Intel - EP1M350F780C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1440
Number of Logic Elements/Cells	14400
Total RAM Bits	114688
Number of I/O	486
Number of Gates	350000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1m350f780c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. Mercury Architecture Block Diagram Note (1)

Note to Figure 1:

(1) Figure 1 shows an EP1M120 device. Mercury devices have a varying number of rows, columns, and ESBs, as shown in Table 5.

Table 5 lists the resources available in Mercury devices.

Table 5. Mercury Device Resources						
Device	LAB Rows	LAB Columns	I/O Row Bands	ESBs		
EP1M120	12	40	5	12		
EP1M350	18	80	4	28		

Figure 4. Receiver & Transmitter Diagrams for CDR Mode Notes (1), (2)

Figure 7. Mercury LE

Notes to Figure 7:

- (1) FastLUT interconnect uses the data4 input.
- (2) LAB carry-out can only be generated by LE 4 and/or LE 10.

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock, clock enable, and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives directly to the outputs of the LE.

Each LE has four data inputs that can drive the internal LUT. One of these inputs has a shorter delay than the others, improving overall LE performance. This input is chosen automatically by the Quartus II software as appropriate.

Clear & Preset Logic Control

LAB-wide signals control logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The direct asynchronous preset does not require a NOT-gate push-back technique. Mercury devices support simultaneous preset, or asynchronous load, and clear. Asynchronous clear takes precedence if both signals are asserted simultaneously. Each LAB supports one clear and one preset signal. Two clears are possible in a single LAB by using a NOT-gate push-back technique on the preset port. The Quartus II Compiler automatically performs this second clear emulation.

In addition to the clear and preset ports, Mercury devices provide a chipwide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals.

Multi-Level FastTrack Interconnect

The Mercury architecture provides connections between LEs, ESBs, and device I/O pins via an innovative Multi-Level FastTrack Interconnect structure. The Multi-Level FastTrack Interconnect structure is a series of routing channels that traverse the device, providing a hierarchy of interconnect lines. Regular resources provide efficient and capable connections while priority resources and specialized RapidLAB, leap line, and FastLUT resources enhance performance by accelerating timing on critical paths. The Quartus II Compiler automatically places critical design paths on those faster lines to improve design performance.

This network of routing structures provides predictable performance, even for complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The Multi-Level FastTrack Interconnect consists of regular and priority lines that traverse column and row interconnect channels to span sections and the entire device length. Each row of LABs, ESBs, and I/O bands is served by a dedicated row interconnect, which routes signals to and from LABs, ESBs, and I/O row bands in the same row. These row resources include:

- Row interconnect traversing the entire device from left to right
- Priority row interconnect for high speed access across the length of the device
- RapidLAB interconnect for horizontal routing that traverses a 10-LAB-wide region from a central LAB

The RapidLAB interconnect provides a specialized high-speed structure to allow a central LAB to drive other LABs within a 10-LAB-wide region. The RapidLAB lines drive alternating local LAB interconnect regions, allowing communication to all LABs in the 10-LAB-wide region. Even numbered LEs in a LAB directly drive a RapidLAB line that drives one set of alternating local interconnect regions, while odd-numbered LEs drive a RapidLAB line that drives the opposite set of alternating local interconnect regions. Figure 14 shows RapidLAB interconnect connections. This 10-LAB wide region of the RapidLAB interconnect is repeated for every LAB in the row. The region covered by the RapidLAB interconnect is smaller than 10 for source LABs that are four or five LABs in from either edge of the LAB row. The RapidLAB row interconnect is used for LAB-to-LAB routing; it is only used by I/O bands or ESBs indirectly through other interconnects. The RapidLAB interconnect drives an LE directly when that LE is in multiplier mode.

Figure 17. ESB Quad-Port Block Diagram

In addition to quad port memory, the ESB also supports true dual-port, dual-port, and single-port RAM. True dual-port RAM supports any combination of two port operations: two reads, two writes, or one read and one write. Dual-port memory supports a simultaneous read and write. For single-port memory, independent read and write is supported. Figure 18 shows these different RAM memory port configurations for an ESB.

Figure 19. ESB in Read/Write Clock Mode

Notes to Figure 19:

- Only half of the ESB, either A or B, is used for dual-port configuration. (1)
- All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset. (2)
- (3) This configuration is supported for dual-port configuration.

Altera Corporation

Figure 20. ESB in Input/Output Clock Mode Notes (1), (2)

Notes to Figure 20:

- (1) Only half of the ESB, either A or B, is used for dual-port configuration.
- (2) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
- (3) This configuration is supported for dual-port configuration.

Altera Corporation

Figure 26. Mercury IOE

Note to Figure 26:

(1) This programmable delay has four settings: off and three levels of delay.

Double Data Rate I/O

Mercury device's have three register IOEs to support the DDRIO feature, which makes double data rate interfaces possible by clocking data on both positive and negative clock edges. The IOE in Mercury devices supports double data rate input and double data rate output modes.

Table 11. Programmable Drive Strength				
I/O Standard	I _{OH} /I _{OL} Current Strength Setting			
LVTTL (3.3 V)	4 mA			
	8 mA			
	12 mA			
	16 mA			
	24 mA (default)			
LVTTL (2.5 V)	4 mA			
	8 mA			
	12 mA			
	16 mA (default)			
LVTTL (1.8 V)	2 mA			
	4 mA (default)			
SSTL-3 class I and II	Minimum			
SSTL-2 class I and II HSTL class I and II GTL+ (3.3 V)	Maximum (default)			

Open-Drain Output

Mercury devices provide an optional open-drain (equivalent to an opencollector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices.

Slew-Rate Control

The output buffer for each Mercury device I/O pin has a programmable output slew rate control that can be configured for low-noise or highspeed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay to rising and falling edges. Each I/O pin has an individual slew rate control, allowing the designer to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges. Each row of I/O pins has an associated LAB row for driving to and from the core of the Mercury device. For a given I/O band row, its associated LAB row is located below it with the exception of the bottom I/O band row. The bottom I/O band is located at the bottom periphery of the device, hence its associated LAB row is located above it. Figure 29 shows an example of an I/O band to associated LAB row interconnect in a Mercury device.

There is a maximum of two IOEs associated with each LAB in the associated LAB row. The local interconnect of the associated LAB drives the IOEs. Since local interconnect is shared with the LAB neighbor, any given LAB can directly drive up to four IOEs. The local interconnect drives the data and OE signals when the IOE is used as an output or bidirectional pin.

Note to Figure 29:

(1) IN_A : unregistered input; IN_B : registered/unregistered input; IN_C : registered/unregistered input or OE register output in DDR mode.

The IOEs drive registered or combinatorial versions of input data into the device. The unregistered input data can be driven to the local interconnect (for fast input setup), row and priority row interconnect, and column and priority column interconnects. The registered data can also be driven to the same row and column resources. The OE register output can be fed back through column and row interconnects to implement DDR I/O pins.

Dedicated Fast Lines & I/O Pins

Mercury devices incorporate dedicated bidirectional pins for signals with high internal fanout, such as PCI control signals. These pins are called dedicated fast I/O pins (FAST1, FAST2, FAST3, FAST4, FAST5, and FAST6) and can drive the six global fast lines throughout the device, ideal for fast clock, clock enable, clear, preset, or high fanout logic signal distribution. The dedicated fast I/O pins have the same IOE as a regular I/O pin. The dedicated fast lines can also be driven by a LE local interconnect to generate internal global signals.

In addition to the device global fast lines, each LAB row has two dedicated fast lines local to the row. This is ideal for high fanout control signals for a section of a design that may fit into a single LAB row. Each I/O band (with the exception of the top I/O band) has two dedicated row-global fast I/O pins to drive the row-global fast resources for the associated LAB. The dedicated local fast I/O pins have the same IOE as a regular I/O pin. The LE local interconnect can drive dedicated row-global fast lines to generate internal global signals specific to a row. There are no pin connections for buried LAB rows; LE local interconnects drive the row-global signals in those rows.

I/O Standard Support

Mercury device IOEs support the following I/O standards:

- LVTTL
- LVCMOS
- **1.8-**V
- 2.5-V
- 3.3-V PCI
- 3.3-V PCI-X
- 3.3-V AGP (1×, 2×)
- LVDS
- LVPECL
- 3.3-V PCML
- GTL+
- HSTL class I and II
- SSTL-3 class I and II
- SSTL-2 class I and II
- CTT

General Purpose PLL

Mercury devices have ClockLock[™], ClockBoost[™], and advanced ClockShift[™] features, which use up to four general-purpose PLLs (separate from the two HSDI PLLs) to province clock management and clock-frequency synthesis. EP1M120 devices contain two general purpose PLLs; EP1M350 devices contain four general purpose PLLs. These PLLs allow designers to increase performance and provide clock-frequency synthesis. The PLL reduces the clock delay within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The PLLs, which provide programmable multiplication, allow the designer to distribute a low-speed clock and multiply that clock ondevice. Mercury devices include a high-speed clock tree: unlike ASICs, the user does not have to design and optimize the clock tree. The PLLs work in conjunction with the Mercury device's high-speed clock to provide significant improvements in system performance and bandwidth. Table 15 shows the general purpose PLL features for Mercury devices. Figure 31 shows a Mercury PLL.

Table 15. Mercury General Purpose PLL Features					
Device	Number of PLLs	ClockBoost Feature (1)	Number of External Clock Outputs	Number of Feedback Inputs	Advanced ClockShift
EP1M120	2	m/(n × k, p, q, v)	2	2	\checkmark
EP1M350	4	$m/(n \times k, p, q, v)$	4	4	\checkmark

Note to Table 15:

(1) *n* represents the prescale divider for the PLL input. *k*, *p*, *q*, and *v* represent the different post scale dividers for the four possible PLL outputs. *m*, *k*, *p*, and *q* are integers that range from 1 to 160. *n* and *v* are integers that can range from 1 to 16.

Figure 31. Mercury General-Purpose PLL

Lock Signals

	The Mercury device general purpose PLL circuits support individual LOCK signals. The LOCK signal drives high when the PLL has locked onto the input clock. Lock remains high as long as the input remains within specification. It will go low if the input is out of specification. A LOCK pin is optional for each PLL used in the Mercury devices; when not used, they are I/O pins. This signal is not available internally; if it is used in the core, it must be fed back in with an input pin.
SignalTap Embedded Logic Analyzer	Mercury devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the Mercury device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 JTAG circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured.
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support	All Mercury devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. Mercury devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Standard Test and Programming Language (STAPL) Files (.jam) or Jam STAPL Byte-Code Files (.jbc). Mercury devices also use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. Mercury devices support the JTAG instructions shown in Table 16.

Table 21. Mercury Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Minimum	Maximum	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3)	1.71	1.89	V		
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.135)	3.60 (3.465)	V		
	Supply voltage for output buffers, 2.5-V operation	(3)	2.375	2.625	V		
	Supply voltage for output buffers, 1.8-V operation	(3)	1.71	1.89	V		
	Supply voltage for output buffers, 1.5-V operation	(3)	1.4	1.6	V		
VI	Input voltage	(2), (5)	-0.5	4.1	V		
Vo	Output voltage		0	V _{CCIO}	V		
TJ	Operating temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Table 22. Mercury Device DC Operating Conditions Note (6), (7)						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _I	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (5)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (5)	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) for EP1M120 devices	For commercial use (8)		30		mA
		For Industrial use (8)		40		mA
	V _{CC} supply current	For commercial use (8)		50		mA
	(standby) for EP1M350 devices	For Industrial use (8)		60		mA
R _{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (9)	20		50	kΩ
	up resistor before	V _{CCIO} = 2.375 V (9)	30		80	kΩ
	and during configuration	V _{CCIO} = 1.71 V (9)	60		150	kΩ

Table 26. 1.8-V I/O SpecificationsNote (10)							
Symbol	Parameter	Conditions	Minimum	Maximum	Units		
V _{CCIO}	Output supply voltage		1.71	1.89	V		
V _{IH}	High-level input voltage		$0.65 imes V_{CCIO}$	4.1	V		
V _{IL}	Low-level input voltage		-0.5	$0.35 \times V_{CCIO}$	V		
l _l	Input pin leakage current	$V_{IN} = 0 V \text{ or } V_{CCIO}$	-10	10	μΑ		
V _{OH}	High-level output voltage	I _{OH} = -2 mA	$V_{CCIO} - 0.45$		V		
V _{OL}	Low-level output voltage	$I_{OL} = 2 \text{ mA}$		0.45	V		

Figures 34 and 35 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVPECL, 3.3-V PCML, LVDS, and HyperTransport technology).

Differential Waveform

Table 27. 3.3-V LVDS I/O Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V
V _{OD}	Differential output voltage	R_L = 100 Ω	250	510	600	mV
ΔV_{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV
V _{OS}	Output offset voltage	$R_L = 100 \ \Omega$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between high and low	R _L = 100 Ω			50	mV
V _{TH}	Differential input threshold	V _{CM} = 1.2 V	-100		100	mV
V _{IN}	Receiver input voltage range		0.0		2.4	V
RL	Receiver differential input resistor (external to Mercury devices)		90	100	110	Ω

Table 28. 3.3-V PCML Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V
V _{IL}	Low-level input voltage				V _{CCIO} – 0.4	V
V _{IH}	High-level input voltage		V _{CCIO}			V
V _{OL}	Low-level output voltage				V _{CCIO} – 0.4	V
V _{OH}	High-level output voltage		V _{CCIO}			V
V _T	Output termination voltage			V _{CCIO}		V
V _{ID}	Differential input voltage		400		800	mV
V _{OD}	Differential output voltage		400	700	800	mV
t _R	Rise time (20 to 80%)				200	ps
t _F	Fall time (20 to 80%)				200	ps
t _{DSKEW}	Differential skew				25	ps
R ₁ (11)	Output load		90	100	110	Ω
R ₂ (11)	Receiver differential input resistor		45	50	55	Ω

Table 29. LVPECL Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V
V _{IL}	Low-level input voltage		0		2,000	mV
V _{IH}	High-level input voltage		400		2,470	mV
V _{OL}	Low-level output voltage		1,400		1,650	mV
V _{OH}	High-level output voltage		2,275		2,470	mV
V _{ID}	Differential input voltage		400	600	1,200	mV
V _{OD}	Differential output voltage		525	1,050	1,200	mV
t _R	Rise time (20 to 80%)		85		325	ps
t _F	Fall time (20 to 80%)		85		325	ps
t _{DSKEW}	Differential skew				25	ps
R _L	Receiver differential input resistor			100		Ω

Tables 44 and 45 describe the Mercury device's external timing parameters.

Table 44. Mercury External Timing Parameters Notes (1), (2)				
Symbol	Parameter	Conditions		
t _{INSU}	Setup time with global clock at IOE register			
t _{INH}	Hold time with global clock at IOE register			
t _{OUTCO}	Clock-to-output delay with global clock at IOE register	C1 = 35 pF		
t _{INSUPLL}	Setup time with PLL clock at IOE input register			
t _{INHPLL}	Hold time with PLL clock at IOE input register			
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 35 pF		

 Table 45. Mercury External Bidirectional Timing Parameters
 Notes (1), (2)

Symbol	Parameter	Conditions						
t _{INSUBIDIR}	Setup time for bidirectional pins with gobal clock at IOE input register							
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at IOE input register							
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE output register	C1 = 35 pF						
t _{XZBIDIR}	Synchronous IOE output enable register to output buffer disable delay	C1 = 35 pF						
t _{ZXBIDIR}	Synchronous IOE output enable register output buffer enable delay	C1 = 35 pF						
t _{INSUBIDIRPLL}	Setup time for bidirectional pins with PLL clock at IOE input register							
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at IOE input register							
^t OUTCOBIDIRPLL	Clock-to-output delay for bidirectional pins with PLL clock at IOE output register	C1 = 35 pF						
^t XZBIDIRPLL	Synchronous IOE output enable register to output buffer disable delay with PLL	C1 = 35 pF						
t _{ZXBIDIRPLL}	Synchronous IOE output enable register output buffer enable delay with PLL	C1 = 35 pF						

Notes to Tables 44 and 45:

(1) These timing parameters are sample-tested only.

(2) All timing parameters are either to and/or from pins, including global clock pins.

Table 51. EP1M350 External Bidirectional Timing Parameters Note (1)									
Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		Unit		
	Min	Max	Min	Мах	Min	Max			
t _{INSUBIDIR}	0.60		0.57		0.71		ns		
t _{INHBIDIR}	0.00		0.00		0.00		ns		
t _{OUTCOBIDIR}	2.00	3.95	2.00	3.97	2.00	4.75	ns		
t _{XZBIDIR}		3.90		3.93		4.70	ns		
t _{ZXBIDIR} (2)		3.90		3.93		4.70	ns		
t _{ZXBIDIR} (3)		4.10		4.13		4.94	ns		
t _{INSUBIDIRPLL}	0.69		0.70		0.82		ns		
t _{INHBIDIRPLL}	0.00		0.00		0.00		ns		
toutcobidirpll	0.50	2.23	0.50	2.23	0.50	2.69	ns		
t _{XZBIDIRPLL}		2.19		2.18		2.63	ns		
t _{ZXBIDIRPLL} (2)		2.19		2.18		2.63	ns		
t _{ZXBIDIRPLL} (3)		2.39		2.38		2.87	ns		

Notes to Tables 46 – 51:

 Timing will vary by I/O pin placement. Therefore, use the Quartus II software to determine exact I/O timing for each pin.

(2) This parameter is measured with the Increase t_{ZX} Delay to Output Pin option set to Off.

(3) This parameter is measured with the Increase t_{ZX} Delay to Output Pin option set to On.

Power Consumption

Detailed power consumption information for Mercury devices will be released when available.

Configuration & Operation

The Mercury architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The Mercury architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up and before and during configuration. Together, the configuration and initialization processes are called command mode; normal device operation is called user mode.