiver (1)

I/O Bank

ESB ESB ESB ESB ESB ESB

ESB ESB ESB ESB ESB ESB

I/O or HSDI
Banks

Regular I/O
Banks

I/O Bank

I/O Bank

I/O Bank

I/O Bank

I/O Bank

I/O Bank

I/O Bank
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The Mercury VCCINT pins must always be connected to a 1.8-V power 
supply. With a 1.8-V VCCINT level, input pins are 1.8-V, 2.5-V and 3.3-V 
tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 2.5-V or 
3.3-V power supply, depending on the output requirements. When VCCIO 
pins are connected to a 1.5-V power supply, the output levels are 
compatible with HSTL systems. When VCCIO pins are connected to a 
1.8-V power supply, the output levels are compatible with 1.8-V systems. 
When VCCIO pins are connected to a 2.5-V power supply, the output 
levels are compatible with 2.5-V systems. When the VCCIO pins are 
connected to a 3.3-V power supply, the output high is 3.3 V and is 
compatible with 3.3-V or 5.0-V systems.

Table 14 summarizes Mercury MultiVolt I/O support.

Notes to Table 14:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than VCCIO unless an external 

resistor is used.
(2) These input levels are only available if the input standard is set to any VREF-based input standard (SSTL-2, SSTL-3, 

HSTL, GTL+, AGP 2×). The input buffers are powered from VCCINT when using VREF-based input standards. 
LVTTL, PCI, PCI-X, AGP 1× input buffers are powered by VCCIO. Therefore, these standards cannot be driven with 
input levels below the VCCIO setting except for when VCCIO = 3.3 V and the input voltage (VI) = 2.5 V.

(3) When VCCIO = 1.8 V, the Mercury device can drive a 1.5-V device with 1.8-V tolerant inputs.
(4) When VCCIO = 2.5 V, the Mercury device can drive a 1.8-V device with 2.5-V tolerant inputs.
(5) When VCCIO = 3.3 V, the Mercury device can drive a 2.5-V device with 3.3-V tolerant inputs.
(6) Designers can set Mercury devices to be 5.0-V tolerant by adding an external resistor and enabling the PCI clamping 

diode.

Power Sequencing & Hot-Socketing

Because Mercury devices can be used in a mixed-voltage environment, 
the devices are designed specifically to tolerate any possible power-up 
sequence. Therefore, the VCCIO and VCCINT power supplies may be 
powered in any order. 

Signals can be driven into Mercury devices before and during power-up 
without damaging the device. In addition, Mercury devices do not drive 
out during power-up. Once operating conditions are reached and the 
device is configured, Mercury devices operate as specified by the user.

Table 14. Mercury MultiVolt I/O Support Note (1)

VCCIO 
(V)

Input Signal Output Signal

1.5 V 1.8 V 2.5 V 3.3 V 5.0 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V

1.5 v v v v v

1.8 v (2) v v v v (3)

2.5 v (2) v (2) v v v (4) v

3.3 v (2) v (2) v (2) v v (6) v (5) v v
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■ Normal Mode: The external clock output pin will have phase delay 
relative to the clock input pin. If an internal clock is used in this mode, 
the IOE register clock will be phase aligned to the input clock pin. 
Multiplication is allowed with the normal mode.

Advanced ClockShift Circuitry

General purpose PLLs in Mercury devices have advanced ClockShiftTM 
circuitry that provides programmable phase shift and fine tune time delay 
shift. For phase shifting, users can enter a phase shift (in degrees or time 
units) that affects all PLL outputs. Phase shifts of 90, 180, and 270 can be 
implemented exactly. Other values of phase shifting, or delay shifting in 
time units, are allowed with a resolution range of 0.3 ns to 1.0 ns. This 
resolution varies with frequency input and the user-entered 
multiplication and division factors. The phase shift ability is only possible 
on a multiplied or divided clock if the input and output frequency have 
an integer multiple relationship (i.e., fIN/fOUT or fOUT/fIN must be an 
integer).

In addition to the phase shift feature that affects all outputs, there is an 
advanced fine time delay shift control on each of the four PLL outputs. 
Each PLL output can be shifted in 250-ps increments for a range of –2.0 ns 
to +2.0 ns. This ability can be used in conjunction with the phase shifting 
ability that affects all outputs. fIN/fOUT does not need to have an integer 
relationship for the advanced fine time delay shift control.

Clock Enable Signal

Mercury PLLs have a CLKLK_ENA pin for enabling/disabling all of the 
device PLLs. When the CLKLK_ENA pin is high, the PLL drives a clock to 
all its output ports. When the CLKLK_ENA pin is low, the clock0, 
clock1, clock2 and extclock ports are driven by GND and all of the 
PLLs go out of lock. When the CLKLK_ENA pin goes high again, the PLL 
must relock.

The individual enable port for each general purpose PLL is 
programmable. If more than one general-purpose PLL is instantiated, 
each one does not have to use the clock enable. To enable/disable the 
device PLLs with the CLKLK_ENA pin, the inclocken port on the 
altclklock instance must be connected to the CLKLK_ENA input pin.
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Table 33. SSTL-2 Class I Specifications Note (10)

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 2.375 2.5 2.625 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH High-level input voltage VREF + 0.18 3.0 V

VIL Low-level input voltage –0.3 VREF – 0.18 V

VOH High-level output voltage IOH = –7.6 mA VTT + 0.57 V

VOL Low-level output voltage IOL = 7.6 mA VTT – 0.57 V

Table 34. SSTL-2 Class II Specifications Note (10)

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 2.3 2.5 2.7 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH High-level input voltage VREF + 0.18 VCCIO + 0.3 V

VIL Low-level input voltage –0.3 VREF – 0.18 V

VOH High-level output voltage IOH = –15.2 mA VTT + 0.76 V

VOL Low-level output voltage IOL = 15.2 mA VTT – 0.76 V

Table 35. SSTL-3 Class I Specifications Note (10)

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.0 3.3 3.6 V

VTT Termination voltage VREF – 0.05 VREF VREF + 0.05 V

VREF Reference voltage 1.3 1.5 1.7 V

VIH High-level input voltage VREF + 0.2 VCCIO + 0.3 V

VIL Low-level input voltage –0.3 VREF – 0.2 V

VOH High-level output voltage IOH = –8 mA VTT + 0.6 V

VOL Low-level output voltage IOL = 8 mA VTT – 0.6 V
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Table 39. 1.5-V HSTL Class I Specifications Note (10)

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 1.4 1.5 1.6 V

VREF Input reference voltage 0.68 0.75 0.9 V

VTT Termination voltage 0.7 0.75 0.8 V

VIH (DC) DC high-level input voltage VREF + 0.1 V

VIL (DC) DC low-level input voltage –0.3 VREF – 0.1 V

VIH (AC) AC high-level input voltage VREF + 0.2 V

VIL (AC) AC low-level input voltage VREF – 0.2 V

VOH High-level output voltage IOH = 8 mA VCCIO – 0.4 V

VOL Low-level output voltage IOH = –8 mA 0.4 V

Table 40. 1.5-V HSTL Class II Specifications Note (10)

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 1.4 1.5 1.6 V

VREF Input reference voltage 0.68 0.75 0.9 V

VTT Termination voltage 0.7 0.75 0.8 V

VIH (DC) DC high-level input voltage VREF + 0.1 V

VIL (DC) DC low-level input voltage –0.3 VREF – 0.1 V

VIH (AC) AC high-level input voltage VREF + 0.2 V

VIL (AC) AC low-level input voltage VREF – 0.2 V

VOH High-level output voltage IOH = 16 mA VCCIO – 0.4 V

VOL Low-level output voltage IOH = –16 mA 0.4 V

Table 41. CTT I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.0 3.3 3.6 V

VTT/VREF Termination and input 
reference voltage

1.35 1.5 1.65 V

VIH High-level input voltage VREF + 0.2 V

VIL Low-level input voltage VREF – 0.2 V

II Input pin leakage current 0 < VIN < VCCIO ±10 µA

VOH High-level output voltage IOH = –8 mA VREF + 0.4 V

VOL Low-level output voltage IOL = 8 mA VREF – 0.4 V

IO Output leakage current 
(when output is high Z)

GND ð VOUT ð 
VCCIO

±10 µA
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Revision 
History

The information contained in the Mercury Programmable Logic Device 
Family Data Sheet version 2.2 supersedes information published in 
previous versions.

Version 2.2

The following changes were made to the Mercury Programmable Logic 
Device Family Data Sheet version 2.2:

■ Updated the condition values (symbols II and IOZ) in Table 22.

Version 2.1

The following changes were made to the Mercury Programmable Logic 
Device Family Data Sheet version 2.1:

■ Updated Table 8.
■ Updated EP1M350 regular I/O banks in Table 13.
■ Updated Note (6) in Table 14.

Version 2.0

The following changes were made to the Mercury Programmable Logic 
Device Family Data Sheet version 2.0:

■ Changed all references to PCML to 3.3-V PCML.
■ Updated Table 4.
■ Updated “High-Speed Differential Interface” on page 8.
■ Added Tables 6 through 8.
■ Added Figures 34 and 35.
■ Updated I/O specifications in Tables 28 and 29.
■ Updated Mercury device capacitance in Table 43.
■ Updated EP1M120 device timing in Tables 46 through 49.
■ Added EP1M350 device timing in Tables 50 and 51.
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