
Intel - EP1M120F484I6N Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Mercury Programmable Logic Device Family Data Sheet
Mercury device I/O pins are evenly distributed across the entire device 
area; other Altera device families have I/O pins placed on the device 
periphery. Mercury device I/O pin placement allows for higher I/O count 
at a given die size; pad size is no longer a limiting issue. Each I/O pin is 
fed by an IOE. IOEs are grouped in IOE row bands from the top to the 
bottom of the device. IOE row bands are separated by several LAB rows. 
LABs from the associated LAB row closest to the I/O row band drive IOEs 
through the local interconnect. This feature allows fast clock-to-output 
times when a pin is driven by any of the 10 LEs in the adjacent associated 
LAB. Each IOE contains a bidirectional buffer along with an input register, 
output register, output enable (OE) register, and input latch for DDR. 
When used with a global clock, these dedicated registers provide 
exceptional bidirectional I/O performance.

IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI 
compliance; 3.3-V, 64-bit, 133-MHz PCI-X compliance; Joint Test Action 
Group (JTAG) boundary-scan test (BST) support; output drive strength 
control; slew-rate control; tri-state buffers; bus-hold circuitry; 
programmable pull-up resisters; programmable input and output delays; 
and open-drain outputs. Mercury devices offer enhanced I/O support, 
including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, HSTL, 
LVPECL, 3.3-V PCML, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, 
CTT, and 3.3-V AGP I/O standards. CDR (up to 1.25 Gbps) and source-
synchronous (up to 840 Mbps) transfers are supported with HSDI 
circuitry for LVDS, LVPECL, and 3.3-V PCML I/O standards.

The ESB can implement a variety of memory functions, including CAM, 
quad-port RAM, true dual-port RAM, dual- and single-port RAM, ROM, 
and FIFO functions. ESBs are grouped into two rows: one at the top and 
one at the bottom of the device. Embedding the memory directly into the 
die improves performance and reduces die area compared to distributed-
RAM implementations. Moreover, the abundance of cascadable ESBs, in 
conjunction with the ability for one ESB to implement two separate 
memory blocks, ensures that the Mercury device can implement multiple 
wide memory blocks for high-density designs. The ESB’s high speed 
ensures the implemention of small memory blocks without any speed 
penalty. The abundance of ESBs ensures that designers can create as many 
different-sized memory blocks as the system requires. Figure 1 shows an 
overview of the Mercury device. 
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Mercury devices provide four dedicated clock input pins and six 
dedicated fast I/O pins that globally drive register control inputs, 
including clocks. These signals ensure efficient distribution of high-speed, 
low-skew control signals. The control signals use dedicated routing 
channels to provide short delays and low skew. The dedicated fast signals 
can also be driven by internal logic, providing an ideal solution for a clock 
divider or internally generated asynchronous control signal with high 
fan-out. The dedicated clock and fast I/O pins on Mercury devices can 
also feed logic. Dedicated clocks can also be used with the Mercury 
general purpose PLLs for clock management. 

Each I/O row band also provides two additional I/O pins that can drive 
two row-global signals. Row-global signals can drive register control 
inputs for the LAB row associated with that particular I/O row band.

High-Speed 
Differential 
Interface

The top I/O or HSDI band in Mercury devices contains dedicated 
circuitry for supporting differential standards at speeds up to 1.25 Gbps. 
Mercury devices have dedicated differential buffers and circuitry to 
support LVDS, LVPECL, and 3.3-V PCML I/O standards. Two dedicated 
high-speed PLLs (separate from the general purpose PLLs) multiply 
reference clocks and drive high-speed differential serializer/deserializer 
channels. In addition, clock recovery units (CRUs) at each receiver 
channel enable CDR. EP1M120 devices support eight input channels, 
eight output channels, and two dedicated clock inputs for feeding the 
receiver and/or transmitter PLLs. EP1M350 devices support 18 input 
channels, 18 output channels, and two dedicated clock inputs.

Mercury devices have optional built-in 100-Ω termination resistors on 
HSDI differential receiver data pins and the HSDI_CLK1 and HSDI_CLK2 
pins.

Designers can use the HSDI circuitry for the following applications:

■ Gigabit Ethernet backplanes
■ ATM, SONET
■ RapidIO
■ POS-PHY Level 4
■ Fibre Channel
■ SDTV

The HSDI band supports one of two possible modes:

■ Source-synchronous mode
■ Clock data recovery (CDR) mode
8 Altera Corporation
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Figure 6. LAB-Wide Control Signals

Logic Element

The LE, the smallest unit of logic in the Mercury architecture, is compact 
and provides efficient logic usage. Each LE contains a four-input LUT, 
which is a function generator that can quickly implement any function of 
four variables. In addition, each LE contains a programmable register and 
carry chain with carry select look ahead capability. Each LE drives all 
interconnect types: local interconnect, row and priority row interconnect, 
column and priority column interconnect, leap lines, and RapidLAB 
interconnect. Each LE also has the ability to drive its combinatorial output 
directly to the next LE in the LAB using FastLUT connections. See 
Figure 7.
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Figure 8. Normal-Mode LE Note (1)

Notes to Figure 8:
(1) LEs in normal mode support register packing.
(2) When using the carry-in in normal mode, the packed register feature is unavailable.
(3) There are two LAB-wide clock enables per LAB in addition to LE-specific clock enables.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. A LE in arithmetic mode contains four 2-input LUTs. The 
first two 2-input LUTs compute two summations based on a possible 
carry of 1 or 0; the other two LUTs generate carry outputs for the two 
possible chains of the carry-select look-ahead (CSLA) circuitry. As shown 
in Figure 9, the LAB carry-in signal selects the appropriate carry-in chain 
(either carry-in0 or carry-in1). The logic level of the chain selected 
in turn selects which parallel sum is generated as a combinatorial or 
registered output. For example, when implementing an adder, this output 
is the signal comprised of the sum data1 + data2 + carry, where carry is 
0 or 1. The other two LUTs use the data1 and data2 signals to generate 
two possible carry-out signals—one for a carry of 1 and the other for a 
carry of 0. The carry-in0 signal acts as the carry select for the 
carry-out0 output; carry-in1 acts as the carry select for the 
carry-out1 output. LEs in arithmetic mode can drive out registered and 
unregistered versions of the LUT output. Figure 9 shows a Mercury LE in 
arithmetic mode.
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The arithmetic mode also offers clock enable, counter enable, synchronous 
up/down control, synchronous clear, and synchronous load options. The 
counter enable and synchronous up/down control signals are generated 
from the data inputs of the LAB local interconnect. The synchronous clear 
and synchronous load options are LAB-wide signals that affect all 
registers in the LAB. Consequently, if any of the LEs in a LAB use the 
counter mode, other LEs in that LAB must be used as part of the same 
counter or be used for a combinatorial function. The Quartus II software 
automatically places any registers that are not used by the counter into 
other LABs.

Figure 9. Arithmetic Mode LE

Carry-Select Look-Ahead Chain

The CSLA chain provides a very fast carry-forward function between LEs 
in arithmetic mode or multiplier mode. The CSLA chain uses the 
redundant carry calculation to increase the speed of carry functions. The 
LE can calculate sum and carry values for a possible carry-in of 1 and 
carry-in of 0 in parallel. The carry-in0 and carry-in1 signals from a 
lower-order bit drive forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the CSLA 
chain. CSLA chains can begin in any LE within a LAB. 
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The CSLA chain’s speed advantage results from the parallel pre-
computation of carry chains. Instead of including every LUT in the critical 
path, only the propagation delays between LAB carry-in generation 
circuits (LE 4 and LE 10) make up the critical path. This feature allows the 
Mercury architecture to implement high-speed counters, adders, 
multipliers, parity functions, and comparators of arbitrary width.

Figure 10 shows the CSLA circuitry in a LAB for a 10-bit full adder. One 
portion of the LUT generates the sum of two bits using the input signals 
and the appropriate carry-in bit; the sum is routed to the output of the LE. 
The register can be bypassed for simple adders or used for accumulator 
functions. Another portion of the LUT generates carry-out bits. A lab-
wide carry-in bit selects which chain is used for the addition of given 
inputs. The actual carry-in signal for that selected chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward, which is routed to the 
carry-in signal of the next-higher-order bit. The final carry-out signal is 
routed to an LE, where it is driven to local, row, or column interconnects.
22 Altera Corporation
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For a typical 16 × 16-bit binary tree multiplier, five stages are needed to 
determine the final product. The Mercury LE multiplier mode allows the 
partial product formation stage (Stage 1) and the first sum of stages 
(Stage 2) to be combined in a single stage, shown in Figure 13. This 
feature, combined with the direct connection between RapidLAB lines 
and LEs in multiplier mode, allows the fast dedicated implementation of 
multipliers.
Altera Corporation  27
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The RapidLAB interconnect provides a specialized high-speed structure 
to allow a central LAB to drive other LABs within a 10-LAB-wide region. 
The RapidLAB lines drive alternating local LAB interconnect regions, 
allowing communication to all LABs in the 10-LAB-wide region. Even 
numbered LEs in a LAB directly drive a RapidLAB line that drives one set 
of alternating local interconnect regions, while odd-numbered LEs drive 
a RapidLAB line that drives the opposite set of alternating local 
interconnect regions. Figure 14 shows RapidLAB interconnect 
connections. This 10-LAB wide region of the RapidLAB interconnect is 
repeated for every LAB in the row. The region covered by the RapidLAB 
interconnect is smaller than 10 for source LABs that are four or five LABs 
in from either edge of the LAB row. The RapidLAB row interconnect is 
used for LAB-to-LAB routing; it is only used by I/O bands or ESBs 
indirectly through other interconnects. The RapidLAB interconnect drives 
an LE directly when that LE is in multiplier mode.
30 Altera Corporation
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Table 9 summarizes how various elements of the Mercury architecture 
drive each other.

Notes to Table 9:
(1) This direct connection is possible through the FastLUT connection.
(2) IOEs can connect to the adjacent LAB’s local interconnects in the associated LAB row.
(3) IOEs can connect to row and priority row interconnects in the associated LAB row.
(4) This connection is used for multiplier mode.

Embedded 
System Block

The ESB can implement various types of memory blocks, including quad-
port, true dual-port, dual- and single-port RAM, ROM, FIFO, and CAM 
blocks. 

The ESB includes input and output registers; the input registers 
synchronize reads and/or writes, and the output registers can pipeline 
designs to further increase system performance. The ESB offers a quad 
port mode, which supports up to four port operations, two reads and two 
writes simultaneously, with the ability for a different clock on each of the 
four ports. Figure 17 shows the ESB quad-port block diagram.

Table 9. Mercury Routing Scheme

Source Destination

LE Local 
Interconnect

IOE ESB Row 
Interconnect

ESB Row Priority 
Row

RapidLAB 
Interconnect

Column Priority 
Column

Leap 
Lines

LE v 
(1)

v v v v v v v

Local 
Interconnect

v v

IOE v (2) v
(3)

v (3) v v

ESB Row 
Interconnect

v

ESB v v v v

Row v

Priority Row v

RapidLAB 
Interconnect

v
(4)

v

Column v v v v

Priority 
Column

v v v v v

Leap Lines v v v v v
34 Altera Corporation



Mercury Programmable Logic Device Family Data Sheet
Figure 18. RAM Memory Port Configurations

Note to Figure 18:
(1) Two dual- or single-port memory blocks can be implemented in a single ESB.

The ESB also allows variable width data ports for reading and writing to 
any of the RAM ports in any RAM configuration. For example, the ESB in 
quad port configuration can be written in ×1 mode at port A, read in ×16 
from port A, written in ×4 mode at port B, and read in ×2 mode from 
port B. 
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The ESB implements two forms of clocking modes for quad-port and 
dual-port memory—read/write clock mode and input/output clock 
mode. 

Read/Write Clock Mode

An ESB implementing quad-port memory in read/write clock mode can 
use up to four clocks. For port A, one clock controls all registers associated 
with writing: data input, WE, and write address. The other clock controls 
all registers associated with reading: read enable (RE), read address, and 
data output. Another set of clocks can be used for port B of the RAM, or 
the same clocks can be used. Each ESB port, A or B, also supports 
independent read clock enable, write clock enable, and asynchronous 
clear signals. Read/write clock mode is commonly used for applications 
where reads and writes occur at different system frequencies. Figure 19 
shows the ESB in read/write clock mode.
38 Altera Corporation
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Figure 19. ESB in Read/Write Clock Mode Notes (1), (2)

Notes to Figure 19:
(1) Only half of the ESB, either A or B, is used for dual-port configuration.
(2) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
(3) This configuration is supported for dual-port configuration.
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Single-Port Mode

The Mercury device’s ESB also supports a single-port mode, which is used 
when simultaneous reads and writes are not required. See Figure 21. A 
single ESB can support up to two single-port mode RAMs. 

Figure 21. ESB in Single-Port Mode Note (1)

Notes to Figure 21:
(1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or chip-wide reset.
(2) If there is only one single-port RAM block in an ESB, it can support the following configurations: 4,096 × 1; 2,048 × 2; 

1,028 × 4; 512 × 8; 256 × 16; or 128 × 32.

Content-Addressable Memory 

Mercury devices can implement CAM in ESBs. CAM can be thought of as 
the inverse of RAM. RAM stores data in a specific location; when the 
system submits an address, the RAM block provides the data. Conversely, 
when the system submits data to CAM, the CAM block provides the 
address where the data is found. For example, if the data FA12 is stored 
in address 14, the CAM outputs 14 when FA12 is driven into it.
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If the same data is written into multiple locations in the memory, a CAM 
block can be used in multiple-match or fast multiple-match modes. The 
ESB outputs the matched data’s locations as an encoded or unencoded 
address. In multiple-match mode, it takes two clock cycles to write into a 
CAM block. For reading, there are 16 outputs from each ESB at each clock 
cycle. Therefore, it takes two clock cycles to represent the 32 words from 
a single ESB port. In this mode, encoded and unencoded outputs are 
available. To implement the encoded version, the Quartus II software 
adds a priority encoder with LEs. Fast multiple-match is identical to the 
multiple-match mode, however, it only takes one clock cycle to read from 
a CAM block and generate valid outputs. To do this, the entire ESB is used 
to represent 16 outputs. In fast multiple-match mode, the ESB can 
implement a maximum CAM block size of 16 words.

A CAM block can be pre-loaded with data during configuration, or it can 
be written during system operation. In most cases, two clock cycles are 
required to write each word into CAM. When don’t-care bits are used, a 
third clock cycle is required.

f For more information on CAM, see Application Note 119 (Implementing 
High-Speed Search Applications with APEX CAM).

Driving into ESBs

ESBs provide flexible options for driving control signals. Different clocks 
can be used for the ESB inputs and outputs. Registers can be inserted 
independently on the data input, data output, read address, write 
address, WREN, and RDEN signals on each port of the ESB. The fast global 
signals and ESB local interconnect can drive the WREN and RDEN signals. 
The fast global signals, dedicated clock pins, and ESB local interconnect 
can drive the ESB clock signals. The ESB local interconnect is driven by the 
ESB row interconnects which, in turn, are driven by all types of column 
interconnects, including high-speed leap lines. Because the LEs drive the 
column interconnect to the ESB local interconnect, the LEs can control the 
WREN and RDEN signals and the ESB clock, clock enable, and asynchronous 
clear signals. Figure 25 shows the ESB control signal generation logic.
Altera Corporation  45
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Each row of I/O pins has an associated LAB row for driving to and from 
the core of the Mercury device. For a given I/O band row, its associated 
LAB row is located below it with the exception of the bottom I/O band 
row. The bottom I/O band is located at the bottom periphery of the 
device, hence its associated LAB row is located above it. Figure 29 shows 
an example of an I/O band to associated LAB row interconnect in a 
Mercury device.

There is a maximum of two IOEs associated with each LAB in the 
associated LAB row. The local interconnect of the associated LAB drives 
the IOEs. Since local interconnect is shared with the LAB neighbor, any 
given LAB can directly drive up to four IOEs. The local interconnect 
drives the data and OE signals when the IOE is used as an output or 
bidirectional pin.

Figure 29. IOE Connection to Interconnects and Adjacent LAB Note (1)

Note to Figure 29:
(1) INA: unregistered input; INB: registered/unregistered input; INC: registered/unregistered input or OE register 

output in DDR mode.

The IOEs drive registered or combinatorial versions of input data into the 
device. The unregistered input data can be driven to the local interconnect 
(for fast input setup), row and priority row interconnect, and column and 
priority column interconnects. The registered data can also be driven to 
the same row and column resources. The OE register output can be fed 
back through column and row interconnects to implement DDR I/O pins.
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For the HSDI I/O band, half of the dedicated banks support LVDS, 3.3-V 
PCML or LVPECL, and receiver inputs, while the other half support 
LVDS, PCML or LVPECL, and transmitter outputs. A single device can 
support 1.5-V, 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a 
VCCIO standard independently. Each bank can also use a separate VREF 
level so that each bank can support any of the terminated standards (such 
as SSTL-3) independently. A bank can support a single VREF level. Each 
bank contains a fixed VREF pin for voltage referenced standards. This pin 
can be used as a regular I/O if a VREF standard is not used. Table 13 shows 
the number of I/O banks in each Mercury device.

Each bank can support multiple standards with the same VCCIO for output 
pins. For EP1M120 devices, each bank can support one voltage-referenced 
I/O standard, but can support multiple I/O standards with the same 
VCCIO and VREF voltage levels. For example, when VCCIO is 3.3 V, a bank 
can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and 
outputs. Figure 30 shows the I/O bank layout for an EP1M120 device. For 
EP1M350 devices, each bank can support two voltage-reverenced I/O 
standards; each I/O bank is split into two voltage-referenced sub-banks. 
When using the two HSDI transmitter banks as regular I/O banks in a 
non-HSDI mode, those two banks require the same VCCIO level. However, 
each HSDI transmitter bank supports its own VREF level.

Table 13. Number of I/O Banks per Device

Device Regular I/O Banks HSDI Band I/O Banks

EP1M120 8 4

EP1M350 12 4
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Table 23. LVTTL Specifications Note (10)

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

II Input pin leakage current VIN = 0 V or VCCIO –10 10 µA

VOH High-level output voltage IOH = –4 mA 2.4 V

VOL Low-level output voltage IOL = 4 mA 0.45 V

Table 24. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Power supply voltage range 3.0 3.6 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

II Input pin leakage current VIN = 0 V or VCCIO –10 10 µA

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

0.2 V

Table 25. 2.5-V I/O Specifications Note (10)

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply voltage 2.375 2.625 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

II Input pin leakage current VIN = 0 V or VCCIO 10 10 µA

VOH High-level output voltage IOH = –0.1 mA 2.1 V

IOH = –1 mA 2.0 V

IOH = –2 mA 1.7 V

VOL Low-level output voltage IOL = 0.1 mA 0.2 V

IOH = 1 mA 0.4 V

IOH = 2 mA 0.7 V
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Tables 46 through 51 show external timing parameters for Mercury 
devices.   

Table 46. EP1M120 External Timing Parameters Note (1)

Symbol -5 Speed Grade -6 Speed Grade -7 Speed Grade Unit

Min Max Min Max Min Max

tINSU 0.67 0.70 0.73 ns

tINH 0.00 0.00 0.00 ns

tOUTCO 2.00 3.30 2.00 3.32 2.00 3.49 ns

tINSUPLL 0.59 0.64 0.62 ns

tINHPLL 0.00 0.00 0.00 ns

tOUTCOPLL 0.50 2.08 0.50 2.08 0.50 2.15 ns

Table 47. EP1M120 External Bidirectional Timing Parameters Note (1)

Symbol -5 Speed Grade -6 Speed Grade -7 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 0.67 0.70 0.73 ns

tINHBIDIR 0.00 0.00 0.00 ns

tOUTCOBIDIR 2.00 3.30 2.00 3.32 2.00 3.49 ns

tXZBIDIR 3.52 3.53 3.74 ns

tZXBIDIR (2) 3.52 3.53 3.74 ns

tZXBIDIR (3) 3.72 3.73 3.99 ns

tINSUBIDIRPLL 0.59 0.64 0.62 ns

tINHBIDIRPLL 0.00 0.00 0.00 ns

tOUTCOBIDIRPLL 0.50 2.08 0.50 2.08 0.50 2.15 ns

tXZBIDIRPLL 2.29 2.29 2.39 ns

tZXBIDIRPLL (2) 2.29 2.29 2.39 ns

tZXBIDIRPLL (3) 2.49 2.49 2.64 ns
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Notes to Tables 46 – 51:
(1) Timing will vary by I/O pin placement. Therefore, use the Quartus II software to determine exact I/O timing for 

each pin.
(2) This parameter is measured with the Increase tZX Delay to Output Pin option set to Off.
(3) This parameter is measured with the Increase tZX Delay to Output Pin option set to On.

Power 
Consumption

Detailed power consumption information for Mercury devices will be 
released when available.

Configuration & 
Operation

The Mercury architecture supports several configuration schemes. This 
section summarizes the device operating modes and available device 
configuration schemes.

Operating Modes

The Mercury architecture uses SRAM configuration elements that require 
configuration data to be loaded each time the circuit powers up. The 
process of physically loading the SRAM data into the device is called 
configuration. During initialization, which occurs immediately after 
configuration, the device resets registers, enables I/O pins, and begins to 
operate as a logic device. The I/O pins are tri-stated during power-up and 
before and during configuration. Together, the configuration and 
initialization processes are called command mode; normal device 
operation is called user mode.

Table 51. EP1M350 External Bidirectional Timing Parameters Note (1)

Symbol -5 Speed Grade -6 Speed Grade -7 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 0.60 0.57 0.71 ns

tINHBIDIR 0.00 0.00 0.00 ns

tOUTCOBIDIR 2.00 3.95 2.00 3.97 2.00 4.75 ns

tXZBIDIR 3.90 3.93 4.70 ns

tZXBIDIR (2) 3.90 3.93 4.70 ns

tZXBIDIR (3) 4.10 4.13 4.94 ns

tINSUBIDIRPLL 0.69 0.70 0.82 ns

tINHBIDIRPLL 0.00 0.00 0.00 ns

tOUTCOBIDIRPLL 0.50 2.23 0.50 2.23 0.50 2.69 ns

tXZBIDIRPLL 2.19 2.18 2.63 ns

tZXBIDIRPLL (2) 2.19 2.18 2.63 ns

tZXBIDIRPLL (3) 2.39 2.38 2.87 ns
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