

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	12V1
Core Size	16-Bit
Speed	25MHz
Connectivity	IrDA, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 5.5V
Data Converters	A/D 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12vr16f0mlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.4	Function	nal Description	
	8.4.1	Analog Sub-Block	
	8.4.2	Digital Sub-Block	
8.5	Resets	~	
8.6	Interrup	ts	

Chapter 9

Pulse-Width Modulator (S12PWM8B8CV2)

9.1	Introducti	ion	. 295
	9.1.1 I	Features	. 295
	9.1.2 N	Modes of Operation	. 295
	9.1.3 I	Block Diagram	. 296
9.2	External S	Signal Description	. 296
	9.2.1 I	PWM7 - PWM0 — PWM Channel 7 - 0	. 297
9.3	Memory 1	Map and Register Definition	. 297
	9.3.1 N	Module Memory Map	. 297
	9.3.2 I	Register Descriptions	. 297
9.4	Functiona	al Description	. 311
	9.4.1 I	PWM Clock Select	. 311
	9.4.2 I	PWM Channel Timers	. 315
9.5	Resets		. 323
9.6	Interrupts	3	. 324

Chapter 10

Serial Communication Interface (S12SCIV6)

10.1	Introduction	
	10.1.1 Glossary	
	10.1.2 Features	
	10.1.3 Modes of Operation	326
	10.1.4 Block Diagram	
10.2	External Signal Description	
	10.2.1 TXD — Transmit Pin	
	10.2.2 RXD — Receive Pin	328
10.3	Memory Map and Register Definition	
	10.3.1 Module Memory Map and Register Definition	328
	10.3.2 Register Descriptions	
10.4	Functional Description	
	10.4.1 Infrared Interface Submodule	
	10.4.2 LIN Support	
	10.4.3 Data Format	343
	10.4.4 Baud Rate Generation	
	10.4.5 Transmitter	
	10.4.6 Receiver	
	10.4.7 Single-Wire Operation	

Port Integration Module (S12VRPIMV3)

- 6-pin port AD with pin interrupts and wakeup function; associated with 6 ADC channels
- 4-pin port L with pin interrupts and wakeup function; associated with 4 high-voltage inputs for digital or analog use with optional voltage divider bypass and open input detection

For S12VR32/16:

- 2-pin port E associated with the external oscillator
- 4-pin port T associated with 4 TIM channels and 2 PWM channels
- 2-pin port S associated with 1 SCI
- 2-pin port P with pin interrupts and wakeup function; associated with
 - $\overline{\text{XIRQ}}$ interrupt input
 - 2 PWM channels with one of those capable of driving up to 10 mA
 - One output with over-current protection and interrupt capable of supplying up to 20 mA to external devices such as Hall sensors
- 2-pin port AD with pin interrupts and wakeup function; associated with 2 ADC channels
- 4-pin port L with pin interrupts and wakeup function; associated with 4 high-voltage inputs for digital or analog use with optional voltage divider bypass and open input detection

Most I/O pins can be configured by register bits to select data direction and to enable and select pullup or pulldown devices.

2.1.2 Features

The PIM includes these distinctive registers:

- Data registers and data direction registers for Ports E, T, S, P and AD when used as general-purpose I/O
- Control registers to enable/disable pull devices and select pullups/pulldowns on Ports T, S, P, AD on per-pin basis
- Single control register to enable/disable pullups on Port E on per-port basis and on BKGD pin
- Control registers to enable/disable open-drain (wired-or) mode on Port S
- Control register to enable/disable reduced output drive on Port P high-current pins
- Interrupt flag register for pin interrupts on Port P, L and AD
- Control register to configure IRQ pin operation
- Control register to enable ECLK clock output
- Routing registers to support module port relocation and control internal module routings:
 - PWM and ETRIG to alternative pins
 - SPI \overline{SS} and SCK to alternative pins (S12VR64/48 only)
 - SCI1 to alternative pins (S12VR64/48 only)
 - HSDRV and LSDRV control selection from PWM, TIM or related register bit
 - Various SCI0-LINPHY routing options supporting standalone use and conformance testing
 - Optional LINPHY to TIM link

NOTE

When enabling the resistor paths to ground by setting PTAL[PTAENL]=1 or by changing PTAL[PTAL1:PTAL0], a settling time of t_{UNC_HVI} + two bus cycles must be considered to let internal nodes be loaded with correct values.

PTAL[PTAL1]	PTAL[PTAL0]	HVI pin connected to ADC ¹
0	0	HVI0
0	1	HVI1
1	0	HVI2
1	1	HVI3

Table 2-36. HVI pin connected to ADC channel

¹ Refer to device overview section for channel assignment

3.4.4 **Prioritization of Memory Accesses**

On S12VR devices, the CPU and the BDM are not able to access the memory in parallel. An arbitration occurs whenever both modules attempt a memory access at the same time. CPU accesses are handled with higher priority than BDM accesses unless the BDM module has been stalled for more then 128 bus cycles. In this case the pending BDM access will be processed immediately.

3.4.5 Interrupts

The S12GMMC does not generate any interrupts.

Field	Description
7 WCOP	 Window COP Mode Bit — When set, a write to the CPMUARMCOP register must occur in the last 25% of the selected period. A write during the first 75% of the selected period generates a COP reset. As long as all writes occur during this window, \$55 can be written as often as desired. Once \$AA is written after the \$55, the time-out logic restarts and the user must wait until the next window before writing to CPMUARMCOP. Table 4-14 shows the duration of this window for the seven available COP rates. 0 Normal COP operation 1 Window COP operation
6 RSBCK	 COP and RTI Stop in Active BDM Mode Bit 0 Allows the COP and RTI to keep running in Active BDM mode. 1 Stops the COP and RTI counters whenever the part is in Active BDM mode.
5 WRTMASK	 Write Mask for WCOP and CR[2:0] Bit — This write-only bit serves as a mask for the WCOP and CR[2:0] bits while writing the CPMUCOP register. It is intended for BDM writing the RSBCK without changing the content of WCOP and CR[2:0]. 0 Write of WCOP and CR[2:0] has an effect with this write of CPMUCOP 1 Write of WCOP and CR[2:0] has no effect with this write of CPMUCOP. (Does not count for "write once".)
2–0 CR[2:0]	COP Watchdog Timer Rate Select — These bits select the COP time-out rate (see Table 4-14 and Table 4-15). Writing a nonzero value to CR[2:0] enables the COP counter and starts the time-out period. A COP counter time-out causes a System Reset. This can be avoided by periodically (before time-out) initializing the COP counter via the CPMUARMCOP register. While all of the following four conditions are true the CR[2:0], WCOP bits are ignored and the COP operates at highest time-out period (2 ²⁴ cycles) in normal COP mode (Window COP mode disabled): 1) COP is enabled (CR[2:0] is not 000) 2) BDM mode active 3) RSBCK = 0 4) Operation in Special Mode

Table 4-14. COP Watchdog Rates if COPOSCSEL1=0.(default out of reset)

CR2	CR1	CR0	COPCLK Cycles to time-out (COPCLK is either IRCCLK or OSCCLK depending on the COPOSCSEL0 bit)
0	0	0	COP disabled
0	0	1	2 ¹⁴
0	1	0	2 ¹⁶
0	1	1	2 ¹⁸
1	0	0	2 ²⁰
1	0	1	2 ²²
1	1	0	2 ²³
1	1	1	2 ²⁴

MC9S12VR Family Reference Manual, Rev. 4.2

Field	Description
7 ARM	 Arm Bit — The ARM bit controls whether the DBG module is armed. This bit can be set and cleared by user software and is automatically cleared on completion of a debug session, or if a breakpoint is generated with tracing not enabled. On setting this bit the state sequencer enters State1. 0 Debugger disarmed 1 Debugger armed
6 TRIG	Immediate Trigger Request Bit — This bit when written to 1 requests an immediate trigger independent of state sequencer status. When tracing is complete a forced breakpoint may be generated depending upon DBGBRK and BDM bit settings. This bit always reads back a 0. Writing a 0 to this bit has no effect. If the DBGTCR_TSOURCE bit is clear no tracing is carried out. If tracing has already commenced using BEGIN trigger alignment, it continues until the end of the tracing session as defined by the TALIGN bit, thus TRIG has no affect. In secure mode tracing is disabled and writing to this bit cannot initiate a tracing session. The session is ended by setting TRIG and ARM simultaneously. 0 Do not trigger until the state sequencer enters the Final State. 1 Trigger immediately
4 BDM	 Background Debug Mode Enable — This bit determines if a breakpoint causes the system to enter Background Debug Mode (BDM) or initiate a Software Interrupt (SWI). If this bit is set but the BDM is not enabled by the ENBDM bit in the BDM module, then breakpoints default to SWI. 0 Breakpoint to Software Interrupt if BDM inactive. Otherwise no breakpoint. 1 Breakpoint to BDM, if BDM enabled. Otherwise breakpoint to SWI
3 DBGBRK	 S12DBGV2 Breakpoint Enable Bit — The DBGBRK bit controls whether the debugger will request a breakpoint on reaching the state sequencer Final State. If tracing is enabled, the breakpoint is generated on completion of the tracing session. If tracing is not enabled, the breakpoint is generated immediately. No Breakpoint generated Breakpoint generated
1–0 COMRV	Comparator Register Visibility Bits — These bits determine which bank of comparator register is visible in the 8-byte window of the S12SDBG module address map, located between 0x0028 to 0x002F. Furthermore these bits determine which register is visible at the address 0x0027. See Table 6-4.

Table 6-3. DBGC1 Field Descriptions

Table 6-4. COMRV Encoding

COMRV	Visible Comparator	Visible Register at 0x0027
00	Comparator A	DBGSCR1
01	Comparator B	DBGSCR2
10	Comparator C DBGSCR3	
11	None	DBGMFR

6.3.2.2 Debug Status Register (DBGSR)

6.3.2.7.1 Debug State Control Register 1 (DBGSCR1)

Address: 0x0027

Figure 6-9. Debug State Control Register 1 (DBGSCR1)

Read: If COMRV[1:0] = 00

Write: If COMRV[1:0] = 00 and DBG is not armed.

This register is visible at 0x0027 only with COMRV[1:0] = 00. The state control register 1 selects the targeted next state whilst in State1. The matches refer to the match channels of the comparator match control logic as depicted in Figure 6-1 and described in Section 6.3.2.8.1, "Debug Comparator Control Register (DBGXCTL). Comparators must be enabled by setting the comparator enable bit in the associated DBGXCTL control register.

Table 6-15. DBGSCR1	Field	Descriptions
---------------------	-------	--------------

Field	Description
3–0 SC[3:0]	These bits select the targeted next state whilst in State1, based upon the match event.

SC[3:0]	Description (Unspecified matches have no effect)
0000	Any match to Final State
0001	Match1 to State3
0010	Match2 to State2
0011	Match1 to State2
0100	Match0 to State2 Match1 to State3
0101	Match1 to State3Match0 to Final State
0110	Match0 to State2 Match2 to State3
0111	Either Match0 or Match1 to State2
1000	Reserved
1001	Match0 to State3
1010	Reserved
1011	Reserved
1100	Reserved
1101	Either Match0 or Match2 to Final StateMatch1 to State2
1110	Reserved
1111	Reserved

Table 6-16. State1 Sequencer Next State Selection

The priorities described in Table 6-36 dictate that in the case of simultaneous matches, a match leading to final state has priority followed by the match on the lower channel number (0,1,2). Thus with SC[3:0]=1101 a simultaneous match0/match1 transitions to final state.

RTI

The execution flow taking into account the IRQ is as follows

MARK1 IRQ_ISR	LDX JMP LDAB	#SUB_1 0,X #\$F0 VAP_C1	; ;
	RTI	VAR_CI	;
SUB_1	BRN NOP	*	;
ADDR1	DBNE	A, PART5	;

6.4.5.2.2 Loop1 Mode

Loop1 Mode, similarly to Normal Mode also stores only COF address information to the trace buffer, it however allows the filtering out of redundant information.

The intent of Loop1 Mode is to prevent the Trace Buffer from being filled entirely with duplicate information from a looping construct such as delays using the DBNE instruction or polling loops using BRSET/BRCLR instructions. Immediately after address information is placed in the Trace Buffer, the DBG module writes this value into a background register. This prevents consecutive duplicate address entries in the Trace Buffer resulting from repeated branches.

Loop1 Mode only inhibits consecutive duplicate source address entries that would typically be stored in most tight looping constructs. It does not inhibit repeated entries of destination addresses or vector addresses, since repeated entries of these would most likely indicate a bug in the user's code that the DBG module is designed to help find.

6.4.5.2.3 Detail Mode

In Detail Mode, address and data for all memory and register accesses is stored in the trace buffer. This mode is intended to supply additional information on indexed, indirect addressing modes where storing only the destination address would not provide all information required for a user to determine where the code is in error. This mode also features information bit storage to the trace buffer, for each address byte storage. The information bits indicate the size of access (word or byte) and the type of access (read or write).

When tracing in Detail Mode, all cycles are traced except those when the CPU is either in a free or opcode fetch cycle.

6.4.5.2.4 Compressed Pure PC Mode

In Compressed Pure PC Mode, the PC addresses of all executed opcodes, including illegal opcodes are stored. A compressed storage format is used to increase the effective depth of the trace buffer. This is achieved by storing the lower order bits each time and using 2 information bits to indicate if a 64 byte boundary has been crossed, in which case the full PC is stored.

Each Trace Buffer row consists of 2 information bits and 18 PC address bits

Analog-to-Digital Converter (ADC12B6CV2)

¹If only AN0 should be converted use MULT=0.

8.3.2.2 ATD Control Register 1 (ATDCTL1)

Writes to this register will abort current conversion sequence.

Module Base + 0x0001

Figure 8-4. ATD Control Register 1 (ATDCTL1)

Read: Anytime

Write: Anytime

Table 8-3.	ATDCTL1	Field	Descriptions
------------	---------	-------	--------------

Field	Description
7 ETRIGSEL	External Trigger Source Select — This bit selects the external trigger source to be either one of the AD channels or one of the ETRIG3-0 inputs. See device specification for availability and connectivity of ETRIG3-0 inputs. If a particular ETRIG3-0 input option is not available, writing a 1 to ETRISEL only sets the bit but has no effect, this means that one of the AD channels (selected by ETRIGCH3-0) is configured as the source for external trigger. The coding is summarized in Table 8-5.
6–5 SRES[1:0]	A/D Resolution Select — These bits select the resolution of A/D conversion results. See Table 8-4 for coding.
4 SMP_DIS	 Discharge Before Sampling Bit 0 No discharge before sampling. 1 The internal sample capacitor is discharged before sampling the channel. This adds 2 ATD clock cycles to the sampling time. This can help to detect an open circuit instead of measuring the previous sampled channel.
3–0 ETRIGCH[3:0]	External Trigger Channel Select — These bits select one of the AD channels or one of the ETRIG3-0 inputs as source for the external trigger. The coding is summarized in Table 8-5.

Table 8-4. A/D Resolution Coding

SRES1	SRES0	A/D Resolution
0	0	8-bit data
0	1	10-bit data
1	0	Reserved
1	1	Reserved

8.3.2.12.2 **Right Justified Result Data (DJM=1)**

Module Base +

Table 8-22 shows how depending on the A/D resolution the conversion result is transferred to the ATD result registers for right justified data. Compare is always done using all 12 bits of both the conversion result and the compare value in ATDDRn.

A/D resolution	DJM	conversion result mapping to ATDDR <i>n</i>
8-bit data	1	Result-Bit[7:0] = result, Result-Bit[11:8]=0000
10-bit data	1	Result-Bit[9:0] = result, Result-Bit[11:10]=00

Table 8-22. Conversion result mapping to ATDDRn

Pulse-Width Modulator (S12PWM8B8CV2)

Field	Description
6–4 PCKB[2:0]	Prescaler Select for Clock B — Clock B is one of two clock sources which can be used for all channels. These three bits determine the rate of clock B, as shown in Table 9-8.
2–0 PCKA[2:0]	Prescaler Select for Clock A — Clock A is one of two clock sources which can be used for all channels. These three bits determine the rate of clock A, as shown in Table 9-8.

Table 9-7. PWMPRCLK Field Descriptions

PCKA/B2	PCKA/B1	PCKA/B0	Value of Clock A/B
0	0	0	bus clock
0	0	1	bus clock / 2
0	1	0	bus clock / 4
0	1	1	bus clock / 8
1	0	0	bus clock / 16
1	0	1	bus clock / 32
1	1	0	bus clock / 64
1	1	1	bus clock / 128

Table 9-8. Clock A or Clock B Prescaler Selects

9.3.2.5 **PWM Center Align Enable Register (PWMCAE)**

The PWMCAE register contains eight control bits for the selection of center aligned outputs or left aligned outputs for each PWM channel. If the CAEx bit is set to a one, the corresponding PWM output will be center aligned. If the CAEx bit is cleared, the corresponding PWM output will be left aligned. See Section 9.4.2.5, "Left Aligned Outputs" and Section 9.4.2.6, "Center Aligned Outputs" for a more detailed description of the PWM output modes.

Figure 9-7. PWM Center Align Enable Register (PWMCAE)

Read: Anytime

Write: Anytime

NOTE

Write these bits only when the corresponding channel is disabled.

Table 9-9. PWMCAE Field Descriptions

Note: Bits related to available channels have functional significance. Writing to unavailable bits has no effect. Read from unavailable bits return a zero

Field	Description
7–0 CAE[7:0]	Center Aligned Output Modes on Channels 7–0 0 Channels 7–0 operate in left aligned output mode. 1 Channels 7–0 operate in center aligned output mode.

MC9S12VR Family Reference Manual, Rev. 4.2

10.4.6.5 Baud Rate Tolerance

A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples (RT8, RT9, and RT10) to fall outside the actual stop bit. A noise error will occur if the RT8, RT9, and RT10 samples are not all the same logical values. A framing error will occur if the receiver clock is misaligned in such a way that the majority of the RT8, RT9, and RT10 stop bit samples are a logic zero.

As the receiver samples an incoming frame, it re-synchronizes the RT clock on any valid falling edge within the frame. Re synchronization within frames will correct a misalignment between transmitter bit times and receiver bit times.

10.4.6.5.1 Slow Data Tolerance

Figure 10-28 shows how much a slow received frame can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.

Figure 10-28. Slow Data

Let's take RTr as receiver RT clock and RTt as transmitter RT clock.

For an 8-bit data character, it takes the receiver 9 bit times x 16 RTr cycles +7 RTr cycles = 151 RTr cycles to start data sampling of the stop bit.

With the misaligned character shown in Figure 10-28, the receiver counts 151 RTr cycles at the point when the count of the transmitting device is 9 bit times x 16 RTt cycles = 144 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit data character with no errors is:

 $((151 - 144) / 151) \ge 100 = 4.63\%$

For a 9-bit data character, it takes the receiver 10 bit times x 16 RTr cycles + 7 RTr cycles = 167 RTr cycles to start data sampling of the stop bit.

With the misaligned character shown in Figure 10-28, the receiver counts 167 RTr cycles at the point when the count of the transmitting device is 10 bit times x 16 RTt cycles = 160 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is:

 $((167 - 160) / 167) \ge 100 = 4.19\%$

NOTE

The open-load detection is only active if the selected source (e.g. PWM, Timer, HSDR[HSDR0]) for the high-side driver is turned off.

14.4.3 Over-Current Shutdown

The high-side driver has an over-current shutdown feature with a current threshold of I_{OCTHSX}.

If an over-current is detected the interrupt flag is set in the HSDRV Interrupt Flag Register (HSIF). As long as the over-current interrupt flag remains set, the high-side driver is turned off to protect the circuit.

Clearing the related over-current interrupt flag returns back the control to the selected source in the PIM module. The over-current detection and driver shutdown can be masked for an initial T_{HSOCM} after switching the driver on. This can be achieved by setting the HSCR[HSOCME0] register bit. HSCR[HSOCME0] is only writable while the driver is disabled (HSCR[HSE0]=0).

14.4.4 Interrupts

This section describes the interrupt generated by HSDRV1C module. The interrupt is only available in MCU run mode. Entering and exiting MCU stop mode has no effect on the interrupt flags.

The interrupt generated by HSDRV1C module is shown in Table 14-11. Vector addresses and interrupt priorities are defined at MCU level.

14.4.4.1 HSDRV1C Over Current Interrupt (HSOCI)

Table 14-11. HSDRV1C Interrupt Sources

Module Interrupt Source	Module Internal Interrupt Source	Local Enable
HSDRV1C Interrupt (HSI)	HSDRV1C Over-Current Interrupt (HSOCI)	HSOCIE = 1

If an over-current is detected the related interrupt flag HSOCIFx asserts. Depending on the setting of the HSDRV1C Error Interrupt Enable (HSOCIE) bit an interrupt is requested.

16.2 External Signal Description

This section lists and describes the signals that connect off chip as well as internal supply nodes and special signals.

16.2.1 LIN — LIN Bus Pin

This pad is connected to the single-wire LIN data bus.

16.2.2 LGND — LIN Ground Pin

This pin is the device LIN ground connection. It is used to sink currents related to the LIN Bus pin. A de-coupling capacitor external to the device (typically 220 pF, X7R ceramic) between LIN and LGND can further improve the quality of this ground and filter noise.

16.2.3 VLINSUP — Positive Power Supply

External power supply to the chip. The VLINSUP supply mapping is described in device level documentation.

16.2.4 LPTxD — LIN Transmit Pin

This pin can be routed to the SCI, LPDR1 register bit, an external pin, or other options. Please refer to the PIM chapter of the device specification for the available routing options.

This input is only used in normal mode; in other modes the value of this pin is ignored.

16.2.5 LPRxD — LIN Receive Pin

This pin can be routed to the SCI, an external pin, or other options. Please refer to the PIM chapter of the device specification for the available routing options.

In standby mode this output is disabled, and sends only a short pulse in case the wake-up functionality is enabled and a valid wake-up pulse was received in the LIN Bus.

18.3 Memory Map and Registers

This section describes the memory map and registers for the Flash module. Read data from unimplemented memory space in the Flash module is undefined. Write access to unimplemented or reserved memory space in the Flash module will be ignored by the Flash module.

CAUTION

Writing to the Flash registers while a Flash command is executing (that is indicated when the value of flag CCIF reads as '0') is not allowed. If such action is attempted the write operation will not change the register value.

Writing to the Flash registers is allowed when the Flash is not busy executing commands (CCIF = 1) and during initialization right after reset, despite the value of flag CCIF in that case (refer to Section 18.6 Initialization for a complete description of the reset sequence).

Global Address (in Bytes)	Size (Bytes)	Description
0x0_0000 - 0x0_03FF	1,024	Register Space
$0x0_0400 - 0x0_05FF$	512	EEPROM Memory
$0x0_{4000} - 0x0_{7}FFF$	16,284	NVMRES ¹ =1 : NVM Resource area (see Figure 18-2)

Table	18-2.	FTMRG	Memory	Man
Table	10-2.	L L MIKO	witchiol y	map

¹ See NVMRES description in Section 18.4.3 Internal NVM resource (NVMRES)

18.3.1 Module Memory Map

The S12 architecture places the P-Flash memory between global addresses $0x3_0000$ and $0x3_FFFF$ as shown in Table 18-3. The P-Flash memory map is shown in Figure .

The FPROT register, described in Section 18.3.2.9 P-Flash Protection Register (FPROT), can be set to Table 18-3. P-Flash Memory Addressing

Global Address	Size (Bytes)	Description
0x3_0000 - 0x3_FFFF	64 K	P-Flash Block Contains Flash Configuration Field (see Table 18-4)

protect regions in the Flash memory from accidental program or erase. Three separate memory regions, one growing upward from global address 0x3_8000 in the Flash memory (called the lower region), one growing downward from global address 0x3_FFFF in the Flash memory (called the higher region), and the remaining addresses in the Flash memory, can be activated for protectio. Two separate memory

18.3.2.9.1 P-Flash Protection Restrictions

In Normal Single Chip Mode the general guideline is that P-Flash protection can only be added and not removed. Table 18-21 specifies all valid transitions between P-Flash protection scenarios. Any attempt to write an invalid scenario to the FPROT register will be ignored. The contents of the FPROT register reflect the active protection scenario. See the FPHS and FPLS bit descriptions for additional restrictions.

From Protection Scenario	To Protection Scenario ¹								
	0	1	2	3	4	5	6	7	
0	Х	Х	Х	Х					
1		Х		Х					
2			Х	Х					
3				Х					
4				Х	Х				
5			Х	Х	Х	Х			
6		Х		Х	Х		Х		
7	Х	Х	Х	Х	Х	Х	Х	Х	

 Table 18-21. P-Flash Protection Scenario Transitions

¹ Allowed transitions marked with X, see Figure 18-13 for a definition of the scenarios.

18.3.2.10 EEPROM Protection Register (EEPROT)

The EEPROT register defines which EEPROM sectors are protected against program and erase operations.

Figure 18-14. EEPROM Protection Register (EEPROT)

¹ Loaded from IFR Flash configuration field, during reset sequence.

The (unreserved) bits of the EEPROT register are writable in Normal Single Chip Mode with the restriction that protection can be added but not removed. Writes in Normal Single Chip Mode must increase the DPS value and the DPOPEN bit can only be written from 1 (protection disabled) to 0 (protection enabled). If the DPOPEN bit is set, the state of the DPS bits is irrelevant.All DPOPEN/DPS bit registers are writable without restriction in Special Single Chip Mode.

During the reset sequence, fields DPOPEN and DPS of the EEPROT register are loaded with the contents of the EEPROM protection byte in the Flash configuration field at global address 0x3_FF0D located in P-Flash memory (see Table 18-4) as indicated by reset condition F in . To change the EEPROM protection

FCMD	Command	Function on EEPROM Memory
0x08	Erase All Blocks	Erase all EEPROM (and P-Flash) blocks. An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN bits in the FPROT register and the DPOPEN bit in the EEPROT register are set prior to launching the command.
0x09	Erase Flash Block	Erase a EEPROM (or P-Flash) block. An erase of the full EEPROM block is only possible when DPOPEN bit in the EEPROT register is set prior to launching the command.
0x0B	Unsecure Flash	Supports a method of releasing MCU security by erasing all EEPROM (and P-Flash) blocks and verifying that all EEPROM (and P-Flash) blocks are erased.
0x0D	Set User Margin Level	Specifies a user margin read level for the EEPROM block.
0x0E	Set Field Margin Level	Specifies a field margin read level for the EEPROM block (special modes only).
0x10	Erase Verify EEPROM Section	Verify that a given number of words starting at the address provided are erased.
0x11	Program EEPROM	Program up to four words in the EEPROM block.
0x12	Erase EEPROM Sector	Erase all bytes in a sector of the EEPROM block.

Table 18-29. EEPROM Commands

18.4.5 Allowed Simultaneous P-Flash and EEPROM Operations

Only the operations marked 'OK' in Table 18-30 are permitted to be run simultaneously on the Program Flash and EEPROM blocks. Some operations cannot be executed simultaneously because certain hardware resources are shared by the two memories. The priority has been placed on permitting Program Flash reads while program and erase operations execute on the EEPROM, providing read (P-Flash) while write (EEPROM) functionality.

	EEPROM					
Program Flash	Read	Margin Read ¹	Program	Sector Erase	Mass Erase ²	
Read		OK	OK	OK		
Margin Read ¹						
Program						
Sector Erase						
Mass Erase ²					OK	

Table 18-30. Allowed P-Flash and EEPROM Simultaneous Operations

¹ A 'Margin Read' is any read after executing the margin setting commands 'Set User Margin Level' or 'Set Field Margin Level' with anything but the 'normal' level specified. See the Note on margin settings in Section 18.4.6.12 Set User Margin Level Command and Section 18.4.6.13 Set Field Margin Level Command.

² The 'Mass Erase' operations are commands 'Erase All Blocks' and 'Erase Flash Block'

CCOBIX[2:0]	FCCOB Parameters				
000	0x03	Global address [17:16] of a P-Flash block			
001	Global address [15:0] of the first phrase to be verified				
010	Number of phrases to be verified				

 Table 19-36. Erase Verify P-Flash Section Command FCCOB Requirements

Upon clearing CCIF to launch the Erase Verify P-Flash Section command, the Memory Controller will verify the selected section of Flash memory is erased. The CCIF flag will set after the Erase Verify P-Flash Section operation has completed. If the section is not erased, it means blank check failed, both MGSTAT bits will be set.

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 010 at command launch
		Set if command not available in current mode (see Table 19-27)
	ACCERR	Set if an invalid global address [17:0] is supplied see Table 19-3)
		Set if a misaligned phrase address is supplied (global address [2:0] != 000)
FSTAT		Set if the requested section crosses a the P-Flash address boundary
	FPVIOL	None
	MGSTAT1	Set if any errors have been encountered during the read or if blank check failed.
	MGSTAT0	Set if any non-correctable errors have been encountered during the read or if blank check failed.

Table 19-37. Erase Verify P-Flash Section Command Error Handling

19.4.6.4 Read Once Command

The Read Once command provides read access to a reserved 64 byte field (8 phrases) located in the nonvolatile information register of P-Flash. The Read Once field is programmed using the Program Once command described in Section 19.4.6.6 Program Once Command. The Read Once command must not be executed from the Flash block containing the Program Once reserved field to avoid code runaway.

CCOBIX[2:0]	FCCOB P	FCCOB Parameters			
000	0x04	Not Required			
001	Read Once phrase ind	Read Once phrase index (0x0000 - 0x0007)			
010	Read Once v	Read Once word 0 value			
011	Read Once v	Read Once word 1 value			
100	Read Once v	Read Once word 2 value			
101	Read Once v	word 3 value			

 Table 19-38. Read Once Command FCCOB Requirements

VREG Electrical Specifications

-40°C	$-40^{\circ}C \le T_J \le 150^{\circ}C$ unless noted otherwise, VDDA and VDDX must be shorted on the application board.							
Num	Characteristic	Symbol	Min	Typical	Max	Unit		
14	Bandgap output voltage	V _{BG}	1.13	1.22	1.32	V		
15	V_{BG} Voltage Distribution over input voltage V_{SUP} 3.5V <= V_{SUP} <= 18V, T_A = 125°C	$\Delta_{\rm VBGV}$	-5		5	mV		
16	V_{BG} Voltage Distribution over ambient temperature T_A $V_{SUP} = 12V$, -40°C <= $T_A <= 125°C$	$\Delta_{\rm VBGV}$	-20		20	mV		
17	Recovery time from STOP	t _{STP_REC}		23		μs		

Table B-1. Voltage Regulator Electrical Characteristics

¹For the given maximum load currents and V_{SUP} input voltages, the MCU will stay out of reset.

²Please note that the core current is derived from VDDX

³further limitation may apply due to maximum allowable T_I

⁴LVI is monitored on the VDDA supply domain

⁵LVRX is monitored on the VDDX supply domain only active during full performance mode. During reduced performance mode (stopmode) voltage supervision is solely performed by the POR block monitoring core VDD.

⁶The ACLK trimming must be set that the minimum period equals to 0.2ms

⁷VREGHTTR=\$88

NOTE

The LVR monitors the voltages VDD, VDDF and VDDX. If the voltage drops on these supplies to a level which could prohibit the correct function (e.g. code execution) of the microcontroller, the LVR triggers.

Table B-2. Recommended Capacitor Values

Num	Characteristic	Symbol	Typical ¹	Unit
1	VDDX capacitor ²	C _{VDDX}	100-220	nF
2	VDDA capacitor ³	C _{VDDA}	100-220	nF
3	Stability capacitor ^{4,5}	C _{VDD5}	4.7 or 10	μF

¹Values are nominal component values.

²X7R ceramics

³X7R ceramics

⁴Can be placed anywhere on the 5V supply node (VDDA, VDDX)

 $^54.7\mu F$ X7R ceramics or 10 μF tantalum

Appendix N Package Information

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE PRINT VERSION NO		IT TO SCALE
TITLE:		DOCUMENT NO	RE∨: D	
LOW PROFILE QUAD FLAT PA	CASE NUMBER	JMBER: 873A-03 19 MAY 20		
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	DEC MS-026 BBA		

MC9S12VR Family Reference Manual, Rev. 4.2