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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 1440

Number of Logic Elements/Cells 14400

Total RAM Bits 114688

Number of I/O 486

Number of Gates 350000

Voltage - Supply 1.71V ~ 1.89V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 780-BBGA, FCBGA

Supplier Device Package 780-FBGA (29x29)
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Tables 2 and 3 show the MercuryTM FineLine BGATM device package sizes, 
options, and I/O pin counts.

General 
Description

Mercury devices integrate high-speed differential transceivers and 
support for CDR with a speed-optimized PLD architecture. These 
transceivers are implemented through the dedicated serializer, 
deserializer, and clock recovery circuitry in the HSDI and incorporate 
support for the LVDS, LVPECL, and 3.3-V PCML I/O standards. This 
circuitry, together with enhanced I/O elements (IOEs) and support for 
numerous I/O standards, allows Mercury devices to meet high-speed 
interface requirements. 

Mercury devices are the first PLDs optimized for core performance. These 
LUT-based, enhanced memory devices use a network of fast routing 
resources to achieve optimal performance. These resources are ideal for 
data-path, register-intensive, mathematical, digital signal processing 
(DSP), or communications designs. 

Table 2. Mercury Package Sizes

Feature 484-Pin 
FineLine BGA

780-Pin 
FineLine BGA

Pitch (mm) 1.00 1.00

Area (mm2) 529 841

Length × width (mm × mm) 23 × 23 29 × 29

Table 3. Mercury Package Options & I/O Count

Device 484-Pin 
FineLine BGA

780-Pin 
FineLine BGA

EP1M120 303

EP1M350 486
Altera Corporation  3
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Mercury devices include other features for performance such as quad-
port RAM, CAM, general purpose PLLs, and dedicated circuitry for 
implementing multiplier circuits. Table 4 shows Mercury performance.

Note to Table 4:
(1) The clock tree supports up to 400 MHz. Although the registered performance for these designs exceed 400 MHz, 

they are limited by the clock tree limit.

Configuration

The logic, circuitry, and interconnects in the Mercury architecture are 
configured with CMOS SRAM elements. Mercury devices are 
reconfigurable and are 100% tested prior to shipment. As a result, test 
vectors do not have to be generated for fault coverage purposes. Instead, 
the designer can focus on simulation and design verification. In addition, 
the designer does not need to manage inventories of different ASIC 
designs; Mercury devices can be configured on the board for the specific 
functionality required.

Mercury devices are configured at system power-up with data stored in 
an Altera® serial configuration device or provided by a system controller. 
Altera offers in-system programmability (ISP)-capable configuration 
devices, which configure Mercury devices via a serial data stream. 
Mercury devices can be configured in under 70 ms. Moreover, Mercury 
devices contain an optimized interface that permits microprocessors to 
configure Mercury devices serially or in parallel, synchronously or 
asynchronously. This interface also enables microprocessors to treat 
Mercury devices as memory and to configure the device by writing to a 
virtual memory location, simplifying reconfiguration.

Table 4. Mercury Performance

Application Resources Used Performance

LEs ESBs -5 Speed 
Grade

-6 Speed 
Grade

-7 Speed 
Grade

Units

16-bit loadable counter (1) 16 0 400 400 400 MHz

32-bit loadable counter (1) 32 0 400 400 400 MHz

32-bit accumulator (1) 32 0 400 400 400 MHz

32-to-1 multiplexer 27 0 1.864 2.466 2.723 ns

32 × 64 asynchronous FIFO 103 2 290 258 242 MHz

8-bit, 37-tap FIR filter 251 1 290 240 205 MSPS
4 Altera Corporation
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Figure 1. Mercury Architecture Block Diagram Note (1)

Note to Figure 1:
(1) Figure 1 shows an EP1M120 device. Mercury devices have a varying number of rows, columns, and ESBs, as shown 

in Table 5.

Table 5 lists the resources available in Mercury devices.

Associated LAB Row

Buried LAB Row

Buried LAB Row

Associated LAB Row

Buried LAB Row

Buried LAB Row

Associated LAB Row

Buried LAB Row

Buried LAB Row

Associated LAB Row

Associated LAB Row

Buried LAB Row

ESB ESB ESB ESB ESB ESB

ESB ESB ESB ESB ESB ESB

Local Interconnect: 
Connects LEs within
the Same or Adjacent
LABs

Row and Priority Row 
Interconnect: Connects
LABs within a Row

Column and Priority
Column Interconnect: 
Connects LABs within 
Different Rows (Top 
to Bottom)

Leap Lines: Connects
Adjacent LABs in 
Same Column

RapidLAB Interconnect:
Connects Any 10
Consecutive LABs
within a Row from
a Central LAB

I/O Band with HSDI

I/O Band

I/O Band

I/O Band

I/O Band

Table 5. Mercury Device Resources

Device LAB Rows LAB Columns I/O Row Bands ESBs

EP1M120 12 40 5 12

EP1M350 18 80 4 28
Altera Corporation  7
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1 Mercury device HSDI performance is finalized for certain speed 
grades. Also, the industrial-grade CDR specification is the same 
as the -6 speed grade for commercial-grade CDR specification. 
See Table 8.

Notes to Table 8:
(1) The -6 speed grade specifications apply for both commercial and industrial devices.
(2) EP1M350 devices can support any 8 channels at 1.25 Gbps. The other 10 channels must run at 1.0 Gbps or less.

Logic & 
Interconnect

Mercury device logic is implemented in LEs. LE resources are used 
differently according to specific operating modes and the type of logic 
function being implemented. LEs are grouped into LABs in a row-based 
architecture. The multi-level FastTrack Interconnect structure provides 
the routing connection between LEs, ESBs, and IOEs.

Logic Array Block

Each LAB consists of 10 LEs, LE carry chains, multiplier circuitry, LAB 
control signals, local interconnect, and FastLUT connection lines. The 
local interconnect transfers signals between LEs within the same or 
adjacent LABs. FastLUT connections transfer the output of one LE to the 
adjacent LE for ultra-fast sequential LE connections within the same LAB. 
The Quartus II Compiler places associated logic within a LAB or adjacent 
LABs, allowing the use of fast local and FastLUT connections for high 
performance. Figure 5 shows the Mercury LAB structure.

Table 8. CDR & Source-Synchronous Data Rates

Device Speed Grade Number of Channels Maximum CDR Data 
Rate (Gbps)

Maximum Source-
Synchronous Data 

Rate (Mbps)

EP1M120 -5 8 1.25 840

-6 (1) 8 1.25 840

-7 8 1.0 840

EP1M350 -5 18 1.25 840

-6 (1) 8 (2) 1.25 840

10 (2) 1.0 840

-7 18 1.0 840
14 Altera Corporation
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Figure 7. Mercury LE

Notes to Figure 7:
(1) FastLUT interconnect uses the data4 input.
(2) LAB carry-out can only be generated by LE 4 and/or LE 10.

Each LE’s programmable register can be configured for D, T, JK, or SR 
operation. The register’s clock, clock enable, and clear control signals can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the register is bypassed and the output 
of the LUT drives directly to the outputs of the LE.

Each LE has four data inputs that can drive the internal LUT. One of these 
inputs has a shorter delay than the others, improving overall LE 
performance. This input is chosen automatically by the Quartus II 
software as appropriate.

labclk1
labclk2

labclr
labpre

Carry-In1

Carry-In0

LAB Carry-In

Clock & 
Clock Enable

Select

LAB Carry-Out (2)

Carry-Out1

Carry-Out0

Look-Up
Table
(LUT)

Carry
Chain

to Local, Row, and
Column Routing

to Local, Row, and
Column Routing

Programmable
Register

PRN

CLRN

D Q

ENA

Register Bypass

Packed 
Register Select

Chip-Wide
Reset

labclkena1
labclkena2

Synchronous
Load and 

Clear Logic

LAB-wide
Synchronous 

Load
LAB-wide

Synchronous 
Clear

Asynchronous 
Clear/Preset/
Load Logic

data1
data2
data3

data4 (1)

FastLUT
Routing to next LE

LE Clock 
Enable
18 Altera Corporation



Mercury Programmable Logic Device Family Data Sheet

D
evelopm

ent

13

Tools
Each LE has two outputs that drive the local, row, and column routing 
resources. Each output can be driven independently by the LUT’s or 
register’s output. For example, the LUT can drive one output, while the 
register drives the other output. This feature, called register packing, 
improves device utilization because the register and the LUT can be used 
for unrelated functions. The LE can also drive out registered and 
unregistered versions of the LUT output.

LE Operating Modes

The Mercury LE can operate in one of the following modes:

■ Normal
■ Arithmetic
■ Multiplier

Each operating mode uses LE resources differently. In each operating 
mode, eight available inputs to the LE—the four data inputs from the LAB 
local interconnect; carry-in0, carry-in1 from the previous LE; the 
LAB carry-in from the previous carry-chain generation; and the FastLUT 
Connection input from the previous LE—are directed to different 
destinations to implement the desired logic function. LAB-wide signals 
provide clock, asynchronous clear, asynchronous preset, asynchronous 
load, synchronous clear, synchronous load, and clock enable control for 
the register. These LAB-wide signals are available in all normal and 
arithmetic LE modes.

The Quartus II software, in conjunction with parameterized functions 
such as LPM and DesignWare functions, automatically chooses the 
appropriate mode for common functions, such as counters, adders, and 
multipliers. If required, the designer can also create special-purpose 
functions that specify which LE operating mode to use for optimal 
performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect and a single carry-in are inputs to a four-input LUT. The 
Quartus II Compiler automatically selects the carry-in or the data3 signal 
as one of the inputs to the LUT. The LUT (combinatorial) output can be 
driven to the FastLUT connection to the next LE in the LAB. LEs in normal 
mode support packed registers. Figure 8 shows an LE in normal mode.
Altera Corporation  19
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The Quartus II Compiler creates carry chains longer than ten LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain skips intermediate LABs in a row structure. A carry chain longer 
than one LAB skips either from an even-numbered LAB to the next even-
numbered LAB, or from an odd-numbered LAB to the next odd-
numbered LAB. For example, the last LE of the first LAB in a LAB row 
carries to the first LE of the third LAB in the same LAB row.

Multiplier Mode

Multiplier mode is used for implementing high-speed multipliers up to 
16 × 16 in size. The LUT implements the partial product formation and 
summation in a single stage for a N × M-bit multiply operation. A single 
LE can implement the summation of ANBM + 1 + AN + 1BM for the 
multiplier and multiplicand inputs. To increase the speed of the 
multiplication, LAB wide signals are used to control the partial product 
sum generation. These multiplier LAB-wide signals use the LABCLKENA1 
and PRESET/ASYNCLOAD resources. The multiplier mode takes 
advantage of the CSLA circuitry for optimized sum and carry generation 
in the partial product sum. There is a special CSLA circuitry mode used 
for the multiplier where the carry chain runs vertically between LABs in 
the same column. The Quartus II Compiler automatically uses this special 
mode for dedicated multiplier implementation only. The summation of 
the multiplier and multiplicand bits is driven out along with the carry-
out0 and carry-out1 bits. The combinatorial or registered versions of 
the sum can be driven out, allowing the multiplier to be pipelined.

The RapidLAB interconnect has dedicated fast connections to the LE 
inputs in multiplier mode, further increasing the speed of the multiplier. 
These dedicated connections allow RapidLAB lines to avoid delay 
incurred by driving onto local interconnects and then into the LE.

The Quartus II software implements parameterized functions that use the 
multiplier mode automatically when multiply operators are used.

Figure 11 shows a Mercury device LE in multiplier mode.
24 Altera Corporation
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Figure 12. Partial Product Formation
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The Mercury IOE includes programmable delays that can be activated to 
ensure zero hold times, minimum clock-to-output times, input IOE 
register-to-core register transfers, or core-to-output IOE register transfers. 
A path in which a pin directly drives a register may require the delay to 
ensure zero hold time, whereas a path in which a pin drives a register 
through combinatorial logic may not require the delay. Programmable 
delays exist for decreasing input pin to core and IOE input register delays. 
The Quartus II Compiler can program these delays automatically to 
minimize setup time while providing a zero hold time. Delays are also 
programmable for increasing the register to pin delays for output and/or 
output enable registers. A programmable delay exists for increasing the 
tZX delay to the output pin, which is required for ZBT interfaces. Table 10 
shows the programmable delays for Mercury devices.

Note to Table 10:
(1) This delay has four settings: off and three levels of delay.

The IOE registers in Mercury devices share the same source for clear or 
preset. Use of the preset/clear is programmable for each individual IOE. 
The register(s) can be programmed to power up high or low after 
configuration is complete. If programmed to power up low, an 
asynchronous clear can control the register(s). If programmed to power 
up high, an asynchronous preset can control the register(s). This feature 
prevents the inadvertent activation of another device’s active-low input 
upon power-up. Figure 26 shows the IOE for Mercury devices.

Table 10. Mercury Programmable Delay Chain

Programmable Delays Quartus II Logic Option

Input pin to core delay (1) Decrease input delay to internal cells

Input pin to input register delay Decrease input delay to input register

Output propagation delay Increase delay to output pin

Output enable register tCO delay Increase delay to OE pin 

Output tZX delay Increase tZX delay to output pin
48 Altera Corporation
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In Mercury device IOEs, the OE register is a multi-purpose register 
available as a second input or output register. When using the IOE for 
double data rate inputs, the input register and OE register are 
automatically configured as input registers to clock input double rate data 
on alternating edges. An input latch is also used within the IOE for DDR 
input acquisition. The latch holds the data that is present during the clock 
high times, driving it to the OE register. This allows the OE register and 
input register to clock both bits of data into LEs, synchronous to the same 
clock edge (either rising or falling). Figure 27 shows an IOE configured for 
DDR input.

Figure 27. IOE Configured for DDR Input
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OE Register

CLRN/PRN

D Q
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PRN
D Q

ENA

Input Register

Input Pin to Input 
Register Delay

VCCIO

VCCIO
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PCI Clamp

Programmable
Pull-Up

Priority Row (for Associated LAB Row)

Row (for Associated LAB Row)
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Priority
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Associated LAB
Local Interconnect

Two Row
Local Fast
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Six Fast
Global
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Dedicated
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Circuit
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When using the IOE for double data rate outputs, the output register and 
OE register are automatically configured to clock two data paths from LEs 
on rising clock edges. These register outputs are multiplexed by the clock 
to drive the output pin at a ×2 rate. The output register clocks the first bit 
out on the clock high time, while the OE register clocks the second bit out 
on the clock low time. Figure 28 shows the IOE configured for DDR 
output.

Figure 28. IOE Configured for DDR Output

Bidirectional DDR on an I/O pin is possible by using the IOE for DDR 
output and using LEs to acquire the double data rate input. Bidirectional 
DDR I/O pins support double data rate synchronous DRAM (DDR 
SDRAM) at 166 MHz (334 Mbps), which transfer data on a double data 
rate bidirectional bus. QDR SRAMs are also supported with DDR I/O 
pins on separate read and write ports.
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Bus Hold

Each Mercury device I/O pin provides an optional bus-hold feature. 
When this feature is enabled for an I/O pin, the bus-hold circuitry weakly 
holds the signal at its last driven state. By holding the last driven state of 
the pin until the next input signal is present, the bus-hold feature 
eliminates the need to add external pull-up or pull-down resistors to hold 
a signal level when the bus is tri-stated. The bus-hold circuitry also pulls 
undriven pins away from the input threshold voltage where noise can 
cause unintended high-frequency switching. This feature can be selected 
individually for each I/O pin. The bus-hold output will drive no higher 
than VCCIO to prevent overdriving signals. If the bus-hold feature is 
enabled, the programmable pull-up option cannot be used. The bus-hold 
feature should also be disabled if open-drain outputs are used with the 
GTL+ I/O standard.

The bus-hold circuitry weakly pulls the signal level to the last driven state 
through a resistor with a nominal resistance (RBH) of approximately 8 kΩ. 
Table 42 gives specific sustaining current that will be driven through this 
resistor and overdrive current that will identify the next driven input 
level. This information is provided for each VCCIO voltage level.

The bus-hold circuitry is active only after configuration. When going into 
user mode, the bus-hold circuit captures the value on the pin present at 
the end of configuration. 

Programmable Pull-Up Resistor

Each Mercury device I/O pin provides an optional programmable pull-
up resistor during user mode. When this feature is enabled for an I/O pin, 
the pull-up resistor (50 kΩ) weakly holds the output to the VCCIO level of 
the bank that the output pin resides in.

I/O Row Bands

The I/O row bands are one of the advanced features of the Mercury 
architecture. All IOEs are grouped in I/O row bands across the device. 
The number of I/O row bands depends on the Mercury device size. The 
I/O row bands are designed for flip-chip technology, allowing I/O pins 
to be distributed across the entire chip, not only in the periphery. This 
array driver technology allows higher I/O pin density (I/O pins per 
device area) than peripheral I/O pins.
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Each row of I/O pins has an associated LAB row for driving to and from 
the core of the Mercury device. For a given I/O band row, its associated 
LAB row is located below it with the exception of the bottom I/O band 
row. The bottom I/O band is located at the bottom periphery of the 
device, hence its associated LAB row is located above it. Figure 29 shows 
an example of an I/O band to associated LAB row interconnect in a 
Mercury device.

There is a maximum of two IOEs associated with each LAB in the 
associated LAB row. The local interconnect of the associated LAB drives 
the IOEs. Since local interconnect is shared with the LAB neighbor, any 
given LAB can directly drive up to four IOEs. The local interconnect 
drives the data and OE signals when the IOE is used as an output or 
bidirectional pin.

Figure 29. IOE Connection to Interconnects and Adjacent LAB Note (1)

Note to Figure 29:
(1) INA: unregistered input; INB: registered/unregistered input; INC: registered/unregistered input or OE register 

output in DDR mode.

The IOEs drive registered or combinatorial versions of input data into the 
device. The unregistered input data can be driven to the local interconnect 
(for fast input setup), row and priority row interconnect, and column and 
priority column interconnects. The registered data can also be driven to 
the same row and column resources. The OE register output can be fed 
back through column and row interconnects to implement DDR I/O pins.
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Dedicated Fast Lines & I/O Pins

Mercury devices incorporate dedicated bidirectional pins for signals with 
high internal fanout, such as PCI control signals. These pins are called 
dedicated fast I/O pins (FAST1, FAST2, FAST3, FAST4, FAST5, and 
FAST6) and can drive the six global fast lines throughout the device, ideal 
for fast clock, clock enable, clear, preset, or high fanout logic signal 
distribution. The dedicated fast I/O pins have the same IOE as a regular 
I/O pin. The dedicated fast lines can also be driven by a LE local 
interconnect to generate internal global signals.

In addition to the device global fast lines, each LAB row has two dedicated 
fast lines local to the row. This is ideal for high fanout control signals for 
a section of a design that may fit into a single LAB row. Each I/O band 
(with the exception of the top I/O band) has two dedicated row-global 
fast I/O pins to drive the row-global fast resources for the associated LAB. 
The dedicated local fast I/O pins have the same IOE as a regular I/O pin. 
The LE local interconnect can drive dedicated row-global fast lines to 
generate internal global signals specific to a row. There are no pin 
connections for buried LAB rows; LE local interconnects drive the row-
global signals in those rows.

I/O Standard Support

Mercury device IOEs support the following I/O standards:

■ LVTTL
■ LVCMOS
■ 1.8-V
■ 2.5-V
■ 3.3-V PCI
■ 3.3-V PCI-X
■ 3.3-V AGP (1×, 2×)
■ LVDS
■ LVPECL
■ 3.3-V PCML
■ GTL+
■ HSTL class I and II
■ SSTL-3 class I and II
■ SSTL-2 class I and II
■ CTT
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Figure 30. I/O Bank Layout

Notes to Figure 30:
(1) If HSDI I/O channels are not used, the HSDI banks can be used as regular I/O banks.
(2) When used as regular I/O banks, these banks must be set to the same VCCIO level, but can have separate VREF bank 

settings.

f For more information on I/O standards, see Application Note 117 (Using 
Selectable I/O Standards in Altera Devices).

MultiVolt I/O Interface

The Mercury architecture supports the MultiVolt I/O interface feature, 
which allows Mercury devices in all packages to interface with devices 
with different supply voltages. The devices have one set of VCC pins for 
internal operation and input buffers (VCCINT), and another set for I/O 
output drivers (VCCIO).

Input, Output, or HSDI Transmitter (1), (2)
Input, Output, or HSDI Receiver (1)

Input, Output, or HSDI Transmitter (1), (2)
Input, Output, or HSDI Receiver (1)

I/O Bank

ESB ESB ESB ESB ESB ESB

ESB ESB ESB ESB ESB ESB

I/O or HSDI
Banks

Regular I/O
Banks

I/O Bank

I/O Bank

I/O Bank

I/O Bank

I/O Bank

I/O Bank

I/O Bank
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The Mercury VCCINT pins must always be connected to a 1.8-V power 
supply. With a 1.8-V VCCINT level, input pins are 1.8-V, 2.5-V and 3.3-V 
tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 2.5-V or 
3.3-V power supply, depending on the output requirements. When VCCIO 
pins are connected to a 1.5-V power supply, the output levels are 
compatible with HSTL systems. When VCCIO pins are connected to a 
1.8-V power supply, the output levels are compatible with 1.8-V systems. 
When VCCIO pins are connected to a 2.5-V power supply, the output 
levels are compatible with 2.5-V systems. When the VCCIO pins are 
connected to a 3.3-V power supply, the output high is 3.3 V and is 
compatible with 3.3-V or 5.0-V systems.

Table 14 summarizes Mercury MultiVolt I/O support.

Notes to Table 14:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than VCCIO unless an external 

resistor is used.
(2) These input levels are only available if the input standard is set to any VREF-based input standard (SSTL-2, SSTL-3, 

HSTL, GTL+, AGP 2×). The input buffers are powered from VCCINT when using VREF-based input standards. 
LVTTL, PCI, PCI-X, AGP 1× input buffers are powered by VCCIO. Therefore, these standards cannot be driven with 
input levels below the VCCIO setting except for when VCCIO = 3.3 V and the input voltage (VI) = 2.5 V.

(3) When VCCIO = 1.8 V, the Mercury device can drive a 1.5-V device with 1.8-V tolerant inputs.
(4) When VCCIO = 2.5 V, the Mercury device can drive a 1.8-V device with 2.5-V tolerant inputs.
(5) When VCCIO = 3.3 V, the Mercury device can drive a 2.5-V device with 3.3-V tolerant inputs.
(6) Designers can set Mercury devices to be 5.0-V tolerant by adding an external resistor and enabling the PCI clamping 

diode.

Power Sequencing & Hot-Socketing

Because Mercury devices can be used in a mixed-voltage environment, 
the devices are designed specifically to tolerate any possible power-up 
sequence. Therefore, the VCCIO and VCCINT power supplies may be 
powered in any order. 

Signals can be driven into Mercury devices before and during power-up 
without damaging the device. In addition, Mercury devices do not drive 
out during power-up. Once operating conditions are reached and the 
device is configured, Mercury devices operate as specified by the user.

Table 14. Mercury MultiVolt I/O Support Note (1)

VCCIO 
(V)

Input Signal Output Signal

1.5 V 1.8 V 2.5 V 3.3 V 5.0 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V

1.5 v v v v v

1.8 v (2) v v v v (3)

2.5 v (2) v (2) v v v (4) v

3.3 v (2) v (2) v (2) v v (6) v (5) v v
60 Altera Corporation



Mercury Programmable Logic Device Family Data Sheet
Figure 32 shows the timing requirements for the JTAG signals.

Figure 32. Mercury JTAG Waveforms

Table 19 shows the JTAG timing parameters and values for Mercury 
devices.

Table 19. Mercury JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time 50 ns

tJCL TCK clock low time 50 ns

tJPSU JTAG port setup time 20 ns

tJPH JTAG port hold time 45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns

TDO

TCK

tJPZX tJPCO

tJPH

t JPXZ

 tJCP

 tJPSU t JCL tJCH

TDI

TMS

Signal
to Be

Captured

Signal
to Be

Driven

tJSZX

tJSSU tJSH

tJSCO tJSXZ
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Figure 33. Mercury AC Test Conditions

Operating 
Conditions

Table 20 through 43 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 1.8-V Mercury devices.

System

C1 (includes
jig capacitance)Device input

rise and fall
times < 3 ns

Device
Output

To Test

Power supply transients can affect AC 
measurements. Simultaneous transitions 
of multiple outputs should be avoided for 
accurate measurement. Threshold tests 
must not be performed under AC 
conditions. Large-amplitude, fast-ground-
current transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients flow 
through the parasitic inductance between 
the device ground pin and the test system 
ground, significant reductions in 
observable noise immunity can result.

Table 20. Mercury Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Minimum Maximum Unit

VCCINT Supply voltage With respect to ground (2) –0.5 2.5 V

VCCIO –0.5 4.6 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –34 34 mA

TSTG Storage temperature No bias –65 150 ° C
TAMB Ambient temperature Under bias –65 135 ° C
TJ Junction temperature BGA packages under bias 135 ° C
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Table 21. Mercury Device Recommended Operating Conditions

Symbol Parameter Conditions Minimum  Maximum Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3) 1.71 1.89 V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.135) 3.60 (3.465) V

Supply voltage for output buffers, 
2.5-V operation

(3) 2.375 2.625 V

Supply voltage for output buffers, 
1.8-V operation

(3) 1.71 1.89 V

Supply voltage for output buffers, 
1.5-V operation

(3) 1.4 1.6 V

VI Input voltage (2), (5) –0.5 4.1 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial 
use

0 85 ° C

For industrial use –40 100 ° C
tR Input rise time 40 ns

tF Input fall time 40 ns

Table 22. Mercury Device DC Operating Conditions Note (6), (7)

Symbol Parameter Conditions Minimum Typical Maximum Unit

II Input pin leakage 
current

VI = VCCIOmax to 0 V (5) –10 10 µA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (5) –10 10 µA

ICC0 VCC supply current 
(standby) for 
EP1M120 devices

For commercial use (8) 30 mA

For Industrial use (8) 40 mA

VCC supply current 
(standby) for 
EP1M350 devices

For commercial use (8) 50 mA

For Industrial use (8) 60 mA

RCONF Value of I/O pin pull-
up resistor before 
and during 
configuration

VCCIO = 3.0 V (9) 20 50 kΩ
VCCIO = 2.375 V (9) 30 80 kΩ
VCCIO = 1.71 V (9) 60 150 kΩ
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Table 42. Bus Hold Parameters

Parameter Conditions VCCIO Level Units

1.8 V 2.5 V 3.3 V

Minimum Maximum Minimum Maximum Minimum Maximum

Low sustaining 
current

VIN > VIL 
(maximum)

30 50 70 µA

High sustaining 
current

VIN < VIH 
(minimum)

–30 –50 –70 µA

Low overdrive 
current

0 V < VIN < 
VCCIO

200 300 500 µA

High overdrive 
current

0 V < VIN < 
VCCIO

–200 –300 –500 µA

Table 43. Mercury Device Capacitance Note (13)

Symbol Parameter Minimum Typical Maximum Unit

CIO I/O pin capacitance 13.5 pF

CCLK Input capacitance on CLK[4..1] pins 16.9 pF

CRXHSDI Input capacitance on HSDI receiver pins 8.0 pF

CTXHSDI Input capacitance on HSDI transmitter pins 18.0 pF

CCLKHSDI Input capacitance on HSDI clock pins 7.5 pF

CFLEXLVDSRX Input capacitance on flexible LVDS receiver 
pins

13.4 pF

CFLEXLVDSTX Input capacitance on flexible LVDS 
transmitter pins

13.4 pF
78 Altera Corporation


